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The study of disease-gene associations is an important topic in the �eld of
computational biology. The accumulation of massive amounts of biomedical data
provides new possibilities for exploring potential relations between diseases and
genes through computational strategy, but how to extract valuable information from
the data to predict pathogenic genes accurately and rapidly is currently a challenging
and meaningful task. Therefore, we present a novel computational method called
PGAGP for inferring potential pathogenic genes based on an adaptive network
embedding algorithm. The PGAGP algorithm is to �rst extract initial features of
nodes from a heterogeneous network of diseases and genes ef�ciently and
effectively by Gaussian random projection and then optimize the features of
nodes by an adaptive re�ning process. These low-dimensional features are used
to improve the disease-gene heterogenous network, and we apply network
propagation to the improved heterogenous network to predict pathogenic genes
more effectively. By a series of experiments, we study the effect of PGAGP’s
parameters and integrated strategies on predictive performance and con�rm that
PGAGP is better than the state-of-the-art algorithms. Case studies show that many
of the predicted candidate genes for speci�c diseases have been implied to be
related to these diseases by literature veri�cation and enrichment analysis, which
further veri�es the effectiveness of PGAGP. Overall, this work provides a useful
solution for mining disease-gene heterogeneous network to predict pathogenic
genes more effectively.
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1 Introduction

Diseases have been threatening human health and life for a long time. As we know,
many complex diseases are closely related to the mutations and dysfunction of pathogenic
genes. Accurate identi�cation of pathogenic genes is very important for the mechanism
research of complex diseases and their diagnosis and treatment (do Valle Í, 2020; Menche
et al., 2015). Traditional methods, e.g., linkage mapping and genome-wide association, are
helpful for �nding disease genes, but their candidate lists still contain hundreds or
thousands of genes, needing expensive experiments to further determine disease genes
(Hindorff et al., 2009; Johnson and O’Donnell, 2009; Ott et al., 2015; Shim et al., 2017). So,
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in the last decades, a large number of computational methods have
been introduced to infer pathogenic genes (Zeeshan et al., 2020;
Ata et al., 2021; Xiang et al., 2021a; Ruan and Wang, 2021; Xiang
et al., 2022a).

Thanks to a variety of high-throughput experimental techniques,
protein-protein interactions as well as pathogenic association data are
growing rapidly (Liu et al., 2020; Xiang et al., 2022b). Therefore,
network-based methods are one of the most popular methods for
disease-gene prediction (Köhler et al., 2008; Li and Patra, 2010;
Vanunu et al., 2010; Xie et al., 2012; Luo et al., 2021). The protein-
protein interactions (PPI) are a popular biological data resource widely
used in disease-gene prediction and related issues (Oti et al., 2006;
Köhler et al., 2008; Li and Patra, 2010; Hu et al., 2018; Meng et al.,
2022). For example, the random walk with restart (RWR) on a PPI
network was proposed to predict disease genes (Köhler et al., 2008),
which uses a random walk process to explore the network proximity
between candidate genes and seed genes (i.e., known pathogenic genes
of a disease). However, any existing single-source data, due to data
noise and other problems, is dif�cult to fully re�ect the relevant
information between diseases and genes. Many relevant studies
have revealed that genes associated with the same or similar
diseases are generally related functionally, which are adjacent to or
close to each other in the PPI network. Therefore, the comprehensive
use of pathogenic and gene-related information can improve the
prediction performance. For instance, the RWR algorithm was
extended into a disease-gene heterogeneous network, resulting in
the popular RWRH algorithm (Li and Patra, 2010). Based on the
similar heterogeneous network, Vanunu et al. (2010) proposed the
algorithm called PRINCE, and Xie et al. (2012) presented the BiRW
algorithm to globally prioritize pathogenic genes for all diseases
simultaneously.

Many disease-gene-prediction methods with the heterogeneous
network have been presented, but how to extract valuable information
from the network to predict pathogenic genes accurately and rapidly is
currently a challenging and meaningful task. Some researchers
recently have carried out relevant work by integrating novel
network embedding techniques (Han et al., 2018; Zhou et al., 2020;
Xiang et al., 2021b). For example, the PrGeFNE method was proposed
for predicting disease-related genes by using fast network embedding
(Xiang et al., 2021b). Network embedding (NE) or network
representation learning (NRL) has become an effective strategy to
mine useful information from the network data (Han et al., 2018). At
present, a variety of network embedding algorithms have been
presented, and the existing learning-based algorithms can achieve
good results in many tasks such as node classi�cation and link
prediction (Wang et al., 2016; Cunchao et al., 2017; Zhang et al.,
2018; He et al., 2021; HU et al., 2021; Pio-Lopez et al., 2021). However,
with the increase of network scale, the existing network embedding
methods have computing bottlenecks. In order to address this
problem, Gaussian random projection as a new and effective
technique was applied to learn low-dimensional features of nodes
from a large-size network, but some key information of network
structure may be lost, due to the limit of dimension, resulting in the
degradation of algorithm performance (Zhang et al., 2018; HU et al.,
2021).

Therefore, we present a type of novel algorithms for inferring
pathogenic genes based on adaptive random projection (PGAGP).
First, we propose an adaptive algorithm based on Gaussian random
projection (AGP) for extracting the features of nodes from a large-

scale heterogeneous network. It �rst generates the raw features of
nodes from the heterogeneous network by Gaussian random
projection and then will optimize these raw features by an adaptive
re�ning process to generate the �nal low-dimensional feature matrix
of nodes. Then, we use the extracted feature matrix to improve the
disease-gene heterogenous network, and we apply network
propagation process to the improved heterogenous network to
mine potential pathogenic genes more effectively.

In the following, Section 2 will introduce the used datasets and the
details of the PGAGP method, including the AGP algorithm, the
method of improving disease-gene heterogenous network, the
strategies of integrating adaptive random projection. In Section 3,
we study the effect of PGAGP’s parameters and the integrated
strategies on predictive performance and evaluate the performance
of the PGAGP method by a serial of experiments, along with the
comparison of AGP with other state-of-the-art network-embedding
algorithms and the case studies for speci�c diseases. Finally, we present
our conclusion.

2 Materials and methods

2.1 Dataset

In order to evaluate the validity of our method, we use the
multiple kinds of biological network data, including a disease-gene
network (DGN), a PPI network, and a disease-disease network
(DDN). These biological networks are described in detail as
follows. For the PPI network, the comprehensive interactome
originally collected by Menche et al. will be used, which was
derived from several high-quality databases (e.g., HPRD, IntAct
and PINA) (Menche et al., 2015). The DGN network is obtained
from DisGeNet (Piñero et al., 2017), which is a discovery platform
containing a large number of human disease/phenotype-related
variants and genes. We �ltered the raw disease-gene association
data by selecting the “disease” and ‘Disease or Syndrome’ types in
DisGeNet. Then, we �ltered out genes that are not in the PPI
network. The DDN network is derived by using the disease-
disease similarity scores calculated recently by the same method
in MimMiner (van Driel et al., 2006), and we map the OMIM IDs to
the UMLS IDs in DisGeNet. Finally, the GGN network contains
13,271 nodes, the DDN network contains 7,003 nodes, the DGN
network has 15,786 disease-gene associations, while the resulting
heterogeneous network of genes and diseases contains 20,274 nodes
and 345, 962 edges.

2.2 Method

In this work, a disease-gene-prediction method called PGAGP
will be proposed based on adaptive Gaussian random projection.
This method consists of the following steps. Starting from a disease-
gene heterogeneous network (DGH) consisting of disease-related
and gene-related associations, 1) we propose an adaptive Gaussian
random projection algorithm, so as to obtain the features of nodes
(diseases and genes) from the DGH network; 2) we improve the
disease-gene heterogeneous network by using the extracted features;
3) we predict pathogenic genes on the improved DGH network (see
Figure 1).
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2.2.1 Adaptive Gaussian random projection
In order to more effectively make use of known biological associations

to infer potential disease-related genes, we will �rst construct a disease-gene
heterogeneous network by integrating the know disease-gene associations,
disease-disease associations, and gene-gene associations. Then, we extract
the low-dimensional features of network nodes to mine valuable
information from the disease-gene heterogeneous network. The low-
dimensional features of diseases and genes can be used to directly infer
disease-gene associations, e.g., by the similarity between feature vectors. Or
they can also be used to improve the structure of the original disease-gene
heterogeneous network, so as to improve the performance of disease-gene
prediction. In this scenario, the algorithm of extracting the features of
network nodes is critical to disease-gene prediction. So, we propose the
following adaptive Gaussian random projection algorithm (AGP).

Generally, we use the adjacency matrix of a network A � 0,1{ }n×n to
represent the network. If there are edges between nodes vi and vj , then
Aij � 1, otherwise Aij � 0. To predict disease-related genes, we have
constructed a DGH network that consists of a DGN network, a PPI
network and a DDN network. To effectively mine the valuable information
from the DGH networks, the adaptive Gaussian random projection
algorithm (AGP) is proposed to obtain the features of network nodes.

For an undirected graph, an objective function can be de�ned by,
min X � � ( A) Š X · XT� 2, where A is the adjacent matrix of the graph,
� ( A) � Rn×n is a targeted similarity function of A, X � Rn×d� denotes a
(relatively low-dimensional) feature matrix, n denotes the number of

nodes, d� � p*n denotes the dimension of initial features, and p
denotes the proportion of initial dimension. Speci�cally, � ( A) is a
higher-order matrix of A, and can be formulated as � ( A) � B · BT,
where B � � r� q

r� 0� r ~A
r , ~A � ~D

Š1
2 A ~D

Š1
2, ~D denotes a diagonal matrix

with ~Dii � � j Aij , and � r denotes the pre-de�ned weight of the r-th matrix.
As we know, the optimal solution of the above objective function can be

obtained by singular value decomposition (SVD), but it is not suitable for
large-scale networks due to its high computing consumption (Eckart and
Young, 1936). Differently from SVD and other methods of direct parameter
optimization, we here apply Gaussian random projection (GRP) to extract
the initial feature matrix X, due to its rapidity and effectiveness. First, a
subspace S � Rn×d� is generated by Gaussian distribution Sij ~ N ( 0, 1

d�).
The subspace S contains of a group of standard basis vectors that are
orthogonal to each other, i.e., STS� I . Based on the standard basis vectors,
then, X can be obtained by mapping B into the subspace,

X � B · S � �
q

r� 0
� r ~A

r
S � �

q

r� 0
� rSr (1)

where Sr � ~ASrŠ1 and S0 � S.
To further optimize the feature matrix X, a post-processing process is

applied. Speci�cally, we �rst generate the column-centered matrix Y by
Yij � Xij Š� kXkj, and then obtain the eigenvalues and corresponding
eigenvectors of YTY,

LVS � � i , vi( ) | i � 1,2, . . .{ } (2)

FIGURE 1
Overview of the PGAGP algorithm (A) A disease-gene heterogeneous network consisting of a disease-gene network, a PPI network and a disease-
disease network (B) The heterogeneous network is fed to adaptive random projection algorithm to extract the features of nodes (diseases and genes) (C) The
PPI network and the disease-disease network are improved by using the above extracted features, and thus an improved disease-gene heterogeneous
network is constructed (D) The improved disease-gene heterogeneous network is fed to a network propagation algorithm to infer pathogenic genes
more effectively.
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where � i � � i+1. And then, we map the feature matrix X into the new
eigen space by Xvi , and � i corresponds to the contribution of the
dimension i. We de�ne the relatively accumulative contribution from
v1 to vk as

c k( ) � �
k

i� 1
� i � �

i
� i , (3)

and we de�ne the feature dimension of �nal feature matrix as the
minimum of k when satisfying, c( k) � threshold, that is,
d � min k|c( k) � threshold{ }, where threshold denotes the
threshold of relatively accumulative contribution. As a result, the
�nal feature matrix can be obtained by Z � XVd, where the projection
space is de�ned as Vd � ( v1,v2, . . . ,vd).

2.2.2 Improvement of DGH network
After extracting the �nal features of nodes, we improve the DDN

network and the PPI network by using the extracted information.
Speci�cally, we �rst extract the feature matrix ZD of diseases from the
above �nal feature matrix Z, and calculate the similarity scores
between diseases by,

WD � DDZDZT
DDD, (4)

where DD denotes a diagonal matrix of diseases with
( DD)ii � ( ZDZT

D)
Š1/2
ii . Then, we extract the feature matrix ZG of

genes from Z, and calculate the similarity scores between genes by,

WG � DGZGZT
GDG, (5)

where DG denotes a diagonal matrix of genes with
( DG)ii � ( ZGZT

G)
Š1/2
ii . Further, we obtain sparse matrices of WD and

WG, corresponding to the reconstructed disease network (DNrc) and
the reconstructed gene network (GNrc).

The original DDN network and PPI network are often incomplete.
The DNrc and GNrc networks contain the re�ned information that
extracts from the original DGH network, which may be helpful for
inferring potential disease genes. So, we further generate the improved
disease network (DNim) by de�ning the new matrix MD of diseases,

MD( ) ij � max � WD( ) ij , AD( ) ij �� . (6)

And, similarly, we generate the improved gene network (GNim) by
de�ning new matrix MG of genes,

MG( ) ij � max � WG( ) ij , AG( ) ij �� . (7)

The disease-gene heterogeneous network is a useful network
framework for network-based disease-gene prediction, but the
original heterogeneous network is not ideal due to the noise in the
original DDN network and PPI network. To provide better network
structure for disease-gene prediction, we consider the following two
kinds of improved disease-gene heterogeneous networks (HNim and
HNrc).

HNim: First, we propose the improved disease-gene
heterogeneous network that is constructed by integrating the above
DNim and GNim networks with known disease-gene association
network. This will provide a better heterogeneous network
framework for disease-gene prediction.

HNrc: As a compared strategy, we also generate a reconstructed
DGH network by directly integrating the above DNrc and GNrc with
known disease-gene associations.

Moreover, as comparison, we also construct an original disease-
gene heterogeneous network by integrating the original DDN network
and the original PPI network with known disease-gene associations
(see Section 3).

2.2.3 Disease-gene prediction integrating adaptive
random projection

In this work, we study three kind strategies for disease-gene
prediction integrating adaptive random projection. The �rst and
second strategies will conduct network propagation on HNim and
HNrc heterogeneous networks, respectively. The third strategy will
infer disease-gene associations by the cosine similarity scores between
feature vectors of diseases and genes.

2.2.3.1 PGAGP_HNim: Prediction on HNim heterogeneous
network

To make use of the above improved disease-gene heterogeneous
network called HNim to infer potential disease genes, we will apply a
random walk process to the improved HNim network, due to its good
performance in many cases. First, we obtain the column-
normalization matrices (TD, TG, R�, and Q) of MD, MG, R, and RT,
where R denotes the known disease-gene association matrix and RT

denotes the transpose matrix of R. Then, the probability transition
matrix on the HNim network is denoted as,

TH �
1 Š�( ) TD � R�

� Q 1 Š�( ) TG
� � , (8)

where � denotes the inter-layer jump probability (note that
considering the possible existence of isolated nodes in the HNim
network, we usually conduct further column-normalization on TH). A
random walker in a network layer (e.g., the disease network layer) may
jump to another network (e.g., the gene network layer) with
probability � , or it may stay at the current layer with probability of
1 Š� .

The stable solution of the random walk process on the network can
be obtained by,

Pt+1 � 1 Šr( ) THPt + rP0 (9)

where the initial probability vector P0 � [ DT
D, QT]T, and DD is a

diagonal matrix of diseases. The difference of probability vectors at
different time steps becomes negligible after a small number of
iterations, and the stable probability vector P� � [ DT

� , QT
� ]T is

reached, which denotes the closeness between candidate genes and
the seed gene(s). Each column of P� records the disease-relevance
scores of all genes with a given disease.

2.2.3.2 PGAGP_HNrc: Prediction on HNrc heterogeneous
network

As comparison, we also apply the above random-walk process to
the HNrc heterogeneous network to infer candidate genes of diseases.
First, the column-normalization matrices (W�

D, W�
G, R� and Q) of WD,

WG, R, and RT, where R also denotes the known disease-gene
association matrix. Then, the probability transition matrix on the
HNrc network can be obtained by

TH �
1 Š �( ) W�D � R�

� Q 1 Š�( ) W�
G

� � . (10)
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Then, as in PGAGP_HNim, we conduct the network propagation
process based on this probability transition matrix to generate the
disease-relevance scores of all genes.

2.2.3.3 PGAGP_CSim: Prediction based on cosine similarity of
features

The extracted features of nodes contain useful information that
re�ect the characteristics of genes and diseases. The similarity of
characteristics between genes and diseases can re�ect the relatedness
between them. Therefore, we also use the cosine similarity between the
node features to evaluate the disease-relevance scores between genes
and speci�c diseases. Speci�cally, for a disease vector and a gene
vector, the disease-relevance score between them is calculated by,

CSim di, gj� � �
ZD di, •( ) ZT

G( gj, • )
				ZD di, •( )

				 ·
				ZG( gj, • )

				
, (11)

where ZD( di, • ) is a row vector in the feature matrix ZD of diseases,
ZG( gj, • ) is a row vector in the feature matrix ZG of genes. For a given
disease, we calculate disease-relevance scores of all candidate genes,
and then we obtain a list of candidates for this disease by the
decreasing order of disease-relevance scores. Algorithm 1 describes
the PGAGP method for predicting potential disease-gene associations.

Algorithm 1. PGAGP (AD, AG, R, p, threshold, STR)

3 Results

3.1 Experimental setting and evaluation
criteria

In this work, we evaluate the performance of our method by using
the disease-gene network extracted from DisGeNet—one of the largest
publicly available datasets of human pathogenic genes. We �rst
evaluate the prediction performance of algorithms by 5-fold cross
validation. Then, we evaluate the ability of our method in predicting
the new added disease-gene associations by using the disease-gene
associations before and after 2012 as the training set and the test set.
Finally, we predict novel candidate genes for speci�c diseases by using
all the known disease-gene associations as the training set, and we
verify the disease relevance of the predicted candidates by literature
veri�cation and enrichment analysis.

For a disease d, we generate the disease-relevance scores of all
candidate genes in our experiments. According to the decreasing order
of the disease-relevance scores, we select the top-k genes as predicted
positive genes for this disease, where k (e.g., k � 1, 5 or 10) is a variable
parameter. We use AUROC, AUPRC, Precision, Recall, F1-score, and
Association Precision (AP) as evaluation criteria.

We used several state-of-the-art algorithms for disease-gene
prediction as baseline methods, including PrGeFNE (Xiang et al.,
2021b), dgn2vec (Liu et al., 2021), BiRW (Xie et al., 2012), RWRH (Li
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and Patra, 2010), PRINCE (Vanunu et al., 2010), DK (Köhler et al.,
2008), RWR (Köhler et al., 2008). PrGeFNE and dgn2vec are a type of
recently proposed network-based algorithms with network
embedding, which use the network-embedding algorithms to
extract features of nodes from a heterogeneous network and then
predict pathogenic genes by using the extracted features of nodes.

3.2 Effect of different parameters in PGAGP

We use the parameter p to determine the proportion of initial
dimension and use the parameter ‘threshold’ to determine the retained
relatively accumulative contribution. The two parameters play a
crucial role in the adaptive re�ning process of generating the �nal
low-dimensional feature matrix of nodes. Here, we study the effect of
the two key parameters (p and threshold) on the performance of
PGAGP (see Figures 2, 3).

Figure 2 shows the predictive performance of PGAGP’s three
variants (PGAGP_HNim, PGAGP_HNrc and PGAGP_CSim) as a
function of the threshold under given the values of p. For relatively

small values of p (e.g., p = 0.01), the predictive performance metrics
(AUROC, AUPRC and AP) will increase with the increase of the
threshold. For relatively large values of p (e.g., p = 0.1, 0.2 and 0.3), the
predictive performance metrics will �rst increase with the increase of
the threshold, and then, after reaching a certain threshold (e.g.,
threshold = 0.5), they will be relatively stable, and even have a
downward trend. So, based on the above relationship between
prediction performance and threshold (especially when p is large),
the threshold equal to 0.5 is worth recommending.

The possible reason for the above phenomenon is that when p is
small (e.g., p = 0.01), the amount of information initially extracted from
the original network by random projection itself is very small. Strong
threshold �ltering (smaller threshold) will lead to excessive loss of the
information, leading to low prediction performance. With the increase
of threshold, more and more information will be retained, which will
gradually improve the prediction performance. In the case of small p, the
in�uence of extracted (useful) information may be stronger than that of
noise �ltering.

However, when the parameter p is relatively large (e.g., p = 0.1,
0.2 and 0.3), the amount of information initially extracted from the

FIGURE 2
Effect of parameters on the performance of PGAGP (A– C) PGAGP_HNim (D– F) PGAGP_HNrc (G– I) PGAGP_CSim. For a given proportion of initial
dimension reduction (p), different performance metrics (AUROC, AUPRC and AP) vary with the threshold of relatively accumulative contribution (threshold).
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original network by random projection is relatively abundant, which may
also contain some useless noise information. Similarly, strong threshold
�ltering also corresponds to relatively low prediction performance, and
when the threshold is increased, more and more information is retained,

and the performance is gradually improved. Differently, when the
threshold is raised to a certain extent (e.g., threshold = 0.5), more
useless noise information is also retained, resulting in the decline of
prediction performance. In other words, the weakening effect of

FIGURE 3
Performance as a function of the proportion of initial dimension (p), under the default threshold of relatively accumulative contribution (A) The running
time for different values of p (B–D) AUROC, AUPRC and AP vary with the values of p.

TABLE 1 Comparison with state-of-the-art algorithms in cross-validation experiments.

Methods AUROC AUPRC Recall Precision F1-score AP

PGAGP_HNim 0.869 0.125 0.080 0.143 0.102 0.157

PGAGP_HNrc 0.862 0.123 0.077 0.139 0.099 0.154

PGAGP_CSim 0.725 0.049 0.027 0.054 0.036 0.065

PrGeFNE 0.853 0.120 0.076 0.135 0.097 0.147

dgn2vec 0.829 0.064 0.036 0.051 0.042 0.051

RWRH 0.856 0.078 0.046 0.074 0.057 0.080

PRINCE 0.821 0.032 0.015 0.031 0.021 0.039

BiRW 0.768 0.046 0.027 0.045 0.034 0.046

DK 0.641 0.033 0.021 0.032 0.025 0.033

RWR 0.653 0.031 0.019 0.030 0.023 0.032

Bold values are the best among all the algorithms.
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retained useless information has been stronger than the positive effect of
retained useful information. This also indicates that the re�ning process of
threshold in AGP is useful for improve the ability of disease-gene
prediction.

To study the effect of parameter p, Figure 3 shows the performance
indicators of algorithms as a function of the proportion of initial
dimension p), under the default threshold (=0.5). Figure 3A displays
the running time of algorithms for different values of p, showing that
the running time signi�cantly increases with the increase of p,
especially after p = 0.1; Figures 3B–D shows that PGAGP
(PGAGP_HNim and PGAGP_HNrc) after p � 0.1 has relatively
stable and good performance (AUROC, AUPRC and AP), although
AUROC and AP have still a trend of increase. Therefore, the
proportion p) equal to 0.1 is recommended in this study due to its
relatively low running time and good predictive performance.

3.3 Comparison of different strategies for
integrating adaptive random projection

By considering three kind strategies (HNim, HNrc and CSim) for
disease-gene prediction integrating adaptive random projection, we
have proposed three variants of PGAGP (PGAGP_HNim, PGAGP_
HNrc and PGAGP_CSim) to predict potential pathogenic genes.
Table 1 and Figures 3B–D show the comparison of the three kind
strategies corresponding to the three variants of PGAGP.

The results con�rm that our proposed strategy (HNim) in this
study has always been better than the other two existing strategies in
literature (see Table 1 and Figures 3B–D). Therefore, HNim will be
used as the recommended strategy integrating adaptive random
projection, while PGAGP_HNim will be used as the recommended
algorithm in this study.

3.4 Comparison to state-of-the-art
algorithms

Here, our PGAGP method is compared with the state-of-the-art
algorithms by cross-validation experiments: PrGeFNE (Xiang et al.,

2021b), dgn2vec (Liu et al., 2021), RWRH (Li and Patra, 2010),
PRINCE (Vanunu et al., 2010), BiRW (Xie et al., 2012), RWR
(Köhler et al., 2008) and DK (Köhler et al., 2008). RWR uses a
random walk process to explore the network proximity between
candidate genes and seed genes (i.e., known pathogenic genes of a
disease); DK is an algorithm based on a diffusion process on a PPI
network; RWRH is the extension of RWR into disease-gene
heterogeneous network; PRINCE is based on the network
propagation process that makes use of the information of disease-
disease associations; BiRW is based on the bi-random walk process on
disease-gene heterogeneous network. Among these compared
algorithms, RWR and DK are two popular algorithms based on
PPI network; RWRH, PRINCE and BiRW are three widely used
algorithms based on disease-gene heterogeneous network. PrGeFNE
and dgn2vec are two recently proposed algorithms that integrate
network embedding techniques. We used the preferred settings of
our method (PGAGP_HNim with threshold = 0.5 and p = 0.1) in the
following scenarios, while the default settings of the compared
algorithms are used, which can be found in the original literature.

Table 1 displays the AUROC, AUPRC, Recall, Precision, F1 and
AP values of PGAGP (PGAGP_HNim, PGAGP_HNrc and PGAGP_
CSim) and other comparison algorithms. Figure 4 displays the Recall
and Precision in the top-k prediction lists obtained by different
algorithms. These results show that our PGAGP algorithms
(PGAGP_HNim and PGAGP_HNrc) outperform other comparison
algorithms, including the recently proposed algorithms with network
embedding techniques (PrGeFNE and dgn2vec).

PGAGP (PGAGP_HNim and PGAGP_HNrc) can be viewed as
the improved versions of RWRH after combining network
embedding. We can �nd that for AUROC, AUPRC, Recall,
Precision, F1-score and AP, PGAGP_HNim is better than RWRH
by 2%, 61%, 75%, 92%, 81% and 95%, respectively; PGAGP_HNrc is
better than RWRH by 1%, 58%, 69%, 87%, 76% and 92%,
respectively. Moreover, PGAGP_HNim is better than PrGeFNE
by 2%, 4%, 5%, 6%, 5% and 6%, respectively, for AUROC,
AUPRC, Recall, Precision, F1-score and AP; PGAGP_HNrc is
better than PrGeFNE by 1%, 2%, 1%, 3%, 2% and 5%,
respectively. Further, we can �nd that PGAGP_HNim exceeds the
best results of comparison algorithms by 2%, 4%, 5%, 6%, 5% and

FIGURE 4
Top-k predictive performance of algorithms (A) Recall and (B) Precision in the top k of the prediction lists obtained by different algorithms.
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6%, respectively. Overall, these results indicate that our algorithms
indeed can bring effective performance improvement.

3.5 Performance comparison in predicting
new disease-gene associations

Further, we evaluate the performance of our PGAGP method
algorithms (using default settings) by using the disease-gene
associations before and after 2012 as a training set and a test set,
respectively. Table 2 shows that our algorithm (PGAGP_HNim) also
outperforms other state-of-the-art algorithms in predicting the newly
added disease-gene associations.

For example, speci�cally, we can �nd that PGAGP_HNim is better
than RWRH by 0.3%, 62%, 84%, 110%, 93% and 80%, respectively, for
AUROC, AUPRC, Recall, Precision, F1 and AP; PGAGP_HNim is
better than PrGeFNE by 2%, 6%, 9%, 17%, 12% and 1%, respectively;
PGAGP_HNim exceeds the best results of comparison algorithms by

0.3%, 6%, 9%, 17%, 12% and 1%, respectively. The results indicate that
our PGAGP algorithm can also bring performance improvement in
predicting newly added disease-gene associations, again verifying the
effectiveness of PGAGP.

3.6 Comparison with other network
embedding algorithms

Here, we further evaluate the effectiveness of our AGP network-
embedding algorithm in our PGAGP framework, by comparing it with
other state-of-art network embedding algorithms (Han et al., 2018):
dgn2vec (Liu et al., 2021), RandNE (Zhang et al., 2018), node2vec
(Grover and Leskovec, 2016), SDNE (Wang et al., 2016), LINE (Tang
et al., 2015), GraRep (Cao et al., 2015), DeepWalk (Perozzi et al.,
2014), Graph Factorization (GF) (Ahmed et al., 2013), Laplacian
Eigenmaps (LAP) (Belkin and Niyogi, 2001), and LLE (Roweis and
Saul, 2000). We also used the preferred settings of our method in the

TABLE 2 Comparison to state-of-the-art algorithms in predicting newly added disease-gene associations.

Methods AUROC AUPRC Recall Precision F1-score AP

PGAGP 0.750 0.041 0.025 0.050 0.033 0.065

PrGeFNE 0.737 0.039 0.023 0.043 0.030 0.064

dgn2vec 0.711 0.027 0.015 0.021 0.017 0.029

RWRH 0.747 0.025 0.014 0.024 0.017 0.036

PRINCE 0.718 0.012 0.005 0.010 0.007 0.018

CIPHER 0.569 0.009 0.005 0.009 0.006 0.005

BiRW 0.690 0.016 0.009 0.014 0.011 0.016

RWR 0.585 0.012 0.008 0.013 0.010 0.016

DK 0.577 0.009 0.005 0.006 0.006 0.015

Bold values are the best among all the algorithms.

TABLE 3 Comparison of different network embedding algorithms (AGP and other state-of-the-art algorithms) in the framework of PGAGP (using HNim stra tegy).

Methods AUROC AUPRC Recall Precision F1-score AP

AGP 0.869 0.125 0.080 0.143 0.102 0.157

dgn2vec 0.873 0.123 0.077 0.135 0.098 0.148

RandNE 0.862 0.122 0.078 0.137 0.099 0.150

LINE 0.836 0.109 0.072 0.117 0.089 0.122

node2vec 0.870 0.124 0.079 0.139 0.100 0.153

SDNE 0.841 0.110 0.072 0.119 0.090 0.127

DeepWalk 0.877 0.121 0.076 0.135 0.097 0.151

GraRep 0.863 0.114 0.072 0.127 0.092 0.144

GF 0.851 0.121 0.079 0.131 0.098 0.140

LAP 0.856 0.114 0.072 0.125 0.091 0.142

LLE 0.856 0.108 0.069 0.116 0.086 0.130

Baseline 0.856 0.078 0.046 0.074 0.057 0.080

Bold values are the best among all the algorithms.
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following scenarios, while the default settings of the compared
network-embedding algorithms are used, which can be found, e.g.,
in the OpenNE package or the original literature.

The following is a brief introduction to the state-of-art network
embedding algorithms. dgn2vec is a network-embedding algorithm on
disease-gene heterogeneous network, which was presented for disease-
gene prediction in another literature. RandNE is a network-
embedding algorithm based on iterative random projection, which
was proposed for billion-scale network embedding. DeepWalk is the
�rst learning-based algorithm, which learns the vector representation
of network nodes by the Skip-gram word embedding model. In this
algorithm, network nodes are compared to word in the language
model, and the node sequence generated by random walks is regarded
as the context. By predicting the random walk sequence of selected
nodes, the parameters of the probability model are estimated to obtain
the node embedding representation. LINE considers the �rst order
and second order proximity of network nodes at the same time, which
is mainly manifested as the high proximity of two directly connected
nodes and the high proximity of two nodes with more common
neighbors. node2vec is the improved algorithm based on DeepWalk.

node2vec combines depth-�rst search (DFS) and breadth-�rst search
(BFS) to conduct “biased” random walks, generate node sequence sets,
and then use them as the input of the Skip-gram to get network
embedding. GraRep conducts matrix decomposition on the adjacency
matrix of the network and its higher-order power, so as to obtain the
representation of the network nodes by using different levels of
neighbor node information. SDNE combines the semi-supervised
deep learning model of the �rst order and second order proximity
of the optimized network, while preserving the global and local
structure information of the network. GF is a graph-factorization
algorithm for large-scale graph decomposition and inference. LAP is a
geometrically motivated algorithm for representing the high-
dimensional data, which is a computationally ef�cient algorithm to
non-linear dimensionality reduction. LLE is a locally linear embedding
algorithm based on unsupervised learning for non-linear
dimensionality reduction, which can compute low-dimensional,
neighborhood-preserving embeddings of high-dimensional data.

In the framework of PGAGP, we compared the predictive
performance of the AGP algorithm with these state-of-the-art
network-embedding algorithms. Experimental results show that the

TABLE 4 Predicted top 10 candidate genes for Alzheimer’s Disease.

Rank Candidate gene References

1 GRN Viswanathan et al. (2009); Kämäläinen et al. (2013)

2 IL6 Licastro et al. (2000); Chen et al. (2012); Qi et al. (2012)

3 IFNG —

4 POMC Shen et al. (2016); Zamanian-Azodi et al. (2020)

5 PAH —

6 EDN1 Palmer et al. (2012); Thomas et al. (2015); Alcendor. (2020)

7 NOS2 Wilcock et al. (2008); Colton et al. (2014)

8 CAT —

9 SOD1 Feng et al. (2006); Spisak et al. (2014)

10 ALB —

TABLE 5 Predicted top 10 candidate genes for Parkinson’s disease.

Rank Candidate gene References

1 APOE de la Fuente-Fernández et al. (1999); Li et al. (2018)

2 PDYN —

3 PODXL —

4 NOS3 —

5 IL1B Mattila et al. (2002); Nishimura et al. (2005); Lee et al. (2016)

6 CAT —

7 NOS2 Hancock et al. (2008)

8 DNAJC13 Vilariño-Güell et al. (2014); Gustavsson et al. (2015)

9 GSR —

10 APP Schulte et al. (2015); Zeng et al. (2022)
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PGAGP framework with different network-embedding algorithms can
improve the ability of predicting disease genes, especially for AUPRC,
Recall, Precision, F1-score and AP, compared to the baseline
algorithm; and AGP can obtain relatively better results than other
network-embedding algorithms in many cases (see Table 3).

As we know, the AGP algorithm is proposed based on Gaussian
random projection (GRP). Compared to another GRP-based
algorithm called RandNE, we can see that the performance of AGP
is improved by 1%, 2%, 2%, 4%, 3% and 4% for AUROC, AUPRC,
Recall, Precision, F1-score and AP. The reason of the improvement
may be that RandNE directly applies the (iterative) GRP to obtain the
features of nodes from a large-size network, while AGP consists of two
key steps: the initial feature extraction by GRP and the optimization of
the features by an adaptive re�ning process.

4 Case study

Here, we use all known disease-gene associations as train set
and perform our PGAGP algorithm to score all candidate genes for
speci�c diseases including Alzheimer’s disease (AD) and
Parkinson’s disease (PD). Then, the ranking lists of candidate
genes were generated by the decreasing genes’ scores. The
higher the gene rank, the more likely it is to be associated with
disease. The top-10 predicted candidate genes were listed in Tables
4, 5. According to the prediction algorithm scores, these genes are
expected to be the most closely related to the diseases among all
candidate genes. To check the disease relatedness of these
candidate genes, we tried to �nd associations between candidate
genes and related diseases by searching the literature.

FIGURE 5
Enrichment analysis of top 10 candidate genes for Alzheimer’s Disease (A) GO enrichment analysis and (B) KEGG pathway enrichment analysis.
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4.1 Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disease common
in the elderly (especially over 65 years old). Its pathological features
are progressive hippocampal neuron loss and memory dysfunction. At
present, there are many hypotheses about the pathogenesis of AD,
including � -amyloid (A� ) Tau protein hyperphosphorylation,
excitatory amino acids, genes, chronic in�ammation,
neurodegeneration caused by oxygen free radicals, brain neuron
apoptosis (Hardy and Selkoe, 2002). The top-10 predicted genes
were listed in Table 4. To check the disease relatedness of these
candidate genes, we tried to �nd associations between candidate
genes and AD by searching the literature.

In�ammatory pathological changes of AD, glial cell-mediated
in�ammation and overexpression of in�ammatory cytokines in the
brain have shown that in�ammatory reaction plays an important role
in the formation and development of AD (Bolós et al., 2017). A�
protein in the brains of AD patients acts as an in�ammatory
stimulator, activating astrocyte and microglia to release
in�ammatory cytokines including IL-1� , IL-6 and TNF-� , which
may be one of the main pathogeneses of AD (Ng et al., 2018).

Licastro et al., have reported that polymorphism of the IL-6 gene
was a risk factor for late-onset AD (Licastro et al., 2000). While Chen
et al., indicated that the variants of IL-6 gene were protective factors
for late-onset AD (Chen et al., 2012). In addition, a meta-analysis has
revealed that two polymorphisms in IL-6 gene including -174 G/C and
-572 C/G were risk factor for AD. Furthermore, the nitric oxide
synthase 2 (NOS2), that encoding the inducible NOS (iNOS) has
been reported to play an important role in neuroin�ammation (Colton
et al., 2008). Researchers have shown that removal of NOS2 gene from
an APP transgenic mouse results in development of a much greater
spectrum of AD-like pathology and behavioral impairments (Wilcock
et al., 2008; Colton et al., 2014).

In addition, oxidative stress is a peroxidative state caused by
imbalance of oxidative and antioxidant components in the body,
which can accelerate human aging and is related to many
pathological processes such as AD (Zhu et al., 2004).
Overexpression of malondialdehyde (MDA) and superoxide
dismutase (SOD) suggested that oxidative stress plays an important
role in the formation and development of AD (Spisak et al., 2014).

As for Granulins (GRN) gene, the GRN rs5848A could reduce
plasma granulin levels in AD cohort (Kämäläinen et al., 2013). In

FIGURE 6
Enrichment analysis of top 10 candidate genes for Parkinson’s disease. (A) GO enrichment analysis and (B) KEGG pathway enrichment analysis.
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addition, genetic variability in the GRN gene variants was also
reported to be associated with the risk of AD in a Finnish
population (Viswanathan et al., 2009). In addition, pro-
opiomelanocortin (POMC)-derived neuropeptides and
melanocortin four receptor (MC4R) were shown to implicate in
hippocampus-dependent synaptic plasticity. Disruption of the
hippocampal POMC/MC4R circuit might contribute to synaptic
dysfunction observed in AD (Shen et al., 2016). The POMC gene
expression was signi�cantly different in the treated AD mice with
ibuprofen relative to the AD mice (Zamanian-Azodi et al., 2020).
Furthermore, the endothelin system plays potential role in AD. ET-1
was one of the most important member of ETs proteins (Alcendor,
2020). ET-1 was encoded by endothelin-1 (EDN1) gene, which was
demonstrated to elevated in AD and upregulated by Amyloid-�
(Palmer et al., 2012). In addition, ET-1 has been shown to result in
neuronal injury in AD (Thomas et al., 2015). The above results may
imply that the predictions were similar to those of existing studies.
And the algorithm was valuable for predicting the new disease-gene
associations.

The GO and KEGG pathway enrichment analysis on the top 10 ranked
genes were performed to evaluate the predictions. GO enrichment showed
that the genes were enriched in the BP of glial cell development and
neurotransmitter biosynthetic process, and in the CC of peroxisome,
vesicle lumen, and secretory granule lumen, as well as in the MF of
chaperone binding, antioxidant activity, and cytokine activity (see
Figure 5A). Additionally, KEGG pathway enrichment implied that the
genes were mostly enriched in amyotrophic lateral sclerosis, pathways of
neurodegeneration-multiple diseases and HIF-1 pathways, which were
shown to be associated with the pathology of AD (see Figure 5B).

4.2 Parkinson’s disease

Parkinson’s disease (PD) is a common degenerative disease of the
central nervous system (CNS), which is mainly characterized by the
degeneration and loss of dopamine neurons in the substantia nigra
and striatum of the brainstem.

The all known disease genes were used as train set to predict
candidate genes, by using improved algorithm PGAGP. The top-10
predicted genes were listed in Table 5.

ApoEgene was located at 19q13.32. Studies have shown that ApoE
rs429358 and rs7412 were associated with PD. Fuente-fernndez et al. (de la
Fuente-Fernández et al., 1999)found that ApoEgene polymorphism was
associated with hallucinatory symptoms in PD patients without dementia.
In addition, a meta-analysis of 47 studies found that the ApoEallele may be
a risk factor for hallucination susceptibility in Asian PD population (Li
et al., 2018).

IL1 has been illustrated to have a role in PD. Variation in the IL1� ,
IL1� , and IL1RNgenes may be of importance in the development of this
disorder. Evidence has shown that the IL1� (� 511) *1/*1 genotype was a
risk factor on age at onset of PD (Mattila et al., 2002; Nishimura et al., 2005).
Lee et al. have reported genetic variation (rs16944) in the proin�ammatory
cytokine gene IL1� contribute to risk of developing PD (Lee et al., 2016).

As for NOS2gene, studies have reported that the variants in
NOS2Agene were associated with PD risk (Hancock et al., 2006). In
addition, multiple polymorphisms in NOS2A gene including
rs2072324, rs944725, rs12944039, rs2248814, rs2297516, rs1060826,
and rs2255929, were signi�cantly associated with PD, particularly in
earlier-onset families with sporadic PD (Hancock et al., 2008).

The protein encoded by heat shock protein 40 homologous subtype 13
(DNAJC13) is involved in the transport of early endosomes, the cycle of
endocytic vesicles, and the lysosomal enzymatic hydrolysis pathway. It is
currently believed that molecular defects in these processes are directly
related to the pathogenesis of PD. Vilario-guell et al. (Vilariño-Güell et al.,
2014)conducted gene sequencing on 2928 PD patients from Canada,
Norway, Taiwan, Tunisia and the United States, and found that the
mutation p. ASN855ser was closely related to its pathogenesis. Recently,
Gustavsson et al. (Gustavsson et al., 2015) conducted gene sequencing on
201 PD patients and found that the following variants existed: P. E1740Q,
p. R1516h, p. N855S, p. L2170W, p. P336a, p. V722L, p. R1266q, in
addition to P.N855S, other rare variants may increase the susceptibility of
the disease.

� -amyloid precursor protein (Rivas et al., 2015) is the precursor of
A� . Recently, some variants of AD-causal genes including APPhave
been reported in PD (Mota et al., 2019; Zeng et al., 2022). Schulte et al.
have shown that rare variants in APPgene were more common in PD
cases overall than in either the AD cases or controls. And a rare variant
in APPgene (c.1795G>A (p (E599K))) was revealed to be signi�cantly
associated with the PD phenotype (Schulte et al., 2015).

The GO and KEGG pathway enrichment analysis on the top 10 ranked
genes were performed. GO enrichment analysis showed that genes were
enriched in the BP of response to oxidative stress, neurotransmitter
biosynthetic process, and amyloid �bril formation, and in the CC of
peroxisome, astrocyte projection, and neuronal cell body, as well as in
the MF of oxidoreductase activity, antioxidant activity, and tau protein
binding (see Figure 6A). Additionally, KEGG pathway enrichment
suggested that the genes were mostly enriched in pathways of
neurodegeneration, Alzheimer disease, arginine biosynthesis and
peroxisome pathways (see Figure 6B).

5 Conclusion

The emergence and development of diseases are a complex
process related to the mutation and dysfunction of genes. It is of
great signi�cance to study the molecular mechanism of diseases by
integrating the association data of multiple types of biological
entities. In this paper, we have proposed a type of novel
methods called PGAGP for disease-gene prediction by the AGP
algorithm that combines Gaussian random projection and an
adaptive re�ning process, which can make use of disease-gene
heterogeneous network to effectively enhance the ability of disease-
gene prediction.

We have systematically studied the effect of PGAGP’s parameters
and different strategies (HNim, HNrc and CSim) of integrating
adaptive random projection on the predictive performance, by
which PGAGP with effective parameters and strategy (PGAGP_
HNim) is determined. Speci�cally, PGAGP_HNim �rst constructs
a disease-gene heterogeneous network by using PPIs, disease-disease
associations and disease-gene associations; then, it uses the AGP
network-embedding algorithm to more effectively extract the low-
dimensional features of nodes from the network; �nally, an improved
disease-gene heterogenous network is constructed by using the low-
dimensional features, and the random walk with restart is applied to
the improved heterogenous network so as to predict disease genes
more effectively.

We have con�rmed that PGAGP outperforms the state-of-the-art
algorithms by the cross-validation experiments as well as test of newly
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added associations. We also have compared the AGP network embedding
algorithm with other state-of-the-art network embedding algorithms under
the framework of PGAGP_HNim and show that AGP outperforms these
compared network-embedding algorithms in many cases. Finally, the case
studies for speci�c diseases such as Alzheimer Disease and Parkinson
Disease have been conducted, which further con�rm the effectiveness of
our method since many of the predicted candidate genes for these diseases
have been implied to be related to these diseases by literature veri�cation
and enrichment analysis.

Overall, we have provided an effective solution for integrating AGP
network embedding to predict disease genes more effectively. This work
can inspire the solution of related tasks in bioinformatics such as miRNA-
disease association prediction or lncRNA-disease association prediction.
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