1' frontiers
in Psychology

ORIGINAL RESEARCH
published: 24 September 2015
doi: 10.3389/fpsyg.2015.01427

OPEN ACCESS

Edited by:
Guy Dove,
University of Louisville, USA

Reviewed by:
Markus Lappe,
Universitat Minster, Germany
Nicolas Pugeault,
University of Surrey, UK

*Correspondence:
Florentin Worgotter,
Faculty of Physics — Biophysics and
Bernstein Center for Computational
Neuroscience, University of Géttingen,
Friedrich-Hund Platz 1, 37077
Gaéttingen, Germany
worgott@gwdg.de

Specialty section:
This article was submitted to
Cognitive Science,
a section of the journal
Frontiers in Psychology

Received: 24 April 2015
Accepted: 07 September 2015
Published: 24 September 2015

Citation:

Tamosiunaite M, Sutterlitti RM,
Stein SC and Worgétter F (2015)
Perceptual in uence of elementary
three-dimensional geometry: (2)
fundamental object parts.

Front. Psychol. 6:1427.

doi: 10.3389/fpsyg.2015.01427

®

CrossMark

Perceptual in uence of elementary
three-dimensional geometry: (2)
fundamental object parts

Minija Tamosiunaite 2, Rahel M. Sutterlitti *, Simon C. Stein * and Florentin Worgotter **

1 Faculty of Physics — Biophysics and Bernstein Center for Coputational Neuroscience, University of Géttingen, Gottgen,
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Objects usually consist of parts and the question arises whéer there are perceptual
features which allow breaking down an object into itSundamental parts without any
additional (e.qg., functional) information. As in the rst aper of this sequence, we focus
on the division of our world along convex to concave surfaceransitions. Here we are
using machine vision to produce convex segments from 3D-scees. We assume that a
fundamental part is one, which we can easily name while at theame time there is no
natural subdivision possible into smaller parts. Hence irhis experiment we presented
the computer vision generated segments to our participantsand asked whether they
can identify and name them. Additionally we control againsgéegmentation reliability and
we nd a clear trend that reliable convex segments have a higldegree of name-ability.
In addition, we observed that using other image-segmentabin methods will not yield
nameable entities. This indicates that convex-concave sface transition may indeed
form the basis for dividing objects into meaningful entitie It appears that other or further
subdivisions do not carry such a strong semantical link to aueveryday language as there
are no names for them.

Keywords: object parts, visual assessment, 3D-perception, point-clouds, concave-convex

1. Introduction

Humans have very far-reaching abilities to recognize gtesind manipulate complex objects and
those are often composed of several parts. It remains, hoywerknown how we break down

an object into its parts, especially in view of the fact that plaets which we recognized can be
considered as objects by themselves most of the time. Echaiacan be composed of legs, seat,
backrest, etc. The divisions into parts, which we perform,sendually at entities, which for us
still have some (functional) meaning. Hence, do we not divecchair-leg again into two (or more)
parts, even if—for example—the colors of top and bottom of éuedi er! Thus, it seems that many
times we perform part-divisions such that we end up at “fundataéparts” to which we still can

attach some semantics. As an adult you could use your kn@elatiout structure and function of
object-parts to do this. But this cannot be true for very youmignts, which soon after birth grasp
a toy hammer either at the head or the handle, but not at thecfiom of head and handle. Thus,

lunder special circumstances we certainly can do this and dividetdyrgher. For example a joiner may need to tell her
apprentice that the “head” of the chair leg needs polishing and thgeven a speci ¢ name for the “head.” Laypersons will
not even know it and, thus, in everyday speech such subdivdsiauld hardly ever be made.
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above the age of about 3 months infants have no problemstudy does not attempt to capture each and every aspect of
to individuate and successfully grasp parts, which stillhae object-part semantics but tries to show that there is indeed a
functional meaning to themJeannerod, 1994 strong correlation between bottom up-segmented convexiestit
This indicates that there might be fundamental perceptuabnd our ability to give a name to and, thus, understhtitese
priors existing on which the concept of “what is a fundamentalsegments.
part” can rely, independently of functional semantics. Conmiyo
one assumes that part-identi cation (and recognition) ré@s . . .
complex—innate as well as acquired—cognitive processgs Experlmer_\t_ - Visual Scene Analysis for
(Mandler, 1992, 2012; Carey, 2)lleading to multifactorial Part Recognition
representations in the neural systei¢senhuber and Poggio, ) N )
2000; Palmeri and Gauthier, 200#owever, it remains unclear 1hiS experiment asks: Do real-world entities, which are
how objects can be segregated into parts, and identi ed giken  OPtained by splitting 3D-scenes along concave/convexitians
high degree of variability of the sensory features whickeagiven cor_respond to those entities for which we have a name? Hence,
from similar objects Geisler, 2008 which are for us in some sense a fundamental object-part.
In the rst paper of this sequence/Norgotter et al., 2016
we had focused on the question to what degree convex-concadel. Methods
surface transitions may form the basis for our assessment @ 1.1. Visual Stimuli and Pre-Processing
object-ness (object-goodness is a synonym for this). Thidys A total of 10 real scenes have been analyzed, all of which are
had been triggered by earlier works that had suggested thahown inFigure 3 left panels. Scenes consist of 3D-point cloud
convex-concave surface transitions in uence how we peeceivdata and the corresponding RBG image. In general all scenes wer
objects Rubin, 1958; Koenderink and van Doorn, 1982; Ho man recorded by RGB-D sensors (e.g., “Kinect”), which provide 3D-
and Richards, 1984; Biederman, 1987; Braunstein et al., 19§®int cloud data and matched 2D RGB image. They were taken
Cate and Behrmann, 2010; Bertamini and Wagemans,)2W&  from openly available machine vision data baseslitsfeld et al.,
had observed that people prefer compact and convex 3D-object®)12; Silberman et al., 2Q1The spatial resolution of the Kinect
hence those with few concavities. A detailed discussiohef t sensor falls in the depth range of 0.6 m to about 3.0-5.0 m. This
literature had been provided in the rst paper\(©rgotter et al.,  limits the types of scenes that can be used. The here used indoor
2015, too, which shall not be repeated here. scenes are a well established and very di cult benchmark set
The current study continues investigating these aspect®r current machine vision approacheRi¢htsfeld et al., 2012;
and here we ask to what degree will convex-concave surfaG@berman etal., 20)2
transitions lead to a perceptual division of our real 3D-world We segmented the scenes along convex-concave transitions i
into “fundamental parts”? Starting point of this investigati the 3D-data by a machine vision algorithrRigure 1 provides
is a computer vision algorithm that segments scenes withoun overview of this method shown by ways of two simple
additional knowledge—hence in a purely data-driven way—test objects Figure 1A). Point clouds are rst reduced to few
into convex entities. The e ciency of this algorithms haddre so-called supervoxelPépon et al., 20)3which capture the
demonstrated in a set of technical pape&e(in et al., 2014a,b; scene geometry by their neighborhood relations (graph-edge
Schoeler et al., 20)%and it can, thus, serve as a basis forin Figure 1B1). Convex and concave edge con guration are
creating ground-truth convex segments. Hence computeonisi found using a conventional criteriumHgure 1B2 employed
is not in the core of this study, instead we are asking: doghesat the surface normals of each point but corrected against
convex segments carry any “meaning” for us? Thus, is thengularities as shown iRigure 1B3 (Some surface normals are
a connection of a purely data driven bottom up (arti cially shown graphically ifrigure 1D2by ways of arrows.) This results
emulated) perceptual process—the breaking up of the world intés convex (black) and concave (red) connectiofgg(re 10),
convex entities—with aspects of conscious cognition? wWollp ~ which are used to break up the scerfégure 1D1). Corners
the discussion above about chairs and chair-legs and camside such as the one shown figure D2 lead to an over-smoothing
the fact that we do not easily continue subdividing a chagriteo  of the normals (see red arrow) and the algorithm at the end
smaller meaningful entities, we assume that for us a funddate corrects for this leading to the nal segmentation as shown i
meaningful part is one which we caraturally name and which Figure 1E Details of the algorithm are described elsewhéieif
we cannotnaturally divide any further into smaller parts, which et al., 2014a)b Note, this is a model-free, purely data-driven
have still have a name. Hence “name-ability” is in this studysegmentation algorithm, as required for the purpose of thiggtu
the measure for an entity which has for us still a meaning anavhich does not use any additional features for segmentabare
we will show that convex-concave surface transitions sttidi  to the limited spatial resolution of the RGB-D sensors, small
real 3D-scene into (mostly) nameable entities, which wilt noobjects cannot be consistently labeled. Thus, segmentiesma
happen for any other type of subdivision (e.g., subdivision byhan 0.3% of the image size were manually blackened out by us
color, texture, etc.). We are aware of the possibility tharéh as they most often represent sensor noise, and the same was done
might be other aspects by which “meaning” of a segment couldith re ecting surfaces, which the Kinect sensor cannot nueas
be assigned, for example “graspability of a segment” and iAfter this we received a total of 247 segments (i.e., about 20
Section 3 we are addressing some of the complex questions tig@t per image). Segments are labeled on the 2D RGB image with
arise from the here-chosen name-ability paradigm. Clearlig, th di erent colors to make them distinguishable for the observer
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FIGURE 1 | Overview of the computer vision method use for convex 3 D-scene segmentation (for details see  Stein et al., 2014a,b ). (A) Two test objects
(B1) Initial point clouds are reduced to supervoxelsHapon et al., 2013) with graph edges showing how voxels are neighbors(B2) Conventional de nition of convex
and concave con gurations. (B3) Singular locations like the one shown are not treated as corave, which massively improves algorithmic performancéC) Resulting
convex (black) and concave (red) connectivity grapi{D1) Segmentation.(D2) Noise reduction mechanisms avoiding over-smoothing insiel corners. (E) Final
segmentation. Figure modi ed fromStein et al.(2014b).

2.1.2. Participants and Procedures label the complete gure as “woman” (sééberman et al., 2012
Participants were 20 healthy adults (age: 22—35) the purpose foff such an approach).
this study had not been revealed to them but all experimental
procedures had been clearly explained. Participants only plrto 3 1 3. Data Analysis and Statistical Tests
in the experiment after having given their explicit consent.sypsequently we analyzed the utterances and divided them into
The experiment is not harmful and no sensitive data had beegyree groups: (1) precise naming of a segment (e.g., “tablk leg
recorded and experimental data has been treated anonymoushhere it does not play a role whether or not subjects would
and only the instructions explained below had been given tQse unique names (e.g., “table leg.” “leg’ and “table support
the participants. The experiment was performed in accordancgre equally valid). (2) de nite failure/impossibility to nee
with the ethical standards laid down by the 1964 Declaratbn 5 segment. (3) potentially non-fundamental segments, where
Helsinki. We followed the relevant guidelines of the German gpjects stated that they think this is segment could stilliptaer
Psychological Society according to which this experimenyiyided or that this an object but that he/she is not sure atthe
given the conditions explained above, does not need expliGi§entj cation (about its name); e.g., for too small segnment
approval by an Ethics Committee (Document: 28.09.2004 |n general we recorded and analyzed the complete utterances
DPG: “Revision der auf die Forschung bezogenen ethischqfat participants made. Case 1 and 2 led always to brisk
Richtlinien.” . statements (either a name was quickly given to the segment, o
For the experiment we asked our subjects to compare thgaricipants clearly said that this segment cannot be named).
segmented, color-labeled scenes with the correspondiggnali  case 3 covered essentially the remainder of the utterances
RGB image (total amount of data: 4940). Segments were one R¥iere participants began to engage in more or less lengthy
one highlighted in the labeled image and, for every segmeat, jnterpretative discourse about the viewed segment. Whes: thi
asked our subjects to look at the original RGB image, nd theyappened we always counted this as a case 3.
corresponding region askingHow precisely can you name {t?"  For quantitative analysis we are, in addition, controlliry f
and recorded their utterances for later analysis. errors introduced by image acquisition and/or by the compute
Note, the reverse procedure of asking subjects to label thgsjon algorithm. For this we use the known distance error
objects seen in the RGB images and then comparing it © thginction of the Kinect sensordmisek et al., 20) 1o calculate
algorithmic analysis is fundamentally awed in the contett he reliability of every segment as described next:
this study as in this case subjects will use their world-kreaige Let x be a segment consisting dfx point-cloud points at
and label objects according to their most prevalent (the mos&istancesz Reliability Ry is calculated ai D 100q(1)
“natural”) higher level concepts. E.g., when looking at thage ' N . . .Ax[(?(z)]
of awoman, instead of labeling body parts, subjects will gelyer Ax[d(@] D & i3oa(z) is the average discretization error and

where

Frontiers in Psychology | www.frontiersin.org 3 September 2015 | Volume 6 | Article 1427


http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Tamosiunaite et al. Parts from 3D-geometry

q(z) D 2.73%2C 0.74 0.58 the known error function§misek regardles®f the chosen segmentation parameters, generically
etal., 201). This measure is normalized to 1m distance and yield&appen (e.qg., “thro&face,” “fridge-fragments,” et€igure 2B).
100 for a planar vertical segment at this distance, smallelegsa Instead, here 3D-point clouds were segmented along
for larger distances and vice versa. concave/convex transitions. As cloud data is extremely ditc

The intuition behind this error function is simple: Given the to view and assess (s€gure 2C for a magni ed view), the
known Kinect error function Emisek et al., 20) e created here resulting 3D-segments were back-projected onto the 2D RGB
a function that counts how far away a segment is (the farthert image and color labeled={gure 2D). Too small segments had
worse) and how big itis (the bigger the better) and balanbed¢ been combined and blackened out, some cases are marked by
two terms against each other to provide the so-called sedsnen& blue “x” in Figure 2D (same for re ecting surfaces, see e.g.,
reliability. This creates a reliability weighing that isnfiar to  yellow “x,” the stove is indeed too re ecting for the Kinectdan
our own visual experience, where we nd it easier to recognizen addition, the few now-re ecting parts which exist at the gt
large-nearby objects than those that are far away and small.  produced here too small segments).

After this procedure we plotted the counts in groups Subjects many times used di erent names (e.g., “face” or
1, 2, and 3 against the reliability value of the respectivéhead”) to identify a segment, which are equally valid as both
segments as scatter plots were we show all raw data as wddiscribe a valid conceptional entity (a part). Several setsnen
as mean values and regression lines across reliabilityvelge could not always be identi ed, however. Averaging acrossah
[0; 10]I [10; 20]1 1 [15G 160] plotted above their interval shows that 64% of the segments could be identi ed, 30% not,
centers. Note, we resorted to plot raw data as scatter plaisdads and there were 6% potentially cases for further subdivisioe. Ar
of mean+standard deviation because this shows better ttee dahese 30% counter-examples against our conjecture or are due
density for both axes. to machine vision errors? Thus, we additionally considetes t

It is important to comment here on the issue of potential reliability of the individual segments (see Section 2.1). The Kinect
controls for this study. Those could theoretically be ob&al sensor produces a discretization err@nfisek et al., 20)7as
by using other feature-based (low-level, data-driven) gaa can be seen by the stripy patternskigure 2C(see also yellow
segmentation methods, for example using the same imagésx). Due to this, data at larger distances become quadhigtica
segmented by a state-of-the-art color segmentation metthhod more unreliable (see Section 2.1). As a result, for exampte, tw
any other low-level, data-driven segmentation. It is a knpw objects will be combined into one segment just due to the fact
di cult problem in computer vision that none of these methods that the separating concavity cannot be resolved anymoreeiwh
will produce anything “object-like.” For example, color-kds considering reliability we nd that subjects could more afte
segmentation yields highly luminance dependent resultgs as identify reliablesegmentsKigure 4, red) and unrecognized cases
clearly visible from visual inspection of the middle panels indropped accordingly (green). Comparing this result again to
Figure 3. In the discussion section we will discuss this aspect ithe segmented example sceRrég(re 2D) we nd that, indeed,
detail, which makes it impossible to use any other data-drivefor less reliable segments (red lettering) identi catianlow or
method for comparison. Trying to name segments obtained bambivalent as compared to reliable ones.
such methods just leads to nothing. Higher level, model-dase
segmentation approaches, which use human-labeled data, w8l Discussion
indeed lead to nameable segmerfdiferman et al., 20)2but
these methods are not anymore data-driven and can thereforehe hypothesis that concave-convex surface transitions are
also not be compared to our approach. instrumental for our object understanding is an old one and

there are several individual lines of evidence from perceptio
that are supporting this Rubin, 1958; Koenderink and van

2.2. Results Doorn, 1982; Ho man and Richards, 1984; Biederman, 1987;
We employed a “dumb,” model-free computer vision algorithmBraunstein et al., 1989; Cate and Behrmann, 2010; Bertaméhi
that splits 3D-scenes along concave-convex transitidgsisif \Wagemans, 20)3The experiments reported in the rst paper
et al.,, 2014a)nasking to what degree does this low-level(\Wdrgotter et al., 201)5tried to address the problem of human
segmentation yield identi able entities? Note, we are nobject concepts in an abstract way using abstract 3D-geotaétri
concerned with object recognition or categorization hémetead  structures (polycubes), hence, independent from the realdvor
we wanted to know whether this fundamental geometricHere we used real scenes and found that convex-concavesurfa
segmentation leads to entities, which can be individuated a transitions can be used to individuate and name object-parts
understood by us as meaningful parts. It is of interest to discuss this aspect rst from a more

One example scene is shown kigure 2A recorded with technical perspective namely that of computer vision. This eld
an RGB-D sensor (“Kinect”), which produces 3D-point cloudis terri cally hard pressed to segment scenes into objda-li
data. All other scenes are of equal complexifjigre 3). entities. It has been possible since years to perform color-,
Using an advanced, model-freelor-basedegmentation method edge-, texture-, etc. based segmentation with increasingess
(Ben Salah et al., 20Lbne can see that the resulting image(Comaniciu and Meer, 2002; Felzenszwalb and Huttenlocher,
segments rarely correspond to objects in the scéigufe 2B)  2004; Boykov and Funka-Lea, 2006; Arbelaez et al., 2011;
and this is also extremely dependent on illumination (seeBen Salah et al., 20)iut it is known, and discussed in the above
Figure 3 middle). Unwanted merging or splitting of objects will, cited works, that none of these methods renders anythingabj
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or part-like (see als&igure 2B). Purely data-driven, bottom-up Name-ability, hence the identi cation of a segment as a ueiq
image segmentation seems doomed with respect to this aspeentity with a language-expressible name, is one clear inalicat
Computer vision has resorted much to the use of model-basetthat we have a mental image, possibly a semantic category, for
(top-down) approaches, which require the often very tediousuch a segment. Other indicators might exist but are not ndede
learning of large sets of object modelksrijelaez et al., 2012; in the context of the here-asked questions.
Richtsfeld et al., 2012; Silberman et al., 2012; Gupta eDal3,2 There are, however, indeed some segments that cannot be
and the choice of models by the designer will bias the systemamed and still “have a meaning for us.” One example is the
Thus, also in this eld itis an intriguing problem of howto ame  concave segment found on many plastic bottles used to close the
at ameaningfuimage partitioning. hand around it when lifting the bottle. Hence, name-abilityes
Several computer vision approaches have also usewbt render a necessary condition for being a meaningful cbje
concave/convex surface transitions for image segmemtatioor object-part) but it is su cient and provides at least a strg
(Vaina and Zlateva, 1990; Siddigi and Kimia, 1995; Rosin, ;200ihdicator for this. In addition, we observed that name-éliis
Moosmann et al., 2009; Richtsfeld et al., 2012; Uckermancorrelated with the computer-vision based reliability measior
et al., 201y, where these algorithms most often had beerthe segments. The more reliable they are the more often one
complemented by additional features to improve segmentatiorcan name themRKigure 4). Also we have observed that unclear
Recently we were able to design a segmentation algorithoases which mostly are those where subjects though thag thes
based on this principle, which contained a few importantsegments could potentially by divided further do not muchsexi
geometrical corrections, and—this way—became strong gmou (blue curve inFigure 4).
to compete with far more complex segmentation methods for Thus, the here performed segmentation generically renders
object recognition $tein et al., 2014a,b; Schoeler et al., p015denti able objectparts(e.g., “head,” “arm,” “handle” of fridge,
This made it possible to segment scenes in a bottom-up way witktc. Ho man and Richards, 1984 This is not trivial because
few intrinsic/systematic errors and only by this we couldjine segmentations based on other low-level visual featurege&d
to ask whether such a partitioning would indeed lead to eesti color, etc.) will not achieve this. On the other hand, argyaim
that carry “meaning” for us. purely data-driven method exists, which would allow detecting

Original Image C Rotated point cloud 3D-view of an image part

Space beh. Cupboard: 5% Cupboard 20% T-shirt: 50%

Drink Carton: 15% Wall: 5% Upper body: 50%

B°"“:u":'°;/a"me 4 100% Head: 80% Ceiling: | Head:90%
B Color based segmentation D unnamed: 100%. Face: 20% 75% Face: 10%
-

Cupboard: 60% Range hood 70%
- Cupboard:
100% .

L

o

Wall: 75%
Box: 15% Tiles: 5%

Calender: 5%
Kitchen Tool: 5%

Note Paper: 5% Kitchen Paper: 35%

Box: 30%
Cup: 15%
Drink carton: 15%

¥
Fridge: 70% Hand: 75%
T

Wall: 10%—+

. 59
Box: 5% Elbow: 55%

Arm: 25%

Toast: 5%
Kitchen Paper: 10%

Label: 70%
Bottlepart: 15%

Handle: 15%

Table: 30%
Worktop: 30%

Cupboard: 60% Cabinett: 50% Door: 70%
Wall of Cupboard: 15% Drawers: 20% Front: 25%
FIGURE 2 | Humans can with high reliability identify image segmen ts that result from splitting images along concave-convex sur face transitions.

(A) One example scene used for analysis(B) Color-based segmentation of the scene(C) Point cloud image of parts of the scene (rotated 3D view) witRGB data
overlayed.(D) 3D-segmented scene and segment names used by our subjects tadentify objects. Missing percentages are the non-named cses. E.g., the pink
segment top-left was named “cupboard” by 60% of the subjectsand remained unidenti ed by the remaining 40%. Red letteringndicates segments with reliability less
than 50.

Frontiers in Psychology | www.frontiersin.org 5 September 2015 | Volume 6 | Article 1427


http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Tamosiunaite et al. Parts from 3D-geometry

complex, compoundobjects (e.g., “woman”) as this requires

additional conceptual knowledge. Also, one observes that th i

actual name for an object(part) depends on scene-context and .- Avg
on each subject's background knowledge. These cognipezts i ) | 064
which relate to context analysis, hierarchization, catgdion, g %

and other complex processesogothetis and Sheinberg, 1996 £ o4l

however, are not relevant here; instead it is quite remdekab : e N . -[030
that a purely geometrical breaking up of a 3D-scene, most %[ TR : ‘

often leads to entities for which we have an internal objeatt of T T T T S e g [ 0%
concept which may re ect the low-level perceptual grounding of 0 2040 60 80 100 120 0 160

the “bounded region” hypothesis formulated by Langacker as a Reliability of Segments

possible foundation for grammatical entity construah(gacker, FIGURE 4 | Fraction of ident ed (red), not-identied (gree ) and

1990' unclear (blue) segments for the complete data set (20 subjects, 247
One could try to introduce additional experimental paradigms segments each) plotted against their reliability.  Fat dots represent

to address some of the above discussed aspects. Instead of thiverages across reliability intervalf0; 10]1 [10; 20]1 1 [150; 160] plotted

we refer our readers to the rst paper of this seri@/ydrgdtter above their interval centers, lines are the correspondinggression lines. The

et al., 201}5 where we have addressed the problem of ObjE( ability to identify a segment increases with reliability. l@nd averages (red:

u N . 0.64, green: 0.30, blue: 0.06) for all data are shown, too.
concepts “as such.” Both studies support each other and suggest

—

Color based Concave/convex
segmentation segmentation

Color based Concave/convex

segmentation segmentation Original Image

Original Image

FIGURE 3 | Left panels show all visual scenes (RGB images only) u  sed for Experiment 2 of this study and their segmentations. Scenes have been
segmented by a state-of-the-art, bottom-up segmentation dgorithm which uses color similaritiesien Salah et al., 2019 and the results show that these segments
rarely correspond to objects (middle panels). Note, it is pgsible to train classi ers with object models or partial modés to obtain segmentation of complex, compound
objects also in such scenes Richtsfeld et al., 2012; Silberman et al., 2012; Uckermannteal., 2012). This, however, requires a human-de ned training set. Défent
from this, here we are strictly concerned with model-free, bttom-up object segmentation. The here used 3D-segmentatin, back-projected onto the images, is
shown in the right panels.
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that convex-concave transitions play a major role for ourconcept of object-ness can be unequivocally bound. Thisifeat

understanding of objects and/or object parts. reaches across perception and action {&egotter et al., 2016
into our cognitive understanding of objects and their partsig
3.1. Conclusion study), and may help tying to it other less stable sensory &spec

The central problem with which we are continuously faced és “t Of objects.
make sense” of the multitude of sensory features that anise i
widely varying way even from similar objects. This is espgcia
troubling for young, inexperienced humans, who cannot rety o

much prior knowledge. There is increasing, albeit much deiat g research leading to these results has received funcbng f
evidence that core cognitive systenizpélke et al., 19)Zare
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