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Functional connectivity analysis using resting-state functional magnetic resonance

imaging (rs-fMRI) has emerged as a powerful technique for investigating functional

brain networks. The functional connectivity is often quantified by statistical metrics (e.g.,

Pearson correlation coefficient), which may be affected by many image acquisition

and preprocessing steps such as the head motion correction and the global signal

regression. The appropriate quantification of the connectivity metrics is essential for

meaningful and reproducible scientific findings. We propose a novel empirical Bayes

method to normalize the functional brain connectivity metrics on a posterior probability

scale. Moreover, the normalization function maps the original connectivity metrics to

values between zero and one, which is well-suited for the graph theory based network

analysis and avoids the information loss due to the (negative value) hard thresholding

step. We apply the normalization method to a simulation study and the simulation results

show that our normalization method effectively improves the robustness and reliability

of the quantification of brain functional connectivity and provides more powerful group

difference (biomarkers) detection. We illustrate our method on an analysis of a rs-fMRI

dataset from the Autism Brain Imaging Data Exchange (ABIDE) study.

Keywords: anticorrelation, connectivity, fMRI, network, normalization, resting state

1. Introduction

Resting-state fMRI (rs-fMRI) has been applied to study functional brain connectivity patterns and
networks in the absence of external stimuli (Biswal et al., 1995; Beckmann et al., 2005; Fransson,
2005; De Luca et al., 2006; Fox et al., 2006). Many previous rs-fMRI studies have identified altered
functional connectivity expressions and networks from different clinical populations (Dosenbach
et al., 2007; Greicius, 2008; Fornito et al., 2012). To investigate the properties of the complex brain
functional connectivity networks, the graph theory models have been developed and yielded many
meaningful findings (Braun et al., 2009; Bullmore and Sporns, 2009; Rubinov and Sporns, 2010).

The functional connectivity analyses are often conducted based on connectivity metrics rather
than the raw time courses from rs-fMRI data. There have been many functional connectivity
metrics employed to measure the functional coherence of temporal profiles between two distinct
brain areas, for example, Pearson correlation coefficients, mutual information coefficients, and
spectral coherence (Zhou et al., 2009; Smith, 2012). Therefore, the functional connectivity strength
is often quantified by a calculated statistic (most times a scalar), and hence the reproducibility and
validity of the following group level statistical inferences are heavily impacted by the statistical
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FIGURE 4 | (A) Histograms of correlations and correlations with systematic shifts for a subject in the control group; (B) Histograms of the change of the shift.

FIGURE 5 | (A) Heatmaps of truth the connectivity between the first 30 nodes are differentially expressed between the two groups; (B–D) Heatmaps of the test

results using Wilcoxon signed-rank test and FDR control with q = 0.1 (red = reject and blue = fail to reject) of the original correlations z, the probit (variance stablizing)

transformed correlation, and the normalized correlations gs (z), respectively, under the scenario of no systematic sifts; (E,F) Heatmaps of the test results of the original

correlations z and the normalized correlations gs (z) under the scenario of with systematic shifts.
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TABLE 1 | Results of differential expression tests with normalized and unnormalized correlations (without and with systematic shift): mean and standard

deviation of 100 simulations.

Methods False positives(%) Std False negatives(%) Std

Correlation 32.4 (0.9) 6.1 127.1 (29.2) 9.6

Probit transformed correlation 34.7 (0.9) 6.0 129.4 (29.7) 10.2

Normalized correlation 2.1 (0.06) 0.3 7.3 (1.7) 1.1

Correlation Pa
1 52.9 (1.48) 8.9 186.5 (52.24) 15.4

Normalized correlation P1 3.6 (0.1) 0.6 28.1 (6.5) 3.9

Correlation P2 68.3 (1.9) 0.6 236.4 (54.3) 31.6

Normalized correlation P2 11.8 (0.3) 3.2 43.8 (10.1) 8.2

Correlation P3 16.5 (0.4) 4.4 83.5 (19.2) 8.7

Normalized correlation P3 1.3 (0.04) 0.3 2.5 (0.7) 0.5

Correlation + shift (σ2 = 0.3) 37.1 (1.04) 7.4 306.5 (70.4) 19.5

Normalized correlation + shift (σ2 = 0.3) 17.6 (0.9) 2.2 3.5 (0.8) 0.5

Correlation + shift (σ2 = 1) 62.3 (1.74) 9.8 326.4 (74.7) 20.1

Normalized correlation + shift (σ2 = 1) 19.3 (0.53) 2.9 4.1 (0.9) 0.7

aPlease refer to the parameters in paragraph two of the Section 3.

matter (GM), and the cerebrospinal fluid (CSF) are crated in
the standard MNI space. The mean time series from the WM
and the CSF are calculated. The time series from the GM
are regressed out the mean time series of the WM, the CSF
and the six movement parameters. A linear trend is removed
from all the signal. The fMRI time series are filtered using
a bandpass with passing band (0.009–0.08 Hz) and spatially
smoothed with 6 mm FWHM Gaussian kernel. We then use
the first 90 AAL ROIs as nodes, and take the average of
all voxels’ temporal profiles within each ROI as region level
signal for all subjects (Zalesky et al., 2010b). Four-thousand-five
Pearson correlation coefficients are calculated between the 90
nodes, and then Fisher’s z transformation are applied. In this
analysis, we focus on the differential connectivity expressions
between TC and ASD by using normalized connectivity
metrics.

We apply the normalization algorithm to all 4005 connectivity
metrics for each individual, and no subject in this data set is
detected with anticorrelation component of the mixture model.
Figure 6 shows the distribution of correlations for one subject
as well as the corresponding empirical Bayes normalization
function. Next, we conductWilcoxon signed-rank tests toward all
4005 original correlations and normalized correlations between
90 ROIs for TC vs. TSD. We then perform local fdr for multiple
testing control. Unlike the simulation study, the ground truth
of the false positives and false negatives of the data example is
unknown. Comparing to the simulation testing results, it seems
that the difference between test results of original and normalized
correlations has the similar pattern: the normalized connectivity
test results include small p-values scattered randomly. Because
4005 tests are performed simultaneously, the multiple testing
correction methods including local fdr and Network Based
Statistics (NBS) performed for both empirical Bayes normalized
correlations and original correlations (Efron, 2004; Zalesky et al.,
2010a). No significant feature or network is identified after the
correction for the original correlations (q-value 0.1 as threshold

for local fdr and permutation p-value 0.05 for NBS). In contrast,
the analysis based on empirical Bayes normalized connectivity
metrics shows significant connectivity differences between the
ASD and TC groups , and 44 connectivity features have fdr q-
values less than 0.1. We demonstrate the results in Figure 7.
The ASD group show higher function connectivity between pairs
of ROIs for all the 44 features than the TC group. Most of
these significantly expressed connectivity are between distant
ROIs, which are across the the functional subsystems of primary
sensory, subcortical, limbic, paralimbic, and association areas
defined by Mesulam (1998) and Supekar et al. (2013). We further
perform bootstrap analysis to evaluate the reliability of the
findings. From 3000 resamples, the 44 features are detected on
average 78.6% (with sd 11.3%). As comparison, we detect no
connectivity between or within any of these subsystems showing
greater connectivity in the TD group, compared with the ASD
group. These results suggest that hyper-connectivity in ASD
spans multiple functional subsystems of the human brain. The
revealed results are consistent with the recent findings of brain
hyper-connectivity of ASD children by Supekar et al. (2013),
which include multiple studies from three image data acquisition
sites in the U.S.

We note that the results can only be identified by using the
empirical Bayes normalized connectivity metrics, but not by the
original connectivity metrics. Therefore, the normalization step
is essential for rs-fMRI based brain connectivity study, and our
empirical Bayes normalizationmethod provides a sound pathway
to successfully fulfill the task.

5. Discussion

In this article, we have presented a novel empirical Bayes
method for rs-fMRI connectivity metric normalization, and the
simulation study and the data example have shown that the
quantification and statistical inferences based on the normalized
inputs are more powerful and reliable. The normalization step
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FIGURE 6 | Subject one in data example: (A) is the mixture model estimation procedure using “locfdr” in R for Fisher’s z transformed correlation; (B)

the normalization function vs. the original correlations: the blue line is the normalization function that maps the raw connectivity metrics to

normalized metrics; the red line is used a reference representing no normalization is applied.

FIGURE 7 | The regions showed higher correlations in children with ASD, compared to the TD group (q < 0.05, corrected for multiple comparisons). No

pairs of regions showed higher connectivity in the TD than the ASD group.

has been widely used in high-throughput biomedical data
analysis with the goal to remove systematic measurement error
generated in the complex data acquisition and preprocessing
steps and to improve the validity and reproducibility of the
following statistical analyses. It has been discussed that a
preprocessing step of global signal regression could shift the
distributions of the correlations and influence the statistical
inferences (Fox et al., 2009; Murphy et al., 2009; Weissenbacher
et al., 2009). There may be many other latent factors to affect
the quantification of the connectivity metrics as well. Therefore,

we feel that normalization toward connectivity metrics should be
introduced.

5.1. Quantification of Brain Functional
Connectivity Metrics
Different from the high-throughput “omics” data, the brain
functional connectivity is not measured directly but rather
calculated by some statistics/metrics based on a pair of time
courses from fMRI data. It is unclear how the calculated
statistics/metrics can appropriately reflect the true connectivity
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strength and are comparable across subjects, regardless what
statistic is chosen (e.g., correlation coefficient or mutual
information coefficient). It is possible to obtain extremely large
absolute value correlations between two white noise vectors,
which gives rise to the false positive discovery. From the
statistical perspective, most connectivity statistics can be proved
to follow a known distribution asymptoticly and accordingly
the p-values are calculated with both type I and II errors.
Comparing with the conventional normalization method such
as quantile normalization, the empirical Bayes mixture model
lends itself to incorporating the false positive concept into
quantification of the functional connectivity expression and
provides a (posterior) probability based scale. The data driven
(rather than a deterministic linear/nonlinear transformation)
quantificationmethod could provide amore comparable scale for
group level connectivity inferences. For example, a 0.1 difference
in original correlations could be mapped to around 0.5 difference
in the normalized correlations at the interaction between two
components due to the increase of posterior probability of true
positive. The amplified difference tend to improve the subtle
difference detection, because it can better represent connectivity
strength. The computational techniques for the mixture model
estimation have been developed for local fdr estimation by Efron
(2004) and Wu et al. (2006), which provides us a convenient
tool to calculate the subject-specific normalization function. The
only assumption of our method is that the majority (p0 >

0.9) of connectivity expressions are from the null distribution,
which needs to further verified with more rs-fMRI studies.
The assumption is generally valid, and all connectivity metric
distributions of the data sets we tested follow such pattern. If
the assumption is violated, Wu et al. (2006) provides promising
numerical solution using nonparametric curve fitting methods.
Moreover, another obvious advantage of the normalization
method is that it maps the correlations to the range of [0, 1] by
the empirical Bayes posterior probability normalization function,

which avoids the information loss due to hard thresholding of
correlations in complex network analysis using graph theoretical
models (Rubinov and Sporns, 2011).

The appropriate brain connectivity metric normalization
method improves the power to detect the truly differentially
expressed features and yield less false positive findings. In
the simulation study, we compare the test results based on
different connectivity metrics with reference to ground truth,
and it shows the empirical Bayes normalized correlation has the
lowest type I and II errors and is more robust to systematic
shifts. When applying our method to the data example,
the analysis results based on normalized connectivity metrics
detect hyper-connectivity between pairs of regions from distant
functional subsystems for the ASD group with comparing to
TC group. Such features are not detected by using the non-
normalized correlations. The findings align with the results
by Supekar et al. (2013) which performs between region
connectivity analysis for several autism studies from different
sites. Supekar et al. (2013) also provides explanation of these
findings from the perspectives of neuroscience and the link to
clinical symptoms of ASD. The practical brain connectivity study
using neuroimaging technology often involves multiple steps
of numerical analysis which are subject to many unavoidable
errors and noises, and we feel that the empirical Bayes
normalization improves both power and reliability of statistical
analysis.

5.2. Anticorrelations
The anticorrelations in rs-fMRI data have drawn attention
of many neuroimaging researchers (Fox et al., 2009; Murphy
et al., 2009; Weissenbacher et al., 2009; Chai et al., 2012).
The discussion has not reached to the agreement whether
the anticorrelations are “true positive” or “false positive.”
The proposed normalization method provides a pathway
to automatically detect the “true positive” anticorrelation

FIGURE 8 | Connectivity metrics with both correlated and anticorrelated components: (A) is the mixture model estimation procedure using “locfdr” of

the three components; (B) the original correlations vs. the normalized correlations: the blue line is the posterior probability of the correlated

component and anticorrelated component are > 0 (“+” sign), and the green line discriminate correlated or anticorrelated posterior probability by

using a “−” sign to indicate whether it anticorrelated.
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component by classifying the “true positives” and “false positives”
based on the empirical distribution of connectivity metric.
Figure 8 shows that correlated and anticorrelated components
can be identified, if existing, we could assign either “+” or “−”
sign to anticorrelated connectivity metric depending on different
following analyses. Generally, “−” sign suits the regression
analysis or statistical tests better, because anticorrelation could
be considered as the opposite of correlation. When applying the
graph theoretical model based network analysis using normalized
connectivity, two separate analyses should be conducted for
correlations and anticorrelations (with “+” sign) if both
components are detected, with the normalized connectivity
metric range of [0, 1] (in Figure 8B). Thus, the results include
two parts of inferences: properties of correlated networks and
anticorrelated networks. Although in our data example there
is no anticorrelation component detected, that normalization
method can be also applied to deal with anticorrelations in
practical data analysis. Yet, out normalization method could
be combined with pre-processing steps (e.g., global signal
regression), as the normalized connectivity is probability and
shift-invariant.

6. Conclusion

In summary, a new rs-fMRI connectivity metric normalization
method has been developed and applied to functional

brain connectivity analysis. The better connectivity
normalization/quantification methods yield generally higher
reproducibility. Although we utilize the Pearson correlation
coefficient as connectivity metric and rs-fMRI for demonstration,
we are optimistic that the developed method are ready to
be applied to the task-induced fMRI connectivity study
and other connectivity metrics because the empirical Bayes
framework is flexible to fit various distributions of connectivity
metrics.
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