Spike timing-dependent plasticity as the origin of the formation of clustered synaptic efficacy engrams

Nicolangelo Libero Iannella1,2,3*, Thomas Launey1 and Shigeru Tanaka4

1 Launey Research Unit for Molecular Neurocybernetics, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
2 School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
3 Theoretical and Experimental Neurobiology Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa, Japan
4 Department of Information and Communications Engineering, The University of Electro-Communications, Chofu-shi, Japan

The layer 2/3 pyramidal cell model parameters

The biophysical model of a reconstructed layer 2/3 pyramidal cell was simulated using NEURON where ion channels were included throughout the axon, soma and dendrites. The types of ionic currents and their respective distributions used in the simulations are based upon available experimental data, mostly from rat, or those used in previous modeling studies (Moczydlowski and Latorre, 1983; Rhodes and Gray, 1994; Mainen et al., 1995; Mainen and Sejnowski, 1996; Rhodes and Linhas, 2001; Poirazi et al., 2003a; Traub et al., 2003; Kampa and Stuart, 2006). The simulations were performed at a nominal temperature of 37°C. When necessary, original rates were adjusted from their original amounts to 37°C using a Q10 value, otherwise channel kinetics were not altered. Parameter values of conductance densities used in the simulation are given in Table 1. Their descriptions are given below.

Table 1 | Table of conductance parameters and distributions used in simulations.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Density (pS/μm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_L</td>
<td>Before addition of spines 0.25; After addition of spines 0.3827</td>
</tr>
<tr>
<td>g_{Na}</td>
<td>45</td>
</tr>
<tr>
<td>g_K</td>
<td>68</td>
</tr>
<tr>
<td>$g_{K(A)}$</td>
<td>50</td>
</tr>
<tr>
<td>$g_{K(H)}$</td>
<td>Monotonically increasing</td>
</tr>
<tr>
<td>$g_{Ca(HVA)}$</td>
<td>Monotonically increasing</td>
</tr>
<tr>
<td>$g_{Ca(T)}$</td>
<td>4</td>
</tr>
<tr>
<td>$g_{Ca(N)}$</td>
<td>40</td>
</tr>
<tr>
<td>g_{AHP}</td>
<td>3.5</td>
</tr>
<tr>
<td>g_{mAHP}</td>
<td>15</td>
</tr>
<tr>
<td>g_{aHP}</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Leak current I_{leak}

$I_{leak} = g_L(E_{leak} - V)$

Sodium current I_{Na}

$I_{Na} = g_{Na} m^3 h (E_{Na} - V)$

$\frac{\partial m}{\partial t} = \alpha_m(V)(1 - m) - \beta_m(V)m$

$\alpha_m(V) = \frac{0.182(V + 35)}{1 - \exp(-(V + 35)/9)}$

$\beta_m(V) = \frac{-0.124(V + 35)}{1 - \exp((V + 35)/9)}$

$\frac{\partial h}{\partial t} = \frac{h(V) - h}{\tau_h(V)}$

$\alpha_h(V) = \frac{0.024(V + 50)}{1 - \exp(-(V + 50)/5)}$

$\beta_h(V) = \frac{-0.0091(V + 75)}{1 - \exp((V + 75)/5)}$

$h(V) = \frac{1}{1 + \exp((V + 65)/6.2)}$

$\tau_h(V) = \frac{1}{\alpha_h(V) + \beta_h(V)}$

The values for the rates were adjusted from their original values given at 23°C to 37°C using a Q_{10} of 2.3 (Mainen et al., 1995; Mainen and Sejnowski, 1996).
Potassium current I_k

$$I_k = g_{k}n(E_{k} - V)$$

$$\frac{\partial n}{\partial t} = \alpha_n(V)(1 - n) - \beta_n(V)n$$

$$\alpha_n(V) = \frac{0.02(V - 20)}{1 - \exp(-(V - 20)/9)}$$

$$\beta_n(V) = \frac{-0.002(V - 20)}{1 - \exp((V - 20)/9)}$$

The values for the rates were adjusted from their original values given at 23°C to 37°C using a Q_{10} of 2.3 (Mainen et al., 1995; Mainen and Sejnowski, 1996).

Transient potassium A-current I_{KA}

$$I_{KA} = g_{KA}m_h(E_{KA} - V)$$

$$\frac{\partial m}{\partial t} = \frac{m(V) - m}{\tau_{mKA}(V)}$$

$$\frac{\partial h}{\partial t} = \frac{h(V) - h}{\tau_{hKA}(V)}$$

$$m(V) = \frac{1}{1 + \exp(-(V + 0.8)/11.6)}$$

$$h(V) = \frac{1}{1 + \exp((V + 51.3)/7.9)}$$

$$\tau_{mKA}(V) = \frac{1}{0.03(1 + \alpha_n(V))}$$

$$\tau_{hKA}(V) = \frac{1}{0.001364(1 + \alpha_n(V))}$$

$$\alpha_n(V) = \exp(0.03(V + 60))$$

$$\beta_n(V) = \exp(0.015(V + 60))$$

$$\alpha_n(V) = \exp(0.01(V - 40))$$

$$\beta_n(V) = \exp(0.008(V - 40))$$

The values for the rates were adjusted from their original values given at 22–37°C using a Q_{10} of 3 (Zhou and Hablitz, 1996). Steady state activation and inactivation were identical to those previously reported for Layer 2/3 cells (Zhou and Hablitz, 1996), however time constants were modified in order to better fit both the frequency dependence and the extent of dendritic regenerative events (Kampa and Stuart, 2006; Larkum et al., 2007), since it has been previously reported that I_{KA}, along with calcium influx via activation of voltage-dependent calcium channels, can play a critical role in dendritic electrogensis (Kampa and Stuart, 2006).

Potassium H-current I_{KH}

$$I_{KH} = g_{KH}m(E_{KH} - V)$$

$$\frac{\partial m}{\partial t} = \frac{m(V) - m}{\tau_{mKH}(V)}$$

$$m(V) = \frac{1}{1 + \exp((V + 75)/5.5)}$$

$$\tau_{mKH}(V) = \frac{1}{\exp(-0.086V - 14.6) + \exp(-1.87 + 0.07V)}$$

The channel kinetics for the h-current was taken without modification from Traub et al. (2003).

High-Voltage-Activated (HVA) L-type calcium current I_{CaL}

$$I_{CaL} = g_{CaL}m^2h(E_{Ca} - V)$$

$$\frac{\partial m}{\partial t} = \frac{m(V) - m}{\tau_{mL}(V)}$$

$$\frac{\partial h}{\partial t} = \frac{h(V) - h}{\tau_{hL}(V)}$$

$$m(V) = \frac{1}{1 + \exp((V + 42)/8)}$$

$$h(V) = \frac{1}{1 + \exp((V + 65)/5)}$$

$$\tau_{mL}(V) = \frac{3 + 1}{\exp((V + 50)/20) + \exp(-(V + 125)/15)}$$

$$\tau_{hL}(V) = \frac{30 + 1}{\exp((V + 56)/4) + \exp(-(V + 415)/50)}$$

Low-Voltage-Activated T-type calcium current I_{CaT}

$$I_{CaT} = g_{CaT}m^2h(E_{CaT} - V)$$

$$\frac{\partial m}{\partial t} = \frac{m(V) - m}{\tau_{mT}(V)}$$

$$\frac{\partial h}{\partial t} = \frac{h(V) - h}{\tau_{hT}(V)}$$

$$m(V) = \frac{1}{1 + \exp(-(V + 45)/7.4)}$$

$$h(V) = \frac{1}{1 + \exp((V + 65)/5)}$$

$$\tau_{mT}(V) = \frac{3 + 1}{\exp((V + 50)/20) + \exp(-(V + 125)/15)}$$

$$\tau_{hT}(V) = \frac{30 + 1}{\exp((V + 56)/4) + \exp(-(V + 415)/50)}$$

The values for the rates were slightly adjusted from their original values given at 34°C to 37°C using a Q_{10} of 2.3 (Rhodes and Gray, 1994; Traub et al., 2003).
The channel kinetics for T-type calcium was taken from Kampa et al. (2006) without modification.

High-Voltage-Activated N-type calcium current \(I_{\text{Ca(N)}} \)

\[I_{\text{Ca(N)}} = \overline{g}_{\text{Ca(N)}} m^2 h \text{GHK}(V_i, [\text{Ca}], r_{\text{Ca}}) \]

\(\text{GHK}(V_i, [\text{Ca}], r_{\text{Ca}}) = -x \left(1 - \frac{[\text{Ca}]}{[\text{Ca}]_0} e^x \right) f \left(\frac{V_i}{x} \right) \]

\(x = 0.0853 \frac{V}{2}, f(z) = \begin{cases} \frac{z}{z+1} & \text{if } |z| \geq 10^{-6} \\ 1 - \frac{1}{z} & \text{otherwise} \end{cases} \)

\[\frac{\partial m}{\partial t} = \alpha_m(V)(1 - m) - \beta_m(V)m \]

\[\frac{\partial h}{\partial t} = h(V) - h \]

\[\alpha_m(V) = \frac{0.1967(V - 19.88)}{1 - \exp(-(V - 19.88)/10)} \]

\[\beta_m(V) = 0.046 \exp(-(V - 20.73)/20.73) \]

\[\alpha_h(V) = 0.0016 \exp(-(V - 48.4)/2) \]

\[\beta_h(V) = \frac{1}{1 + \exp(-(V - 53.9)/10)} \]

\[m_a(V) = \frac{\alpha_a(V)}{\alpha_a(V) + \beta_a(V)} \]

\[h_a(V) = \frac{\alpha_h(V)}{\alpha_h(V) + \beta_h(V)} \]

\[\tau_{m_a}(V) = \frac{1}{\alpha_a(V) + \beta_a(V)} \]

\[\tau_{h_a}(V) = \frac{1}{\alpha_h(V) + \beta_h(V)} \]

The channel kinetics was taken from Lazarewicz et al. (2002) with the temperature set to 37°C and where \(F = 96485 \text{ C mol}^{-1} \text{K}^{-1} \) is Faraday's constant, \(R = 8.345 \pi 	ext{ K}^{-1} \text{mol}^{-1} \) is the gas constant, and \(T \) denotes absolute temperature in K (degrees kelvin).

Calcium gated potassium current \(I_{K(\text{Ca})} \)

\[I_{K(\text{Ca})} = \overline{g}_{K(\text{Ca})} m(E_{K(\text{Ca})} - V) \min((\text{[Ca]}_0 / 2 \mu M), 1) \]

\[\frac{\partial m}{\partial t} = \alpha_m(V)(1 - m) - \beta_m(V)m \]

\[\alpha_m(V) = \frac{2/37.95 \exp((V + 50)/11 - (V + 53.5)/27)}{\text{for } V \leq -10} \]

\[= \frac{2 \exp((V - 53.5)/27)}{\text{for } V > -10} \]

\[\beta_m(V) = \frac{2 \exp((V + 53.5)/27) - \alpha_m(V)}{\text{for } V \leq -10} \]

\[= 0 \quad \text{for } V > -10 \]

The channel kinetics for \(I_{K(\text{Ca})} \) was taken without modification from Traub et al. (2003).

Muscarinic potassium current \(I_m \)

\[I_m = \overline{g}_m n(E_{K} - V) \]

\[\frac{\partial n}{\partial t} = \frac{n(V) - n}{\tau_n(V)} \]

\[\alpha_n(V) = \frac{0.001(V - 30)}{1 - \exp(-(V - 30)/9)} \]

\[\beta_n(V) = \frac{-0.001(V - 30)}{1 - \exp((V - 30)/9)} \]

\[n(V) = \frac{\alpha_n(V)}{\alpha_n(V) + \beta_n(V)} \]

\[\tau_n(V) = \frac{1}{\alpha_n(V) + \beta_n(V)} \]

The values for the rates were adjusted from their original values given at 23°C to 37°C using a \(Q_{10} \) of 2.3 (Mainen et al., 1995; Mainen and Sejnowski, 1996).

Medium after hyperpolarization current \(I_{\text{mAHP}} \)

\[I_{\text{mAHP}} = \overline{g}_{\text{mAHP}} m(E_{\text{mAHP}} - V) \]

\[\frac{\partial m}{\partial t} = \frac{m(V) - m}{\tau_{m\text{mAHP}}} \]

\[\alpha_m(V) = 0.48 \left(1 + \frac{0.18}{[\text{Ca}]} \exp(-1.68F/R+T) \right) \]

\[\beta_m(V) = 0.28 \left(1 + \frac{[\text{Ca}]_0}{0.011 \exp(-2F/R+T)} \right) \]

\[m_a(V) = \frac{\alpha_m(V)}{\alpha_m(V) + \beta_m(V)} \]

\[\tau_{m\text{mAHP}}(V) = \frac{1}{\alpha_m(V) + \beta_m(V)} \]

The medium AHP current was taken without modification from Poirazi et al. (2003a); Poirazi et al. (2003b); Moczydlowski and Latorre (1983) with temperature set to 37°C.

Slow afterhyperpolarization current \(I_{\text{sAHP}} \)

\[I_{\text{sAHP}} = \overline{g}_{\text{sAHP}} m(E_{\text{sAHP}} - V) \]

\[\frac{\partial m}{\partial t} = \frac{m([\text{Ca}]) - m}{\tau_{\text{sAHP}}([\text{Ca}])} \]

\[m_a([\text{Ca}]) = \frac{[\text{Ca}]^2}{0.025 + [\text{Ca}]^2} \]

\[\tau_{\text{sAHP}}([\text{Ca}]) = \max \left(\frac{1}{0.033(1 + ([\text{Ca}]/0.025)^2)^{0.5}}, 0.5 \right) \]

The kinetics for the slow AHP current were similar to those used in previous studies where the rates were adjusted from their original values assumed to be given at 22°C to 37°C using a \(Q_{10} \) of 3 (Destexhe et al., 1994; Poirazi et al., 2003a,b).
Persistent sodium current $I_{\text{Na}(p)}$

$$I_{\text{Na}(p)} = g_{\text{Na}(p)} m(E_{\text{Na}(p)} - V)$$

$$\frac{dm}{dt} = \frac{m - m_r}{\tau_{m_{\text{Na}(p)}}}$$

$$m_r(V) = \frac{1}{1 + \exp(-(V + 48)/10)}$$

$$\tau_{m_{\text{Na}(p)}} = 0.025 + 0.14 \exp((V + 40)/10) \quad V < -40$$

$$= 0.02 + 0.145 \exp(-(V + 40)/10) \quad V \geq -40$$

The kinetics and current description of $I_{\text{Na}(p)}$ was taken without modification from Traub et al. (2003).

Reversal potentials used in currents are given as follows:

$$E_{\text{Na}} = -80 \text{ mV}, E_{\text{K}(A)} = -90 \text{ mV}, E_{K(d)} = -35 \text{ mV}.$$ Further, we uniformly shifted the voltage dependence of the sodium, delayed rectifier potassium, N- and T-type voltage-dependent calcium channels, and the activation rate of the L-type calcium by $-10, -5, 10, 10,$ and 8.25 mV, respectively, in order to raise/lower the threshold of sodium/calcium spike generation.

INTRACELLULAR CALCIUM DYNAMICS

Calcium accumulation, extrusion, diffusion and buffering was simulated according to the following simple model which accounts for these processes by a simple exponential decay,

$$\frac{d[Ca]}{dt} = -[Ca] \frac{[Ca] - [Ca]}{\tau_{Ca}}$$

$$+ \frac{1}{2fD} \left(I_{\text{Ca}(GABA)} + I_{\text{Ca}(T)} + I_{\text{Ca}(N)} + I_{\text{Ca}(NMDA)} \right) / 20$$

where $[Ca] = 50 \mu\text{M}$ is the equilibrium concentration of intracellular calcium, $[Ca]$, denotes the concentration of intracellular free calcium, $\tau_{Ca} = 20/1.2 \text{ ms}$ and $\tau_{Ca} = 50 \text{ ms}$ were the diffusion rate constants respectively used for the dendrite and soma, D is the diameter of the compartment, $I_{\text{Ca}(GABA)}$, $I_{\text{Ca}(T)}$, and $I_{\text{Ca}(N)}$ respectively denotes the calcium current through L-type, T-type and N-type calcium channels, and $I_{\text{Ca}(NMDA)} = 0.1 I_{\text{Ca}(NMDA)}$ is a fractional calcium current through postsynaptic NMDA receptors where 10% of the NMDA-mediated current is carried by calcium (Burnashev et al., 1995; Garaschuk et al., 1996). Synaptic conductances and currents were modeled as follows:

AMPA CONDUCTANCE AND CURRENT

$$g_{j}^{\text{AMPA}}(t) = g_{\text{AMPA}}^{r} F \exp \left(-\frac{(t - t_{j})}{\tau_{\text{AMPA}}} \right) \left(H(t-t_{j}) - H(t-t_{i}) \right),$$

$$I_{j}^{\text{AMPA}}(t) = g_{j}^{\text{AMPA}}(t) (V - E_{\text{rev}}^{\text{AMPA}})$$

GABA$_A$ CONDUCTANCE AND CURRENT

$$g_{j}^{\text{GABA}_A}(t) = g_{\text{GABA}_{A}}^{r} F \left(\exp \left(-\frac{(t - t_{j})}{\tau_{\text{GABA}_{A}}} \right) - \exp \left(-\frac{(t - t_{i})}{\tau_{\text{GABA}_{A}}} \right) \right) \left(H(t-t_{j}) - H(t-t_{i}) \right),$$

$$I_{j}^{\text{GABA}_A}(t) = g_{j}^{\text{GABA}_{A}}(t) (V - E_{\text{rev}}^{\text{GABA}_{A}})$$

where $E_{\text{rev}}^{\text{AMPA}} = 0 \text{ mV}, E_{\text{rev}}^{\text{GABA}_{A}} = -80 \text{ mV}, H(t)$ is the Heaviside step function, w_{j} denotes the efficacy of the AMPA conductance in synapse j, and \hat{F} is a normalization factor such that an event with g = 1 generates a peak conductance of 1 μS. The maximal AMPA g_{AMPA}^{r} and GABA$_A$ $g_{\text{GABA}_{A}}^{r}$ conductance were 5 and 2 nS, respectively. Onset and decay time constants were $\tau_{o_{\text{AMPA}}} = 0.2 \text{ ms}$ and $\tau_{d_{\text{AMPA}}} = 1.5 \text{ ms}$ for AMPA and $\tau_{o_{\text{GABA}_{A}}} = 1.2 \text{ ms}$ and $\tau_{d_{\text{GABA}_{A}}} = 9 \text{ ms}$ GABA$_A$ conductances, respectively. Excitatory AMPA weights were initialized to $w_{j}(t)=0.5$.

NMDA CONDUCTANCE AND CURRENT

The postsynaptic NMDA conductance was modeled using a simple two state kinetic scheme represented by the following two state diagram

$$C + T \underset{\alpha}{\overset{\beta}{\rightleftharpoons}} O$$

where α and β represent forward and backward voltage independent reaction rates. Defining ζ as the fraction of receptors in the open state of synapse j, then the above two state reaction is described by the following first order kinetic equation:

$$\frac{d\zeta}{dt} = \alpha [T] (1 - \zeta) - \beta \zeta$$

where $\alpha = 10 \text{ ms}^{-1}$ and $\beta = 0.0125 \text{ ms}^{-1}$ denotes the forward binding and backward unbinding rates, respectively. The concentration $[T]$ denotes a pulse of neurotransmitter of duration 1.1 ms in the synaptic cleft. The NMDA conductance is given by,

$$g_{j}^{\text{NMDA}}(t) = g_{\text{NMDA}} \zeta_{j}(t)$$

while the NMDA current is,

$$I_{j}^{\text{NMDA}}(t) = g_{j}^{\text{NMDA}}(t) B(V)(V - E_{\text{rev}}^{\text{NMDA}})$$

where the reversal potential is $E_{\text{rev}}^{\text{NMDA}} = 0$, and $B(V)$ represents magnesium block described by the following voltage-dependent process,

$$B(V) = \frac{1}{1 + \exp(-0.062V)} \left[\frac{\text{Mg}^{2+}}{3.57} \right]$$

where the extracellular magnesium concentration was set to a value of $[\text{Mg}^{2+}]_{o} = 1 \text{ mM}$.

GABA$_A$ CONDUCTANCE AND CURRENT

Post synaptic GABA$_A$ receptor responses are activated by an intracellular second messenger system, mediated by fast G-protein binding to K$^+ \ $channels, whose state diagram is represented by the following kinetic scheme

$$R + T \underset{R}{\overset{T}{\rightleftharpoons}} D$$

$$R + G_{o} \rightleftharpoons RG \rightarrow R + G$$

$$G \rightarrow G_{o}$$

$$C_{i} + nG \rightleftharpoons O$$

The activated and desensitized forms of the receptor G and D respectively arise after neurotransmitter T binds to the receptor R. Concurrently, the active form of the G-protein G is produced after the inactive form G_{o} has been catalyzed by R, and consequently binds to open K$^+$ channels, with $n = 4$ binding.
The conductance densities $g_{\text{K}(H)}$, $g_{\text{Ca(HVA)}}$, and $g_{\text{Ca(N)}}$ are monotonically increasing functions of distance from the soma to the end of the dendrites. They are respectively given as follows:

$$g_{\text{K}(H)}(x) = g_{\text{K}(H)}^{\text{soma}} + \frac{(x - d_1)}{1 + \exp\left((-0.75(x - 100))/100\right)},$$

where $g_{\text{K}(H)}^{\text{soma}} = 0$ and $g_{\text{K}(H)}^{\text{end}} = 12.5 \, \text{pS/\mu m}^2$.

$$g_{\text{Ca(HVA)}}(x) = g_{\text{Ca(HVA)}}^{\text{soma}} + \frac{(x - d_2)}{1 + \exp\left((-0.75(x - 100))/25\right)},$$

where $g_{\text{Ca(HVA)}}^{\text{soma}} = 10$ and $g_{\text{Ca(HVA)}}^{\text{end}} = 60 \, \text{pS/\mu m}^2$.

$$g_{\text{Ca(N)}}(x) = g_{\text{Ca(N)}}^{\text{soma}} + \frac{(x - d_3)}{1 + \exp\left((-0.75(x - 100))/50\right)},$$

where $g_{\text{Ca(N)}}^{\text{soma}} = 0$, $g_{\text{Ca(N)}}^{\text{end}} = 12.5 \, \text{pS/\mu m}^2$, d_1, d_2, and d_3 are half the maximal path distance from the soma to the end of the longest dendrite, and $[-]_+$ stands for rectification.

STDP CAN REDUCE SOMATIC FIRING RATE

Here, we illustrate changes in the somatic firing rate of the model neuron before and after STDP. In this case the initial weights of the AMPA conductances were initialized to $w_j(t) = 0.1$. Figure S1A shows that before STDP, the soma generates spikes at a high rate, however in Figure S1B, the somatic firing rate has clearly reduced after STDP.

FREQUENCY ALTERS ISI HISTOGRAM PROFILES

Increasing the mean input frequency of afferent inputs leads to observable changes in the ISI distribution of the soma as seen in Figure S2. There is a clear tendency for increasing input frequencies to give rise to increases in the peak of the ISI distribution. Additionally, there is also an increase in the ISI histogram's length of the tail.
REFERENCES

