
ORIGINAL RESEARCH
published: 11 January 2016

doi: 10.3389/fnins.2015.00491

Frontiers in Neuroscience | www.frontiersin.org 1 January 2016 | Volume 9 | Article 491

Edited by:
Ryad Benjamin Benosman,

Université Pierre et Marie Curie,
France

Reviewed by:
Luis A. Plana,

The University of Manchester, UK
Christoph Richter,

Technische Universität München,
Germany

*Correspondence:
Alan Diamond

a.diamond@sussex.ac.uk

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 03 August 2015
Accepted: 10 December 2015

Published: 11 January 2016

Citation:
Diamond A, Nowotny T and

Schmuker M (2016) Comparing
Neuromorphic Solutions in Action:

Implementing a Bio-Inspired Solution
to a Benchmark Classi�cation Task on

Three Parallel-Computing Platforms.
Front. Neurosci. 9:491.

doi: 10.3389/fnins.2015.00491

Comparing Neuromorphic Solutions
in Action: Implementing a
Bio-Inspired Solution to a
Benchmark Classi�cation Task on
Three Parallel-Computing Platforms
Alan Diamond *, Thomas Nowotny and Michael Schmuker

School of Engineering and Informatics, University of Sussex, Brighton, UK

Neuromorphic computing employs models of neuronal circuits to solve computing
problems. Neuromorphic hardware systems are now becoming more widely available
and “neuromorphic algorithms” are being developed. As theyare maturing toward
deployment in general research environments, it becomes important to assess and
compare them in the context of the applications they are meant to solve. This should
encompass not just task performance, but also ease of implementation, speed of
processing, scalability, and power ef�ciency. Here, we report our practical experience
of implementing a bio-inspired, spiking network for multivariate classi�cation on three
different platforms: the hybrid digital/analog Spikey system, the digital spike-based
SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess
performance using a standard hand-written digit classi�cation task. We found that
whilst a different implementation approach was required for each platform, classi�cation
performances remained in line. This suggests that all threeimplementations were
able to exercise the model's ability to solve the task ratherthan exposing inherent
platform limits, although differences emerged when capacity was approached. With
respect to execution speed and power consumption, we found that for each platform
a large fraction of the computing time was spent outside of the neuromorphic device,
on the host machine. Time was spent in a range of combinationsof preparing the
model, encoding suitable input spiking data, shifting data, and decoding spike-encoded
results. This is also where a large proportion of the total power was consumed, most
markedly for the SpiNNaker and Spikey systems. We conclude that the simulation
ef�ciency advantage of the assessed specialized hardware systems is easily lost in
excessive host-device communication, or non-neuronal parts of the computation. These
results emphasize the need to optimize the host-device communication architecture for
scalability, maximum throughput, and minimum latency. Moreover, our results indicate
that special attention should be paid to minimize host-device communication when
designing and implementing networks for ef�cient neuromorphic computing.

Keywords: neuromorphic hardware, benchmarking, bioinspire d, spiking neural networks, classi�cation

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00491
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2015.00491&domain=pdf&date_stamp=2016-01-11
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:a.diamond@sussex.ac.uk
http://dx.doi.org/10.3389/fnins.2015.00491
http://journal.frontiersin.org/article/10.3389/fnins.2015.00491/abstract
http://loop.frontiersin.org/people/156316/overview
http://loop.frontiersin.org/people/28940/overview
http://loop.frontiersin.org/people/6396/overview

Diamond et al. Comparing Neuromorphic Solutions in Action

INTRODUCTION

New massively parallel neuromorphic systems may have the
potential to deliver engineering solutions to general computing
problems by leveraging, often bio-inspired, neuronal models
(Boahen, 2006; Indiveri et al., 2011). The ability of animals to
solve complex perceptual and behavioral tasks with low power
requirements suggests that, via a suitable platform, this approach
might ultimately prove superior, for some tasks, to classicalAI
on conventional processors in terms of e�ective performance,
speed or power consumption. However, executing a spiking
neuronal simulation with even a fraction of the biological scale
and synaptic connectivity on a conventional computing platform
requires considerable computing resources. This is often further
compounded by demanding additional requirements such as
real time execution or manageable power consumption and heat
generation (Hasler and Marr, 2013).

To meet the challenge of e�cient neuromorphic computing
a number of neuromorphic platforms have been—and continue
to be—developed. Some of these systems employ analog neuron
circuits (seeIndiveri et al., 2011, for a review), others are
implemented in FPGAs (e.g.,Pearce et al., 2013), or employ
specialized digital hardware, such as the SpiNNaker system
(Khan et al., 2008; Furber et al., 2013). Moreover, GPU-based
simulators have recently become popular for neuromorphic
computing because they can provide a considerable speedup
over CPU-based simulators on desktop systems, whilst retaining
a manageable power budget and are fully programmable
using high-level languages (Fidjeland and Shanahan, 2010;
Nowotny et al., 2014). Successful use cases for neuromorphic
computing have been reported for diverse applications like image
recognition, for example on IBM's TrueNorth platform (Merolla
et al., 2014) and on SpiNNaker (Serrano-Gotarredona et al.,
2015), but also for modeling a variety of brain circuits (Pfeil et al.,
2013), and generic multivariate classi�cation (Schmuker et al.,
2014).

Amid this widening landscape, researchers seeking to
investigate the behavior of their, often large-scale, spiking models
on a given task face the problem of choosing the approach that is
best suited to their use-case. Logically, it follows that an informed
approach to platform selection would consider the suitabilityof
alternatives in the context of the task in question. However, it is
clear that a published speci�cation or feature sheet cannot fully
capture all the pertinent information that is required. Rather, a
hands-on evaluation of the candidate system is required to make
a fully informed choice.

Tools for an unbiased comparison of neuromorphic
approaches are available, most notably the PyNN meta-
language that has been developed as a part of the FACETS
project (Davison et al., 2008). Its goal is to provide a common
programming interface that allows running a single network
design on several platforms. In theory, PyNN thus enables a
truly unbiased comparison of neuromorphic backends when a
benchmark network is used that is equally well supported on
all considered platforms. However, each platform has unique
features that may be useful in providing a tailored solution
to the computing problem at hand. Since a network that runs

without modi�cation on all platforms is naturally restricted to
the smallest common feature set, it may be quite limited and fail
to reveal the essential advantages of the various platforms (and
potential disadvantages) for the use case at hand.

Here, we use an alternative approach to assessing
neuromorphic platforms: Instead of de�ning a network
that runs equally well on all compared platforms, we ported
the conceptof a functional spiking network model for generic
pattern recognition to each platform, with the aim to exploit
each platform's individual advantages. The classi�er network
was based on a spiking model of the insect olfactory system
(Schmuker and Schneider, 2007; Schmuker et al., 2014).
We tested three platforms: the mixed-signal, accelerated
Spikey system (Pfeil et al., 2013), the digital SpiNNaker
system (Khan et al., 2008; Furber et al., 2013), and the GPU-
based GeNN simulator (Nowotny, 2011; Nowotny et al.,
2014). To compare the resulting performance, we applied the
classi�er implementation for each platform to the MNIST digit
classi�cation task (http://yann.lecun.com/exdb/mnist/).MNIST
was chosen as a standard, non-trivial classi�cation problem,
which must practically accommodate both a high number of
samples (tens of thousands)—thus exercising simulation speed
capabilities—and high dimensionality (images are grayscale,
28� 28 pixelsD 784 dimensions), thus exercising speed, capacity
and power requirements. It should be noted that the Spikey
platform supports only a small neuron count (192) compared
to the other platforms which, when con�gured for this model,
support emulation of up to 12,000 (SpiNNaker SpiNN-3 board)
or 18,000 (GeNN—Titan Black GPU) of neurons in real time
or faster. Hence, compromises were required regarding the
model scale implemented on Spikey. Nevertheless, since this
system represents the family of highly accelerated neuromorphic
systems, running at a 104 speedup factor compared to biological
real time, it provides an interesting comparison with regard
to upcoming large-scale accelerated systems (Schemmel et al.,
2010). Moreover, it is one of the designated “dissemination
systems” (together with SpiNNaker) provided by the EU Flagship
initiative “Human Brain Project” to external users who want to
experiment with neuromorphic hardware.

We report on the practical experience of implementation,
on modi�cations that were necessary to provide the same
functionality, and on unique features of each platform that we
exploited to improve the function of the network. We provide
comparative metrics such as inclusive end-to-end execution
speed, the pro�le of power drawn and the overall energy
consumption. Power and energy measurements are particularly
relevant in the neuromorphic domain since neuromorphic
platforms are believed to be capable of delivering large scale
spiking models to projects with speci�c requirements for
scalability of performance or low power consumption, such as
robotics (Khan et al., 2008; Hasler and Marr, 2013).

The remainder of the paper is presented with the following
structure. In Section Methods, we summarize the conceptual
model for the bio-inspired classi�er, brie�y review the
architecture of the three employed neuromorphic platforms,
and report on how we transformed the conceptual model into
a functional experimental classi�er, comparing the resulting

Frontiers in Neuroscience | www.frontiersin.org 2 January 2016 | Volume 9 | Article 491

http://yann.lecun.com/exdb/mnist/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Diamond et al. Comparing Neuromorphic Solutions in Action

implementations. In Section Results, we present comparative
metrics covering classi�cation performance, execution speed,
power consumption, and total energy use. For speed and power,
in recognition that model simulation time alone is, by no means,
the whole story we include a benchmarked breakdown of the
various stages of learning and testing using as much granularity
as was available on each platform. In Section Discussion, we
discuss and compare the �ndings for each metric. We also
discuss the di�ering implementations and look to assign these
di�erences to current software feature sets, current hardware
capabilities, and fundamental architectural approach di�erences.

METHODS

Classi�er Design
To compare the neuromorphic platforms we draw upon a
genuine research question, namely the capabilities of a generic
multivariate classi�er based on a spiking neural network model
abstracted from the insect olfactory system, in particular the
antennal lobe (AL). This design has been previously described
and investigated in detail (Schmuker and Schneider, 2007;
Diamond et al., 2014; Schmuker et al., 2014), so we provide here
only a summary of the conceptual design.

In insects, broadly tuned receptor responses are passed via
olfactory receptor neurons (ORNs) to the AL, where they
converge on spherical areas of high synaptic connectivity, the
so-called “glomeruli” (Couto et al., 2005; Hallem and Carlson,
2006; Tanaka et al., 2012). Each glomerulus collects information
relayed by one class of olfactory receptor and thus represents
one channel of olfactory information entering the system. This
information is �ltered in the AL by lateral inhibition between

glomeruli to generate a sparser representation with higher
contrast between similar stimuli, intended to enable separation of
closely related odors. The AL projects its output to higher brain
areas where classi�cation and multisensory integration take place
(Heisenberg, 2003; Strutz et al., 2014).

Figure 1A shows a model intended to abstract the described
bio-based strategy for any data feature space of interest. The
�rst layer (VRs/RNs) is designed to encode multivariate, real-
valued data samples into a population-based, positive, bounded,
�ring-rate representation. Instead of chemical sensors we employ
“virtual” receptors (VRs) which each respond proportional to
their proximity to the current data input, in e�ect encoding
the data using cone-shaped radial basis functions with large,
overlapping receptive �elds. The centroids of the basis functions
(the VR points) were placed using a self-organizing process
(the current implementation uses the “neural gas” algorithm)
(Martinetz and Schulten, 1995) to map the feature space
described by a data set. A population of “receptor neurons” (RN)
is assigned to each VR. The response of the VR to an input
determines the net rate of �ring for the population of RNs,
which individually are described by, for example, Poisson or
Gamma processes. Each population of RNs excites a matching
population of “projection neurons” (PNs), which in turn send
their spikes to one population of local inhibitory neurons (LNs).
Each LN population sends inhibitory projections to all other
PN populations in the second layer, exerting lateral inhibition,
reducing correlation between VR channels and sparsening the
representation of the multi-dimensional pattern.

PNs send collateral projections into the third layer of
“association neuron” (AN) populations, which form a winner-
take-all decision circuit through strong lateral inhibition,
implemented by a second set of inhibitory local interneuron

FIGURE 1 | Spiking model design and platform-speci�c implementat ions. (A) Conceptual spiking network model for a generic multivariate classi�er design
based on the insect olfactory system.(B) Neuromorphic implementation of the model using PyNN and SpiNNaker SpiNN-3 board. See text for functional detail. Note
that spike sources comprise �les generated on the host workstation then transferred to the SpiNNaker board.(C) Neuromorphic implementation of the model using
GeNN and nVidia “Titan Black” GPU card. See text for functional detail. Note that the lighter arrows are included to implythe repeated sets of connections applied to
the remaining permutations of population connections.

Frontiers in Neuroscience | www.frontiersin.org 3 January 2016 | Volume 9 | Article 491

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Diamond et al. Comparing Neuromorphic Solutions in Action

groups. Each AN population is assigned to represent one label
or class in the data set (e.g., the digit “5” or the digit “7”).Highest
activity in an AN population is taken to imply the presence of an
example of that class at the network input.

PN activity is trained to stimulate the correct output AN
population by linking them with plastic connections. Connection
strengths are adjusted during exposure to a training data set
via a learning rule, such as reinforcement learning or Hebbian
learning.

Neuromorphic Platforms and
Implementations
The GeNN and Spikey implementations have been described
in detail previously (Diamond et al., 2014; Schmuker et al.,
2014), and are only brie�y reviewed here. The SpiNNaker
implementation is genuine to this publication and thus described
in more detail.

Implementation on SpiNNaker
The SpiNNaker neuromorphic platform (Khan et al., 2008;
Furber et al., 2013) comprises arrays of low-power, parallel
custom chips (each containing 18 ARM9 cores) running a digital
software simulation of neurons and synapses. The processors
are packaged on boards of 4 (SpiNN-3 board) or 48 (SpiNN-5
board) processors. The larger board is designed to be extendable
by connecting further boards, racks or full cabinets. As well
as low power usage, the system's philosophy focuses on the
core challenge of large brain simulation to maintain spike
communication in real time whilst scaling up to biological scale.
To this end, a custom hardware and software packet distribution
mechanism is incorporated which tolerates packet loss at higher
loads for the goal of maintaining real time simulation. It isargued
that this potential for loss in fact approximates the probabilistic
nature of unreliable spike transmission in the brain and that
e�ective function can nevertheless be maintained with largespike
volumes (Khan et al., 2008; Furber et al., 2013). In contrast to
many other simulation platforms, the spike-event focus of the
architecture means that axonal delays can be employed widely
and con�gured in detail with little cost. A standard SpiNNaker
neural model is primarily con�gured through the provision of
the “sPyNNaker” implementation (Rowley et al., 2015) of the
Python-based PyNN (Davison et al., 2008) modeling framework.

For our sPyNNaker implementation (Figure 1B) the system is
�rst con�gured using PyNN (version 0.7.5) in terms of neuron
populations and connectivity with input spike data provided by
pre-built spike-time sources combined with preset probabilistic
spiking populations (see Section Data Input Formation below).
The simulation is then set to run for a �xed period of
time after which the record of spikes that have occurred in
recorded populations can be extracted via PyNN functions and
interrogated. To perform another run requires the repetitionof
this complete cycle, including model con�guration.

To match this approach, we use just two extended runs of the
model, �rstly exposing it sequentially to the complete training
dataset, then again to the complete test dataset. During training,
the model is constructed with plastic synapses enabled between
the PN and AN populations. At the end of the training run the

resultant PN-AN weight matrix is extracted. The testing stage re-
constructs the model with non-plastic synapses, using the �xed
PN-AN weights taken from the saved matrix. The simulation is
run again, this time being exposed to the entire test set. To obtain
a performance score, the spike-time record of the output AN
populations is then downloaded and interrogated to determine
if the “winning” (highest spiking) population coincided with the
correct class for each of the test data inputs.

To maximize capacity, we used the simplest standard neuron
and synapse models available in sPyNNaker, the leaky integrate-
�re (LIF) neuron model (Rast et al., 2010) and exponential
current-based synapses. The model timestep was set to 1 ms.

To minimize the number of neuron populations and
connections that needed to be simulated we abstracted the model
further by replacing the inhibitory interneuron populations from
the biological model with direct inhibitory synapses between
PNs. We found that con�guring neuron populations e�ciently
for SpiNNaker requires balancing a number of factors in order
to not severely comprise the model size accommodated on the
board.Figure 1B illustrates the con�gurations selected for the
RN, PN, and AN layers in order to utilize the board as fully as
possible.

Firstly, each core can currently only contribute to one PyNN
population, thus numerous small populations (we used 30-
neuron clusters per VR and per class) would rapidly use up cores
whilst wasting capacity on each. In fact, the maximum number
of neurons is accommodated if just a single large population is
stipulated and automatically distributed across multiple cores,
each handling up to 256 LIF neurons. This approach was
employed for the RNs, using the connectivity matrix instead
to demarcate virtual 30-neuron “clusters” representing eachVR
within the main RN population.

Conversely, creating a hardware-managed packet routing
con�guration for complex connectivity between two large
populations is currently taxing for the con�guration software. As
the PN layer connects all-to-all with AN, we therefore ease this
task by dividing the PN layer into separate PyNN populations,
each comprising up to 8� 30-neuron VR clusters.

Thirdly, neurons with a�erent synapses implementing spike-
timing-dependent-plasticity (STDP) require more CPU and
memory resources on their parent chip, considerably reducing
the number of such neurons accommodated per core (� 32
currently). We therefore employed a separate PyNN population
for each AN class cluster (30 neurons). This also reduces the
complexity of connectivity from the PN population.

Data Input Formation
The workstation �rst generates the required set of N� VR points
in feature space by applying the neural gas algorithm to the
training data set (alone). The dataset is then traversed, obtaining
a scalar, proximity-based VR response for each input in the set
(seeSchmuker et al., 2014for details of the response function).

As SpiNNaker currently o�ers stochastic spiking populations
based only on a �xed net rate, another approach was required to
obtain RN populations with net spiking rates that change with
the classi�er input. We therefore generated, on the workstation,
a spike source �le which stipulated spike times for exactly NVR

Frontiers in Neuroscience | www.frontiersin.org 4 January 2016 | Volume 9 | Article 491

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Diamond et al. Comparing Neuromorphic Solutions in Action

neurons, covering the complete period of exposing the whole
training or test dataset to the classi�er. As we move throughthe
dataset, the spiking rate for each of these NVR neurons is set to
be proportional to the response of its corresponding VR to the
current sample. For each sample, the spike rate is maintained for
a learning period of 120 ms—a duration determined empirically
as the minimum below which classi�er performance was found
to degrade.

However, this rate coding only dictates the spike rate of a
single neuron for each VR. In order for the spiking of these
individual neurons to dictate the probabilistic net spiking rate of
30-neuron clusters we combined the spiking of each rate code
neuron with that of a random selection of 30 neurons taken
from a single shared 60 neuron pool of Poisson neurons �ring at
constant average frequency (details of this technique are provided
in the Supplementary Material).

Plasticity and Learning
On SpiNNaker, the simulation is run for the entire dataset
before control returns to the workstation. This precludes the
use of custom learning rules implemented on the workstation,
such as those employed for both the GeNN and Spikey
platforms. In principle, our host-dependent learning rule could
be approximated with a “three-factor” learning rule, that is,
a synaptic learning rule that takes into account pre- and
postsynaptic activity plus an external reinforcement signal that
governs the direction of weight plasticity (Izhikevich, 2007; Porr
et al., 2007) However, sPyNNaker currently does not provide
an implementation of a three-factor learning rule. We thus
replaced the learning rule of the conceptual model with an
implementation that achieves a similar plasticity rule usingthe
intrinsic STDP mechanism on the SpiNNaker system paired with
targeted activations of post-synaptic neurons (see alsoGalluppi
et al., 2015). In our approach, we adjusted STDP parameters to
represent a symmetric STDP curve with positive weight changes
for any order of spike pairing (see Supplementary Material
for more details). This implements simple Hebbian learning
(Hebb, 1949), creating associations between PN (VRs) and AN
(classes) that are co-active. Before training, PN-AN weights were
initialized at zero weight. Then, as each input was presented,we
used a second synchronized spike source to provide a teaching
signal to externally stimulate concurrent activity in the correct
class population of output neurons (seeFigure 1B). Employing
an STDP plasticity curve with positive weight changes of the
same magnitude for closely paired pre and post-synaptic spikes,
irrespective of the spike order, (see Supplementary Material for
details) hence led to strengthening of synapses between active
PNs and the neurons of the correct output class. The combination
of strong WTA connectivity between AN neuron populations, a
narrow window of positive weight changes in the STDP curve
and the introduction of a 20 ms “silence” gap between presented
inputs helped to minimize inappropriate weight changes due to
accidental pairings of spikes in PNs and ANs.

Implementation on GeNN
The GPU enhanced Neuronal Network (GeNN) meta-compiler
(Nowotny, 2011; Nowotny et al., 2014) was developed to

address the need for both neuronal modeling �exibility and
simulation performance by drawing upon the computational
power, low-cost, and wide availability o�ered by highly parallel
general purpose graphics processing units (GP-GPU) running the
Compute Uni�ed Device Architecture (CUDA). GeNN provides
a function library for a standard C/CCC environment from
which neuronal model can be de�ned. The meta-complier is
then invoked, which builds two optimized CUDA kernels, one
for the neurons' state update per timestep and another for the
synapses.' These act together to simulate the neuronal network in
a parallel fashion, spawning a thread per neuron (neuron kernel)
or per post-synaptic neuron (synapse kernel). The meta-compiler
also generates a series of helper functions allowing the user to
upload input data, step the simulation and extract resultant spike
events or other variables (such as membrane potentials). The
meta-compiler furthermore interrogates the deployment target
GPU and automatically applies the manufacturer's optimization
rules to the combination of its hardware properties and
the model details to select appropriate CUDA deployment
parameters (thread block size, shared memory allocation, etc).
This eliminates one of the main constraints of e�ective CUDA
coding—the fact that greatly suboptimal performance can easily
occur if in-depth knowledge of the CUDA programming model
and the properties of the deployment hardware is lacking or
out of date. Neuron or synapse models can be user-speci�ed
in GeNN using an internal nomenclature. Standard examples
such as Hodgkin-Huxley or Izhikevich models are available pre-
rolled. Axonal delays are supported at a population-level but are
expensive in memory requirements.

Our GeNN (version 2.1) implementation is illustrated
in Figure 1C, and it follows essentially our previous
implementation of this design (Diamond et al., 2014) . The
approach draws upon the ability that, after con�guration and
meta-compilation, the simulation can be stepped under control
of the workstation whilst the complete state is retained on the
device. Unlike SpiNNaker, there is no concept of real time, the
entire simulation is run as fast as possible unless the user adds
their own code to throttle it back.

As GeNN kernels are less e�cient managing numerous
separate populations, the model was con�gured using a single
neuron population for each layer—RN, PN and AN. Thirty-
neuron VR and class clusters within these are demarcated using
appropriate connection matrices. The RN layer uses Poisson
neurons whose net �ring rate is individually controllable by
an uploaded block of rate code values. The PN and AN layers
use lightweight “map” neurons (Rulkov, 2002) to maximize
throughput. The model timestep was set at 0.5 ms. As with
SpiNNaker, for e�ciency, inhibitory interneuron populations
are abstracted out by using direct inhibitory synapses. Starting
weights for the plastic PN-AN synapses are initialized randomly.
Fixed synapse weight values and connection density between
populations are detailed inSchmuker et al. (2014).

For each input in the dataset the VR's responses are calculated
then converted to a set of rate codes, which are uploaded to the
device to drive the RN neurons. The VR radial basis response
function is detailed inSchmuker et al. (2014). The simulation
is then stepped for a duration of 500 ms (simulated), being the

Frontiers in Neuroscience | www.frontiersin.org 5 January 2016 | Volume 9 | Article 491

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Diamond et al. Comparing Neuromorphic Solutions in Action

minimum exposure time for the plasticity learning rule to remain
e�ective. At every timestep, the spike events occurring in PN
and AN layers are extracted from the device as the ability to
collate these on the device is not currently a feature of GeNN.
This approach allowed the implementation of a perceptron-
based rule (Rosenblatt, 1958) for supervised learning described
previously (Schmuker et al., 2014) and which is executed on
the host machine. Note that while transferring large numbers of
spikes between host and device incurs substantial demands for
communication bandwidth, this hardly presents a performance
bottleneck (at least not for the data volume in this application)
due to the very e�cient PCI-express interconnect between CPU
and GPU. The learning rule is applied at the end of the
presentation of each input pattern and a revised PN-AN weight
matrix is uploaded to the GPU, overwriting the old one.

This cycle is repeated for the complete training dataset.
Without reconstructing the model, but with the learning rule
and weight update disabled, the test dataset is now presented.
As before, spikes are collected per timestep. For each input the
maximally spiking AN class cluster is ascertained and compared
to the correct class.

Implementation on Spikey
The Spikey platform is a neuromorphic chip employing a mixed-
signal approach combining analog neuron circuits with digital
event routing. A detailed description of its architecture and
capabilities is available inPfeil et al. (2013). In the version that
we used it supports emulation of up to 192 spiking neurons
operating at a 104 speedup factor, that is, 1 s biological time is
executed in only 0.1 ms real time. Connectivity is unconstrained,
in that any of the 192 neurons can be connected to any other. A
total of 256 input driver lines are available that can serve either as
spike inputs or to route spike events from internal neurons.

The Spikey PyNN-based implementation has been described
in detail in Schmuker et al. (2014), including the use of
inhibitory interneuron populations as per the conceptual model
(Figure 1A). Important points are that, as with GeNN, the
(same) plasticity rule is applied in training by workstation code
acting between sample presentations. Spikes are downloaded,
interrogated, and a full revised weight matrix uploaded to the
device.

It is worth noting that Spikey was developed as a research
platform a decade ago, and hence lacks some of the features that
make current neuromorphic systems such an attractive choice
for neuromorphic computing. The most drastic limitation liesin
the fact that the version we used supported only 192 neurons.
Hence, although the general concept of the classi�er architecture
is identical to the one implemented on the other platforms,
compromises had to be made in the implementation. Firstly,
neuron counts in all populations are much smaller; for example,
we used only 6 RNs, 7 PNs, and 8 ANs per population. To
achieve a robust population code with such low neuron counts
we employed a Gamma process of order 5 to generate input spike
trains on the workstation, which produces more regular spike
trains and a lower variability in spike count than the Poisson
processes used in the other implementations (seeSchmuker
et al., 2014for a detailed discussion of this issue). Similarly,

while the platform supports STDP (Pfeil et al., 2012), the very
limited number of available spike train inputs would severely
constrain, for example, the ability to generate associativelearning
by injecting concurrent teaching signals to the network.

Hardware
For SpiNNaker, we used a “SpiNN-3” board that hosted
4 SpiNNaker chips with 18 ARM9 cores each. The board
was connected directly to a workstation (8-core, 3.7 Ghz
Intel Pentium Xeon, 32GB RAM) via 100 Mbps Ethernet.
The SpiNNaker board was provided by Steve Furber's group,
University of Manchester, United Kingdom. When using the
connectivity pro�le of our classi�er application, this board could
accommodate up to� 104 neurons and 2� 107 synapses, running
in real time. The limiting factor was the number of cores available.
We used the sPyNNaker software base supplied by Manchester
(Rowley et al., 2015), release “Little_Rascal.”

For GeNN we used the same workstation with a nVidia
Titan Black GPU card (2880 cores, 6GB memory). This is
classi�ed as a high end consumer/gaming product, connected
internally via PCI-Express bus. With this card, up to� 2 � 104

neurons and 4� 107 synapses running at 3� real time could
be accommodated when using the connectivity pro�le of our
application. The limiting factor was the amount of on-card global
memory available. Note that a second small video card was used
to drive the workstation's main display, freeing up the main GPU.
We used nVidia CUDA 7.0 and the GeNN 2.1 software release
supplied by University of Sussex (Nowotny et al., 2014).

The performance measurements on Spikey were acquired
via remote access to a Spikey system that was connected
to a host workstation via USB in Karlheinz Meier's group
at Heidelberg University, Germany. Power measurements
were acquired on a second system provided by Karlheinz
Meier's group that was connected to the same workstation
that also hosted SpiNNaker and the GPU. The latest
software version that we used was the spikey-demo package.
(github.com/electronicvisions/spikey_demo, commit ea329b).

Power Measurements
For GeNN/GPU power measurement, mains electricity was
supplied via a power monitor with resolution of 0.1 W to the
main workstation running Ubuntu Linux with all non-essential
applications closed. To obtain an average no-load baseline
measurement PBASE, we removed the GPU card and took the
power/wattage reading every 30 s for 2 min. This process was
then repeated with the GPU installed to obtain a no-load “idle”
power measurement for the GPU board, using the “nvidia-
smi” diagnostic utility set to retrieve and log the “power.draw”
parameter. During the classi�er training and test, the same utility
was used to log the GPU power PGPU drawn every second while
the power meter reading PMETER was used to infer the CPU
power drawn during use, based on the simple formula PCPU D
PMETER � PGPU � PBASE.

For SpiNNaker and Spikey, the external boards were also used
with this same workstation, and with the GPU card removed.
As before, CPU power drawn during classi�er training and test
was measured using the meter. To obtain measurements for the

Frontiers in Neuroscience | www.frontiersin.org 6 January 2016 | Volume 9 | Article 491

https://github.com/electronicvisions/spikey_demo
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Diamond et al. Comparing Neuromorphic Solutions in Action

SpiNNaker hardware boards this was repeated with the board's
external PSU supplied via the meter. For Spikey, a powered USB
hub was employed similarly.

RESULTS

Platform Comparison and Benchmarking
Strategy
Each of the classi�er implementations was developed
independently on each platform. It should be emphasized
that our approach was to not use the smallest common feature
set supported by all three platforms. Rather, we pursued the
more informative approach of addressing a realistic research
problem via the particular feature set of each platform. Thus,
while all networks implement the same model, di�erences exist
in their detailed operation. In consequence, parameterizations
for best classi�er performance di�er, as presented inTable 1. The
SpiNNaker and GeNN implementations were developed and
tuned using only the training part of the MNIST data set and
employing strati�ed 10-fold cross validation against all 10digits.
The test set was held unseen up to the actual benchmarking
comparison. The Spikey implementation was initially developed
as described previously (Schmuker et al., 2014). Due to the low
neuron count, it was only trained and tested on training and test
sets containing each 1000 examples of the two digits 5 and 7.

For benchmarking we explored two primary dimensions along
which we varied the model parameters, the number of classes that
the network is to learn and the number of virtual receptors (VRs)
used to encode the data.

The number of classes (MNIST digits) requiring
di�erentiation directly relates to the di�culty of the classi�cation
task. But increasing the number of classes also dictates that the
classi�er must receive and manage a correspondingly larger
amount of input data, given the same number of examples per
class, and accordingly needs a longer period of time for training
and testing. More output spike data must also be extracted
and processed for each input to determine the “winning” class
(classi�cation decision). Finally, raising the AN output cluster
count increases both the neuron count and, signi�cantly, the
synapse count from the PN layer and the WTA connectivity
within the AN layer.

The number of VR points assigned by the self-organizing
neural gas mapping process determines the resolution of the
classi�er within the input space. Within the feature space,
classes clustered in close proximity or overlapping will be better
di�erentiated as the number of VRs is increased. However, this

correspondingly raises both the size of the input data to the
classi�er and also the neuron count (rises linearly) and synapse
count (rises with a square law). It has been shown previously
that performance scales favorably when increasing the number
of VRs, exhibiting convergence but not over�tting for large VR
counts (Schmuker and Schneider, 2007). Our results con�rm
this observation (see below). Hence, for best classi�cation, the
network can simply be scaled up to the maximum number of VRs
that are supported on the platform at hand, without running the
risk of over�tting due to excessive feature counts. While scaling
up the classi�er does come with some cost in runtime and energy
consumption, as we will see below, it is much less expensive
for neuromorphic hardware than it is on classical CPU based
systems. Therefore, the scaling properties of the network make
it an attractive approach for massively parallel, neuromorphic
systems.

Performance in the Classi�cation Task
We assessed how the model's performance scales when varying
the number of digits to be discriminated and the number of VRs
that are used to encode the input space. In order to provide
a fair comparison for classi�cation performance, we provided
each implementation with the same training and test data,
presented in the same order. Datasets for the following �ve
combinations of digits were generated as follows; [5,7], [5,7,1],
[5,7,1,9], [5,7,1,9,3], and all 10 digits [0–9]. To generate both
training and test datasets, the respective MNIST dataset was
traversed without shu�ing or altering the order. Each allowable
digit encountered was added to the dataset up to a maximum of
1000 examples of each.

For each digit combination, the number of VRs was varied
between 10 and 200. The lower limit was set to the number of
classes (digits). Coincidentally, 10 is also the maximum VR count
that can be accommodated in Spikey without severe performance
loss. The upper limit of 200 was selected because the resultant
network size was the largest we were able to accommodate on the
64 core SpiNNaker “SpiNN-3” board.

The respective training datasets were used to generate the
requisite set of VR points by a self-organized mapping of the
input space, using the “neural gas” algorithm (Martinetz and
Schulten, 1995). The same VR set was employed across the three
hardware platforms to eliminate a possible source of di�erence.
The presentation time of each sample varied by implementation
(seeTable 1) as both synaptic plasticity (learning) and settling
time of the output activity are a�ected by the presentation time
but this varies considerably between platforms. For SpiNNaker
and GeNN this time was set empirically to the shortest period

TABLE 1 | Major parameterizations of models used for each platfor m.

Parameter GeNN SpiNNaker Spikey

Population size (neurons) 30 30 6 (RN,PN) 8 (AN)

Presentation time per sample for learning 500 ms 120 ms 1000 ms

Inhibitory interneurons modeled No No Yes

Plasticity rule Reinforcement (off platform) Hebbian association via STDP (on platform) Reinforcement (off platform)

Frontiers in Neuroscience | www.frontiersin.org 7 January 2016 | Volume 9 | Article 491

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Diamond et al. Comparing Neuromorphic Solutions in Action

before classifying performance was adversely a�ected. For Spikey
a nominal 1 simulated second was employed as real time spent
in simulation is almost negligible on this platform. After a
single run of the entire training set, plasticity was disabled (see
implementation details) before presenting the test set. In all cases,
the classi�er's verdict was obtained by extracting a count of spikes
occurring in the competing AN output populations during the
presentation period of each test set sample. The winning class
is assigned from the population with the highest spike count.
Representative spike raster plots showing Spikey classifying a test
sample digit (10 VRs, 2 classes) and SpiNNaker classifying 50
examples of the full 10 digit MNIST using 50 VRs are shown in
Figure 2.

The classi�cation score was measured as the percentage
correctly classi�ed from a single presentation of the test set data.
The classi�cation scores for the three platforms covering each
tested combination of digits and number of VRs are plotted in
Figures 3A–Crespectively. Two observations can be made from
these results: (1) classi�cation gets harder as more digitsare
added to the task, and (2) classi�cation performance increases
as the number of VRs is increased. The latter observation points
out the utility of large-scale neuromorphic systems: As more
neurons become available to the algorithm, we can use more
VRs to encode input space, ultimately providing a very high-
dimensional representation. The massively parallel architecture
of the lateral inhibition step �lters out redundancy (Kasap and
Schmuker, 2013; Schmuker et al., 2014) without any penalty in
run time (at least on SpiNNaker or Spikey), and with a positive
e�ect on accuracy.

The Spikey system performed slightly better than par for the
smallest problem (digits 5 and 7), being tuned for this speci�c
smaller dataset (Schmuker et al., 2014). However, performance
dropped to chance levels beyond two digits as a consequence
of the very low neuron count available on this system. The

neuron count limits the number of VRs that can be used, as
well as the population sizes. The smaller the size of a neuronal
population, the lower is its ability to encode small di�erences
in input strength via a population �ring rate. This limitation is
exposed by the failure of theSpikeynetwork to separate three
digits.

The classi�cation performance of the GeNN and
SpiNNaker implementations appear comparable, suggesting
that classi�cation performance is likely determined by the
underlying classi�cation model rather than by the details of
the implementations and their optimization. To illustrate
the similarity of performance in the GeNN and SpiNNaker
implementations we plotted the two against each other in
Figure 3D. All points are close to the diagonal indicating
near-equivalent performance for GeNN and SpiNNaker
implementations.

Speed Benchmarking
We next assessed the execution speed on the three platforms.
We measured the total time taken for a run of the training set,
then measured again for the test set. The dataset used was the
same as for the classi�cation test (see above) but restricted to
the two digit {5,7}, 10� VRs selection in order to include Spikey
in the comparison. Scalability of performance was compared for
the GeNN and SpiNNaker platforms by repeating the test using
100 VRs and 200 VRs.

In order to understand where the time is used on each
platform and how this pro�le may change with scaling, the
total time was segmented (where separate measurement was
possible) into time spent on each of the following stages: model
con�guring/construction, input data uploading to neuromorphic
platform, pure model simulation time, weight updating, spikes
download/extraction. The comparative performance results and

FIGURE 2 | Representative spike raster plots of classi�cati on of a test set at two levels of detail. (A) Detail of spikes occurring during 1 s presentation of a
single test digit to the trained Spikey classi�er using 10 virtual receptors. The banding discriminates individual populations of 6 or 8 neurons. The colors distinguish the
main layers (bottom to top): RN layer (0–59), PN and lateral inhibitory LN neurons (60–129 and 130–189), AN output neurons and paired lateral inhibitory LN neurons
(190–205 and 206–222). High activity in the upper AN population determines the classi�cation decision.(B) The trained SpiNNaker classi�er using 50 VRs and all 10
digits (0–9). Spiking activity occurring during consecutive 120 ms presentations of 50� MNIST test digits ordered cyclically 0–9. The colors distinguish the main layers
(bottom to top): RN layer (50 clusters of 30 neurons), PN layer (50 clusters of 30 neurons) and at the top, AN output neurons(10 clusters of 30 neurons). A perfectly
regular “sawtooth” pattern of activity in the output would imply 100% classi�cation. A similar representative raster plot from GeNN is available as Supplementary
Material.

Frontiers in Neuroscience | www.frontiersin.org 8 January 2016 | Volume 9 | Article 491

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Diamond et al. Comparing Neuromorphic Solutions in Action

FIGURE 3 | Classi�er performance on each platform for combination s of digit selections and number of virtual receptors (VRs). Performance is plotted
as percentage correctly classi�ed test samples(A–C). (D) shows this performance comparatively between SpiNNaker and GeNN across all experiments. Note that
the performance is similar across platforms for networks ofequal size in spite of the implementation differences. Notethat the lines connecting markers are included
simply as a visual guide to associate results for the same number of VRs.

FIGURE 4 | Time taken to perform training and test phases broken down by primary tasks speci�c to each platform. Tasks that required less time than
could be displayed are not shown explicitly (they are grouped into “other”), e.g., the spiking simulation on Spikey. Tasks that accomplish roughly the same job on
different platforms are shown in matching colors, whereas some tasks are speci�c to each of the platforms and are shown in distinct colors. Platforms shown:(A)
GeNN with CPU only,(B) GeNN using GPU,(C) SpiNNaker Spinn-3,(D) Spikey.

the makeup of the time expended for each platform are shown in
Figure 4.

Without the requirement to communicate with a
neuromorphic device, activity of the CPU-only implementation
(Figure 4A) is almost entirely concerned with model simulation
and generating input data (VR responses and rate-coding) for
the model from the MNIST dataset. Note that simulation time
increases quadratically with model size, data generation only
linearly.

Figure 4B shows that the GeNN GPU implementation
shifts the load of the simulation to the device but adds
communication overheads, most signi�cantly the time takento
extract spiking data from the device memory. Even with the
largest model tested, this comprised a larger time component
than the simulation itself, yet the time used remains almost
constant with model size, suggesting that it lies well within
the bandwidth limits of the interface and that the time is
primarily used to marshal the call. This is unsurprising as

relatively few spikes need to be retrieved every time the model is
stepped.

As expected, with the simulation pegged to real time, the
SpiNNaker implementation's pro�le (Figure 4C) is dominated at
small model sizes by time spent in simulation and SpiNNaker is
outperformed by the other platforms in this case. However, with
the largest model of 200 VRs the ability to continue to deliver
both simulation and plasticity in real time begins to show in
the pro�le while the CPU-only implementation begins to slow
down considerably. However, it is also clear that it would take a
much larger model in the order of 600–800 VRs for SpiNNaker
simulation time alone to outperform any of the other platforms.
However, the plot also shows that supporting functionality of
model setup and data uploading currently also scales with model
size, raising a potential issue for this platform as a substrate for
very large model simulations.

Scaling information for Spikey was not available as the
number of neurons is too low to implement a larger classi�er.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2016 | Volume 9 | Article 491

Diamond et al. Comparing Neuromorphic Solutions in Action

Nevertheless, with a small model simulated at 104 � real time,
high performance was expected, however the end-to-end analysis
(Figure 4D) shows this to be the case for the testing stage only.
Studying the detailed constituents making up the PyNN run of
the model (seeSchmuker et al., 2014, Supplementary Material)
suggests strongly that the workstation hosting the plasticity in the
training stage is the root cause, speci�cally, the time to update
the connectivity weights after every sample and the subsequent
recon�guration.

Comparing the 4 implementations for a smaller model sized
for just 10 VRs, the CPU-only implementation is a clear winner
over the neuromorphic platforms. This suggests three factors
are at play. Firstly, the lightweight neuron models selected for
GeNN and SpiNNaker do not greatly tax the CPU at low
volume, compared to using relatively more computationally
expensive models, such as the Hodgkin-Huxley (HH) model
(Nowotny, 2011). With such lightweight models the overhead
of marshaling calls to a device and managing data movements
become signi�cant factors. Secondly, a real-time simulation
architecture such as SpiNNaker will also only see bene�ts for
larger models, where other platforms cease to manage real-time
or faster simulations. In our case, the CPU alone could simulate
faster than real-time until the problem scale had passed 100 VRs.
Thirdly, the role of a workstation controlling and interfacing
with neuromorphic hardware, (for example in constructing and
compiling models, preparing compatible data structures for
transfer and extracting data etc.) generates a large overhead above
the task of pure simulation. When a simulation model is small
enough these overheads become a dominating factor.

When the model size is increased to 200 VRs a di�erent
picture begins to emerge. As expected, the serial simulation
time of the CPU-only implementation increased strongly, in
particular as the number of synapses increases quadraticallywith
the number of neurons in the all-to-all PN-AN connectivity.
By contrast, the parallel-executed simulation time of the other
platforms has increased only little. However, we note that
other workstation tasks still scale with the model and, with
GeNN and particularly SpiNNaker, these now comprise an even
larger component of overall time than for the smaller model.
The conclusion for these platforms must be that, while the
challenge of scaling the actual simulation has been addressed to a
considerable extent, the scaling of associated tasks remains to be
addressed better.

Power and Energy Consumption
We next assessed the power consumption of the three platforms
during the benchmark task. We used the two digit [5,7], 10 VR
task, the same as for the speed benchmark.

Figure 5 shows how the power drawn varies over the course
of the training and testing cycles, for GeNN (Figure 5A),
SpiNNaker (Figure 5C), and Spikey (Figure 5D). We included
the power drawn by the respective computing platforms (i.e.,
the SpiNNaker board or the GPU) as well as the considerable
power consumed by the attached workstation during essential
non-simulation associated tasks, such as uploading the model
and data, and collecting and analyzing spike counts.Figure 5B
indicates how the power variation with time (Figures 5A,C,D)

translates to total energy expended for the classi�er built using
each platform. Again, each is segmented into energy consumed
by the neuromorphic platform and by the attached interacting
workstation.

From the plots, a similar message to the speed benchmarking
emerges here, namely that a large proportion of power and energy
is consumed by extended use of the workstation, in particular
for what might be considered “infrastructure tasks” such as
device-workstation interactions.

These interactions are not required by the CPU-only
implementation, therefore energy consumption is relatively low
on a small model (due to the short time required) but very high
for a large model, because the simulation computation grows
super-linearly with the neuron count.

For SpiNNaker, where learning or testing is �rst set up in full,
and then runs autonomously at just 4 W without requiring the
workstation, the result is a net low consumption of both power
and energy, despite the longer simulation times. However, the
workstation time taken to move data to and from the board
results in higher CPU energy that dominates the total usage.

For Spikey, the consumption of the board is similarly very low,
and the setup is relatively short but the continued involvement
of the CPU for spike and weight data and plasticity rules again
dominates the total energy usage.

For the GPU/GeNN implementation, the workstation is also
continually involved in the plasticity rule, weight adjustment
and particularly communicating with, and shuttling data to and
from, the GPU device. Interestingly, however, the CPU power
consumption is twice as high for GeNN than for Spikey, even
though the CPU performs essentially the same task (i.e., carrying
out the learning rule) in both implementations. This di�erence
may be due to the fact that in GeNN, the CPU exchanges data
with the GPU at every time-step during the simulation while
on Spikey an interaction takes place only after the presentation
of a digit sample, leading to less communication. Furthermore,
the training phase on Spikey takes almost twice as long as on
GeNN, hence the same task is spread over a longer time interval,
which implies a lower power consumption if the overall energy
consumption is comparable. Other di�erences between GeNN
and Spikey that may play a role are di�erent interconnects (PCI
Express vs. USB) and di�erent code bases (compiled code on
GeNN vs. interpreted Python code for Spikey).

We note that in spite of the higher CPU power draw in GeNN,
the even higher power draw of the GPU compared to Spikey or
SpiNNaker hardware (some 80 W compared to 4–6 W) means
that the total power and energy usage in GeNN is less dominated
by the CPU as in the other cases.

DISCUSSION

The work described here resulted from the aim of solving
a general pattern recognition task on diverse hardware and
software o�erings in the form they were available to us at this
time. All comparisons made between the three implementations
and platforms must therefore be interpreted in this context, that
is complementary to isolated rote-task benchmarking statistics,
that typically do not include non-essential but important details

Frontiers in Neuroscience | www.frontiersin.org 10 January 2016 | Volume 9 | Article 491

Diamond et al. Comparing Neuromorphic Solutions in Action

FIGURE 5 | Electrical power drawn and energy used by GeNN, Spi NNaker and Spikey across training and testing when classifyi ng 2 digits with
10 VRs. (A,C,D) power consumption across the course of training and testingof a 10 VR classi�er for 2 MNIST digits (5,7), 1000 samples per digit. The graphs
compare the implementations on the GeNN(A), SpiNNaker (C), and Spikey (D) platforms. We report the power drawn by the GPU card, the SpiNNaker, and
Spikey boards, as well as the power drawn simultaneously by the attached workstation. The latter is reported as the powerabove the baseline (51 W) drawn by
the workstation without GPU card and performing no task. SpiNNaker and Spikey power consumption was measured directly with the inline meter while GPU
power draw was obtained via the reporting of the “nvidia-smi” utility (see main text).(B) Energy usage for a 10 VR and a 200 VR classi�er, applied to 2 MNIST
digits (5,7), 1000 samples per digit. The readings approximate the total energy (above baseline) used during the training and testing by multiplying the power
usage in each stage of the process by its duration. The readings are repeated for the GeNN GPU, SpiNNaker and Spikey (10 VR only) platforms as well as for
GeNN when set to use the workstation CPU alone.

of support code and implementation speci�cs related to the
di�erent constraints of di�erent platforms. We would like to
suggest that studies such as the present one help to draw
out and pinpoint where critical improvements may lie for a
neuromorphic platform to become a strong candidate for uptake
in future research projects and applications. For example, our
study demonstrates that all tested platforms have great merit
in accelerating spiking network emulations, but are at times
let down by the overheads of code running on the attached
workstation. This issue can be addressed on several levels:On
the network level, emphasis should be given to minimize the
communication between the device and the host machine, e.g.,
by exploiting on-chip mechanisms for learning as much as
possible. Similarly, on the hardware side, future generations of
neuromorphic systems will likely support faster interconnects
that alleviate the communication bottleneck. There is likely also
potential in the control software to optimize communication
throughput and/or latency, and in fact this issue is currently

addressed by the groups developing the interfaces to SpiNNaker
and Spikey (i.e., Spikey's successor systems). Together, these
measures will act to minimize the required role for the attached
workstation and reduce the performance penalty for host-device
communication.

Performance of the Neural Classi�er
Design as a Benchmark
All three implementations delivered a similar classi�cation
performance with scores comparable to a standard neural
network whilst trailing the performance of leading AI machine
learning approaches such as support vector machines and
deep neural networks (see http://yann.lecun.com/exdb/mnist/
for wide-ranging comparison of MNIST classi�cation scores).
As expected, performance scales with the number of VRs
employed and falls with the number of classes included. The
similarity of this pro�le, particularly illustrated betweenGeNN
and SpiNNaker (where the majority of data was collected)

Frontiers in Neuroscience | www.frontiersin.org 11 January 2016 | Volume 9 | Article 491

Diamond et al. Comparing Neuromorphic Solutions in Action

suggests that the diverse implementations have succeeded in
reaching the limits of the classifying ability of the underlying
model. This robustness against variations in implementation and
substrate suggests that the model may comprise an e�ective
benchmark for comparing neuromorphic platforms against the
other relevant criteria discussed, namely; ease of implementation,
speed of processing, scalability, and power e�ciency.

Optimization Targets
Our work revealed that there are some obvious targets for further
development and optimization in the di�erent platforms.

In GeNN, the high power draw of both, the CPU and
particularly the GPU suggest that minimizing the time in
simulation is important to reducing energy consumption. The
communication overheads, in particular the total time used to
extract spiking data on every timestep from the device memory,
suggests that a mechanism, similar to SpiNNaker, to invoke a
longer run on the device and pool spikes generated until the
end would prove bene�cial, at least for model sizes on the
order of those tested here. The high bandwidth communication
o�ered by the PCIe bus means that transferring large amounts
of data more infrequently is considerably more e�cient that
transferring small amounts constantly. If spike data was collated
on the card and transfers were limited to once at the end of each
500 ms (simulated time) input presentation this would still retain
the ability to enact computation on the host such as bespoke
plasticity rules. This argument is supported by the evidence
from the time breakdown showing that the periodic upload of
the updated weight data comprises only a fraction of the total
time.

For SpiNNaker our results suggest that, in pure simulation
performance, SpiNNaker is strong for very large neural
simulations, which is what it was designed for. However, we
also observed that workstation and communication functionality
such as model setup and data-uploading scaled far less well. Our
results make a strong case for optimization e�orts that targetthe
communication between host and device. Besides optimizations
on the software side that increase throughput, also increasing the
bandwidth of the Ethernet link on the SpiNNaker board may be a
viable option (e.g., upgrading it to Gigabit Ethernet). It should be
noted that the large SpiNNaker boards equipped with 48 x18-core
chips (“SpiNN-5”) do support a high-speed AER-based interface
that is available through standard SATA connectors. However,
using these fast interfaces requires special hardware that is not
as generally available as Ethernet.

Our work with Spikey suggests that the time to update the
connectivity weights after every sample and the subsequent
recon�guration were signi�cant performance factors in
the implementation. Potentially, a large improvement in
performance could result from targeting this update process
in the software interface. Moreover, in future implementations
one could aim at minimizing host-device communication by
employing the on-chip STDP capabilities in a similar manner
as in the SpiNNaker implementation, tackling the bandwidth
problem at the network design level instead of just increasing the
channel throughput.

Implementation Comparison—Constraints
or Advantages from Architecture,
Hardware, and Software
The relatively much smaller capacity of the Spikey chip has clearly
played a major role in guiding the model implementation on it
and eventually constraining its observed classifying performance
in our benchmark. The small capacity of Spikey is currently
being addressed by new hardware designs (Schemmel et al.,
2010). However, even though this is an obvious concern for
the currently available system it is in our opinion not helpful
to focus on momentary strengths and weaknesses of software
and hardware aspects of the tested system in order to pick
a “best” platform. Recall that the Spikey platform represents
the class of accelerated hardware systems that operate several
orders of magnitude faster than real-time, aiming at providing
crucial speedup to long-running simulations of neuronal systems.
Software interfaces can be improved and hardware designs can
be modi�ed and scaled up. Instead of entering a discussion of
which approach is best overall, we would like to consider the
constraints or advantages of each platform in addressing oneof
the main �ndings, that a minimized role for the workstation is
potentially very advantageous. This focuses the discussion on the
level of communication, data exchange and plasticity or learning
required for each model implementation.

Data Input
As GPU hardware o�ers high bandwidth and large memory
on-device, data input for GeNN is best implemented in large
chunks, avoiding the potential bottleneck, which appears when
repeatedly passing small items of data across a bus. GeNN's
data input functions—combined with the ability to specify a
single rate code to govern spiking rates of a whole population—
take advantage of this con�guration, as does the ability to
switch input by passing only a memory o�set value. Full
hardware memory state retention means that the stepwise
control of the model allows new data to be uploaded whilst in
simulation.

For SpiNNaker and Spikey, data input is via PyNN spike
sources and needs to be stipulated per neuron for the entirety
of the intended model simulation time. Addition of variable
rate-coded stochastic populations would aid models of the
kind attempted here. For SpiNNaker in particular, the cost of
rebuilding a model means that the ability to retain state, allowing
a simulation to be paused and alterations made, will prove of
considerable value when it becomes generally available.

Running a Simulation
The step-wise approach and persistent state of GeNN o�ers
maximum �exibility to change inputs or implement additional
computation or rules o�-device. However, the overhead of time
and power of marshaling many thousand repeated calls between
the workstation and the device is considerable compared to the
other platforms, which run continuously without interruptionfor
the stipulated period. The addition of a similar “extended run”
function to GeNN would be of value.

Frontiers in Neuroscience | www.frontiersin.org 12 January 2016 | Volume 9 | Article 491

Diamond et al. Comparing Neuromorphic Solutions in Action

Implementing Plasticity and Learning
All three platforms o�er internal spike timing plasticity. This
enables simple learning at maximum speed and e�ciency
as the workstation is not involved, yet it proved di�cult
to achieve more complex learning on-platform without
the introduction of somewhat convoluted teaching signal
activity (SpiNNaker). Bespoke learning rules implemented
o�-platform require workstation time and power and introduce
the overhead of transmitting updated weight data (GeNN
and Spikey). Therefore, the addition, as standard, to the
three platforms of extended biologically-based learning such
as reinforcement learning via a form of “dopamine” reward
signal and time delayed eligibility trace functionality would
potentially greatly widen the opportunities for e�cient
simulation of learning networks. Steps in this direction
are already being undertaken on the next generation of
accelerated large-scale hardware systems (Friedmann et al.,
2013).

Extracting Spike Data
SpiNNaker and Spikey both implement PyNN functionality to
record spikes and collect them at the end of the simulation.
This is an e�cient approach, except where spike data is required
during the run, such as for a custom learning rule run outside
the platform. However, while SpiNNaker does support live
spike monitoring facilities, for a custom learning rule thatis
implemented outside the platform, it is not enough to monitor
the spikes, but one also needs to be able to updated the network
by the learning rule. Implementing weight updates based on
external input during the simulation would require a dedicated
mechanism for interacting with the network in real time. Such
a mechanism would open the door for powerful and highly
�exible learning algorithms to be implemented on the hardware
systems, such as three-factor learning rules that employ a reward
signal driving synaptic plasticity (Izhikevich, 2007; Porr et al.,
2007).

GeNN currently requires that spikes be collected on every
time step, introducing a considerable overhead as discussed. We
suggest that the ability to pool spike data, or spike count data,on
the device would thus be of value.

Conclusion
In conclusion, building on earlier work on each of the platforms
we have demonstrated in this work that all three platforms
can be used to implement a bio-inspired classi�er to solve a
general pattern recognition problem. All three implementations,
when compared at matching size, o�er comparable classi�cation
performance. Moreover, the two platforms supporting larger
neuron counts exhibit very similar scaling behavior when
increasing network size. This observation suggests that the
functional behavior of the network was hardly a�ected by the
considerably di�erent routes we chose in the platform-speci�c
implementation. On ease of use, speed and energy consumption,
however, the three implementations di�er considerably and
in non-trivial ways. For small models a CPU-only solution
appears to be best while large models are better on GeNN
or SpiNNaker. However, while speed and energy consumption
scale well for the actual simulation on the neuromorphic
platforms, they scale much less favorably for supporting code
run on the connected workstation. As neuromorphic technology
matures toward general computing applications in research and
technology, emphasis will have to be given to address these issues
in order to bring out the neuromorphic advantage to the fullest
extent.

ACKNOWLEDGMENTS

The research leading to the reported results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 604102 (Human
Brain Project). Loan hardware was provided by Manchester
University (SpiNNaker) and Heidelberg University (Spikey). M S.
has received funding by a Marie Curie Intra-European Fellowship
grant from the European Commission within FP7 (grant no.
331892).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2015.00491

REFERENCES

Boahen, K. (2006). Neuromorphic microchips.Sci. Am. 16, 20–27. doi:
10.1038/scienti�camerican0906-20sp

Couto, A., Alenius, M., and Dickson, B. J. (2005). Molecular, anatomical, and
functional organization of theDrosophilaolfactory system.Curr. Biol. 15,
1535–1547. doi: 10.1016/j.cub.2005.07.034

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E.,
Pecevski, D., et al. (2008). PyNN: a common interface for neuronal
network simulators. Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.
011.2008

Diamond, A., Schmuker, M., Berna, A., Trowell, S., and Nowotny, T. (2014).
Classifying chemical sensor data using GPU-accelerated bio-mimetic neuronal
networks based on the insect olfactory system.BMC Neurosci.15(Suppl. 1):P77.
doi: 10.1186/1471-2202-15-S1-P77

Fidjeland, A. K., and Shanahan, M. P. (2010). “Accelerated simulation of spiking
neural networks using GPUs,” inThe 2010 International Joint Conference on
Neural Networks IEEE(Barcelona), 1–8.

Friedmann, S., Frémaux, N., Schemmel, J., Gerstner, W., and Meier, K.
(2013). Reward-based learning under hardware constraints—usinga RISC
processor embedded in a neuromorphic substrate.Front. Neurosci.7:160. doi:
10.3389/fnins.2013.00160

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.
(2013). Overview of the SpiNNaker system architecture.IEEE Trans. Comput.
62, 2454–2467. doi: 10.1109/TC.2012.142

Galluppi, F., Lagorce, X., Stromatias, E., Pfei�er, M., Plana, L. A.,Furber, S. B., et al.
(2015). A framework for plasticity implementation on the SpiNNaker neural
architecture.Front. Neurosci.8:429. doi: 10.3389/fnins.2014.00429

Hallem, E. A., and Carlson, J. R. (2006). Coding of odors by a receptorrepertoire.
Cell125, 143–160. doi: 10.1016/j.cell.2006.01.050

Frontiers in Neuroscience | www.frontiersin.org 13 January 2016 | Volume 9 | Article 491

Diamond et al. Comparing Neuromorphic Solutions in Action

Hasler, J., and Marr, B. (2013). Finding a roadmap to achieve largeneuromorphic
hardware systems.Front. Neurosci.7:118. doi: 10.3389/fnins.2013.00118

Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory.
Sci. Educ.44, 335.

Heisenberg, M. (2003). Mushroom body memoir: from maps to models.Nat. Rev.
Neurosci.4, 266–275. doi: 10.1038/nrn1074

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Schaik, A. van Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron
circuits.Front. Neurosci.5:73. doi: 10.3389/fnins.2011.00073

Izhikevich, E. (2007). Solving the distal reward problem through linkage
of STDP and dopamine signaling.Cereb. Cortex17, 2443–2452. doi:
10.1093/cercor/bhl152

Kasap, B., and Schmuker, M. (2013). Self-organized lateral inhibition improves
odor classi�cation in an olfaction-inspired network.BMC Neurosci.14(Suppl.
1):O12. doi: 10.1186/1471-2202-14-S1-O12

Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E., et al.
(2008). “SpiNNaker: mapping neural networks onto a massively-parallel chip
multiprocessor,”in Proceedings of the International Joint Conference on Neural
Networks(Hong Kong), 2849–2856.

Martinetz, T., and Schulten, K. (1995). “A `Neural-Gas' Network Learns
Topologies,” inAdvances in Neural Information Processing Systems,Vol. 7, eds
G. Tesauro, D. S. Touretzky, and T. K. Leen (Cambridge, MA: MIT Press),
397–402.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,
Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with
a scalable communication network and interface.Science345, 668–673. doi:
10.1126/science.1254642

Nowotny, T. (2011). Flexible neuronal network simulation framework using code
generation for NVidiaR CUDATM. BMC Neurosci.12(Suppl. 1):P239. doi:
10.1186/1471-2202-12-S1-P239

Nowotny, T., Yavuz, E., Turner, J., and Diamond, A. (2014).GeNN - GPU Enhanced
Neuronal Networks. Github Project Repository.Available online at: https://
github.com/genn-team/genn

Pearce, T. C., Karout, S., Rácz, Z., Capurro, A., Gardner, J. W., and Cole,
M. (2013). Rapid processing of chemosensor transients in a neuromorphic
implementation of the insect macroglomerular complex.Front. Neurosci.7:119.
doi: 10.3389/fnins.2013.00119

Pfeil, T., Potjans, T. C., Schrader, S., Schemmel, J., Diesmann, M., and Meier, K.
(2012). Is a 4-bit synaptic weight resolution enough? - constraints on enabling
spike-timing dependent plasticity in neuromorphic hardware.Front. Neurosci.
6:90. doi: 10.3389/fnins.2012.00090

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M. A, et al. (2013). Six
networks on a universal neuromorphic computing substrate.Front. Neurosci.
7:11. doi: 10.3389/fnins.2013.00011

Porr, B., Kulvicius, T., and Wörgötter, F. (2007). Improved stability and
convergence with three factor learning.Neurocomputing70, 2005–2008. doi:
10.1016/j.neucom.2006.10.137

Rast, A. D., Galluppi, F., Jin, X., and Furber, S. B. (2010). “The leaky integrate-
and-�re neuron: a platform for synaptic model exploration on the SpiNNaker
chip,” in The 2010 International Joint Conference on Neural Networks IEEE
(Barcelona), 1–8.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization.Psychol. Rev.65, 386–408. doi: 10.1037/h0042519

Rowley, A. G. D., Davidson, S., Hopkins, M., Stokes, A. B., Knight, J.,
Davies, S., et al. (2015).PyNN on SpiNNaker Software (2015).004. doi:
10.5281/zenodo.19230

Rulkov, N. F. (2002). Modeling of spiking-bursting neural behavior using two-
dimensional map.Phys. Rev. E65:041922. doi: 10.1103/physreve.65.041922

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.
(2010). “A wafer-scale neuromorphic hardware system for large-scaleneural
modeling,” inProceedings of the 2010 International Symposium on Circuits and
Systems(Paris: IEEE Press), 1947–1950.

Schmuker, M., Pfeil, T., and Nawrot, M. (2014). A neuromorphic network for
generic multivariate data classi�cation.Proc. Natl. Acad. Sci. U.S.A.111, 2081–
2086. doi: 10.1073/pnas.1303053111

Schmuker, M., and Schneider, G. (2007). Processing and classi�cation of chemical
data inspired by insect olfaction.Proc. Natl. Acad. Sci. U.S.A.104, 20285–20289.
doi: 10.1073/pnas.0705683104

Serrano-Gotarredona, T. Linares-Barranco, B. Galluppi, F. Plana, L., and Furber,
S. (2015). “ConvNets experiments on SpiNNaker,” in2015 IEEE International
Symposium on Circuits and Systems(Lisbon), 2405–2408.

Strutz, A., Soelter, J., Baschwitz, A., Farhan, A., Grabe, V., Rybak, J., et al. (2014).
Decoding odor quality and intensity in theDrosophilabrain.Elife3:e04147. doi:
10.7554/eLife.04147

Tanaka, N. K., Endo, K., and Ito, K. (2012). Organization of antennal lobe-
associated neurons in adult Drosophila melanogaster brain.J. Comp. Neurol.
520, 4067–4130. doi: 10.1002/cne.23142

Con�ict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or �nancial relationships that could
be construed as a potential con�ict of interest.

Copyright © 2016 Diamond, Nowotny and Schmuker. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 January 2016 | Volume 9 | Article 491

