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Neuromorphic computing employs models of neuronal circut to solve computing
problems. Neuromorphic hardware systems are now becoming rare widely available
and “neuromorphic algorithms” are being developed. As theyare maturing toward
deployment in general research environments, it becomes iportant to assess and
compare them in the context of the applications they are meainto solve. This should
encompass not just task performance, but also ease of implemntation, speed of
processing, scalability, and power ef ciency. Here, we reprt our practical experience
of implementing a bio-inspired, spiking network for multiariate classi cation on three
different platforms: the hybrid digital/analog Spikey sysm, the digital spike-based
SpiNNaker system, and GeNN, a meta-compiler for parallel GP hardware. We assess
performance using a standard hand-written digit classi céion task. We found that
whilst a different implementation approach was required foeach platform, classi cation
performances remained in line. This suggests that all threémplementations were
able to exercise the model's ability to solve the task rathethan exposing inherent
platform limits, although differences emerged when capaty was approached. With
respect to execution speed and power consumption, we found hat for each platform
a large fraction of the computing time was spent outside of th neuromorphic device,
on the host machine. Time was spent in a range of combination®f preparing the
model, encoding suitable input spiking data, shifting dataand decoding spike-encoded
results. This is also where a large proportion of the total pger was consumed, most
markedly for the SpiNNaker and Spikey systems. We concludehtt the simulation
ef ciency advantage of the assessed specialized hardware ystems is easily lost in
excessive host-device communication, or non-neuronal pds of the computation. These
results emphasize the need to optimize the host-device commnication architecture for
scalability, maximum throughput, and minimum latency. M@&over, our results indicate
that special attention should be paid to minimize host-dege communication when
designing and implementing networks for ef cient neuromagphic computing.
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INTRODUCTION without modi cation on all platforms is naturally restricteto
the smallest common feature set, it may be quite limited amnd f

New massively parallel neuromorphic systems may have the reveal the essential advantages of the various platfoam (
potential to deliver engineering solutions to general conmpgit  potential disadvantages) for the use case at hand.
problems by leveraging, often bio-inspired, neuronal models Here, we use an alternative approach to assessing
(Boahen, 2006; Indiveri et al., 201The ability of animals to neuromorphic platforms: Instead of dening a network
solve complex perceptual and behavioral tasks with low powehat runs equally well on all compared platforms, we ported
requirements suggests that, via a suitable platform, this@r  the concepiof a functional spiking network model for generic
might ultimately prove superior, for some tasks, to classial pattern recognition to each platform, with the aim to exploit
on conventional processors in terms of e ective performanceeach platform's individual advantages. The classi er nekwor
speed or power consumption. However, executing a spikingias based on a spiking model of the insect olfactory system
neuronal simulation with even a fraction of the biologicahkc  (Schmuker and Schneider, 2007; Schmuker et al., )2014
and synaptic connectivity on a conventional computing platfor we tested three platforms: the mixed-signal, accelerated
requires considerable computing resources. This is oftethén  Spikey system Rfeil et al., 2013 the digital SpiNNaker
compounded by demanding additional requirements such asystem Khan et al., 2008; Furber et al., 2)1and the GPU-
real time execution or manageable power consumption and heglased GeNN simulator Nowotny, 2011; Nowotny et al.,
generation flasler and Marr, 2013 2019. To compare the resulting performance, we applied the

To meet the challenge of e cient neuromorphic computing classi er implementation for each platform to the MNIST digit
a number of neuromorphic platforms have been—and continuelassi cation task (http://yann.lecun.com/exdb/mnist§INIST
to be—developed. Some of these systems employ analog neuigsis chosen as a standard, non-trivial classi cation problem,
circuits (seelndiveri et al.,, 2011 for a review), others are which must practically accommodate both a high number of
implemented in FPGAs (e.gRearce et al., 20),3or employ samples (tens of thousands)—thus exercising simulation speed
specialized digital hardware, such as the SpiNNaker systegapabiliies—and high dimensionality (images are gragscal
(Khan et al., 2008; Furber et al., 2).1Moreover, GPU-based 28 28 pixelsD 784 dimensions), thus exercising speed, capacity
simulators have recently become popular for neuromorphieand power requirements. It should be noted that the Spikey
computing because they can provide a considerable speedpfatform supports only a small neuron count (192) compared
over CPU-based simulators on desktop systems, whilst iein to the other platforms which, when con gured for this model,
a manageable power budget and are fully programmableupport emulation of up to 12,000 (SpiNNaker SpiNN-3 board)
using high-level languages-ifljieland and Shanahan, 2010;or 18,000 (GeNN—Titan Black GPU) of neurons in real time
Nowotny et al., 201} Successful use cases for neuromorphi@r faster. Hence, compromises were required regarding the
computing have been reported for diverse applications like Enagmodel scale implemented on Spikey. Nevertheless, since this
recognition, for example on IBM's TrueNorth platfornvierolla  system represents the family of highly accelerated neuroniorph
et al., 201} and on SpiNNaker $errano-Gotarredona et al., systems, running at a #&peedup factor compared to biological
2019, but also for modeling a variety of brain circuitSigil etal., real time, it provides an interesting comparison with regard
20193, and generic multivariate classi catiors¢hmuker et al., to upcoming large-scale accelerated systefh¢mmel et al.,
2019. 201Q. Moreover, it is one of the designated “dissemination

Amid this widening landscape, researchers seeking teystems” (togetherwith SpiNNaker) provided by the EU Flagshi
investigate the behavior of their, often large-scale, sgikiodels initiative “Human Brain Project” to external users who waot t
on a given task face the problem of choosing the approach that é&xperiment with neuromorphic hardware.
best suited to their use-case. Logically, it follows thatéorimed We report on the practical experience of implementation,
approach to platform selection would consider the suitabiify on modi cations that were necessary to provide the same
alternatives in the context of the task in question. Howeitds  functionality, and on unique features of each platform that w
clear that a published speci cation or feature sheet cannthy fu exploited to improve the function of the network. We provide
capture all the pertinent information that is required. Rath@ comparative metrics such as inclusive end-to-end execution
hands-on evaluation of the candidate system is requireda@en speed, the prole of power drawn and the overall energy
a fully informed choice. consumption. Power and energy measurements are particularly

Tools for an unbiased comparison of neuromorphicrelevant in the neuromorphic domain since neuromorphic
approaches are available, most notably the PyNN metglatforms are believed to be capable of delivering large scale
language that has been developed as a part of the FACE§piking models to projects with specic requirements for
project (Davison et al., 20Q8Its goal is to provide a common scalability of performance or low power consumption, such as
programming interface that allows running a single networkrobotics Khan et al., 2008; Hasler and Marr, 2013
design on several platforms. In theory, PyNN thus enables a The remainder of the paper is presented with the following
truly unbiased comparison of neuromorphic backends when a&tructure. In Section Methods, we summarize the conceptual
benchmark network is used that is equally well supported omodel for the bio-inspired classier, briey review the
all considered platforms. However, each platform has uniquarchitecture of the three employed neuromorphic platforms,
features that may be useful in providing a tailored solutionand report on how we transformed the conceptual model into
to the computing problem at hand. Since a network that runsa functional experimental classier, comparing the resulting
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implementations. In Section Results, we present comparativiomeruli to generate a sparser representation with higher
metrics covering classi cation performance, execution gpee contrast between similar stimuli, intended to enable sefpamaf
power consumption, and total energy use. For speed and powalosely related odors. The AL projects its output to higherira
in recognition that model simulation time alone is, by no mea areas where classi cation and multisensory integratioretplace
the whole story we include a benchmarked breakdown of théHeisenberg, 2003; Strutz et al., 2014
various stages of learning and testing using as much gratula  Figure 1A shows a model intended to abstract the described
as was available on each platform. In Section Discussion, wéo-based strategy for any data feature space of interes. Th
discuss and compare the ndings for each metric. We alsorst layer (VRs/RNS) is designed to encode multivariate, teal
discuss the di ering implementations and look to assign thesevalued data samples into a population-based, positive, bounded,
di erences to current software feature sets, current hanswa ring-rate representation. Instead of chemical sensors we empl
capabilities, and fundamental architectural approach di exves.  “virtual” receptors (VRs) which each respond proportional to
their proximity to the current data input, in e ect encoding
the data using cone-shaped radial basis functions with Jarge

METHODS overlapping receptive elds. The centroids of the basis funation
_ _ (the VR points) were placed using a self-organizing process
Classi er Design (the current implementation uses the “neural gas” algorithm)

To compare the neuromorphic platforms we draw upon a(Martinetz and Schulten, 1995to map the feature space
genuine research question, namely the capabilities of argenedescribed by a data set. A population of “receptor neurons” (RN)
multivariate classi er based on a spiking neural network rabd is assigned to each VR. The response of the VR to an input
abstracted from the insect olfactory system, in particulee t determines the net rate of ring for the population of RNs,
antennal lobe (AL). This design has been previously describeghich individually are described by, for example, Poisson or
and investigated in detail Schmuker and Schneider, 2007;Gamma processes. Each population of RNs excites a matching
Diamond et al., 2014; Schmuker et al., 2)%6 we provide here population of “projection neurons” (PNs), which in turn send
only a summary of the conceptual design. their spikes to one population of local inhibitory neurons (LNs)

In insects, broadly tuned receptor responses are passed Bach LN population sends inhibitory projections to all other
olfactory receptor neurons (ORNs) to the AL, where theyPN populations in the second layer, exerting lateral inhilsitio
converge on spherical areas of high synaptic connectivity, threducing correlation between VR channels and sparsening the
so-called “glomeruli” Couto et al., 2005; Hallem and Carlson, representation of the multi-dimensional pattern.

2006; Tanaka et al., 201Each glomerulus collects information ~ PNs send collateral projections into the third layer of
relayed by one class of olfactory receptor and thus represeritgssociation neuron” (AN) populations, which form a winner-
one channel of olfactory information entering the systemisT take-all decision circuit through strong lateral inhiliti,

information is ltered in the AL by lateral inhibition betwen  implemented by a second set of inhibitory local interneuron
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FIGURE 1 | Spiking model design and platform-speci c implementat ions. (A) Conceptual spiking network model for a generic multivariatclassi er design

based on the insect olfactory system.(B) Neuromorphic implementation of the model using PyNN and SpiNaker SpiNN-3 board. See text for functional detail. Note
that spike sources comprise les generated on the host worksation then transferred to the SpiNNaker board(C) Neuromorphic implementation of the model using
GeNN and nVidia “Titan Black” GPU card. See text for functical detail. Note that the lighter arrows are included to implyhe repeated sets of connections applied to
the remaining permutations of population connections.
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groups. Each AN population is assigned to represent one labe#sultant PN-AN weight matrix is extracted. The testingggtae-

or class in the data set (e.g., the digit “5” or the digit “H)ghest  constructs the model with non-plastic synapses, using the xed

activity in an AN population is taken to imply the presence of anPN-AN weights taken from the saved matrix. The simulation is

example of that class at the network input. run again, this time being exposed to the entire test set. Taiabt
PN activity is trained to stimulate the correct output AN a performance score, the spike-time record of the output AN

population by linking them with plastic connections. Connecti  populations is then downloaded and interrogated to determine

strengths are adjusted during exposure to a training data sétthe “winning” (highest spiking) population coincided witté

via a learning rule, such as reinforcement learning or Hahbi correct class for each of the test data inputs.

learning. To maximize capacity, we used the simplest standard neuron
) and synapse models available in sPyNNaker, the leaky ingegrat

Neuromorphic Platforms and re (LIF) neuron model Rast et al., 20)0and exponential

Implementations current-based synapses. The model timestep was set to 1 ms.

The GeNN and Spikey implementations have been described To minimize the number of neuron populations and
in detail previously Piamond et al., 2014; Schmuker et al.,connections that needed to be simulated we abstracted tluzmo
2019, and are only briey reviewed here. The SpiNNakerfurther by replacing the inhibitory interneuron populationsofn
implementation is genuine to this publication and thus desed ~ the biological model with direct inhibitory synapses between

in more detail. PNs. We found that con guring neuron populations e ciently
) . for SpiNNaker requires balancing a number of factors in order
Implementation on SpiNNaker to not severely comprise the model size accommodated on the

The SpiNNaker neuromorphic platformKhan et al., 2008; board.Figure 1B illustrates the con gurations selected for the
Furber et al., 20)3comprises arrays of low-power, parallel RN, PN, and AN layers in order to utilize the board as fully as
custom chips (each containing 18 ARM9 cores) running a digitapossible.

software simulation of neurons and synapses. The processorsFirstly, each core can currently only contribute to one PyNN
are packaged on boards of 4 (SpiNN-3 board) or 48 (SpiNN-Ppopulation, thus numerous small populations (we used 30-
board) processors. The larger board is designed to be extadaneuron clusters per VR and per class) would rapidly use up cores
by connecting further boards, racks or full cabinets. Aslwelwhilst wasting capacity on each. In fact, the maximum number
as low power usage, the system's philosophy focuses on tbhEneurons is accommodated if just a single large population is
core challenge of large brain simulation to maintain spikestipulated and automatically distributed across multiple spre
communication in real time whilst scaling up to biologicabge. each handling up to 256 LIF neurons. This approach was
To this end, a custom hardware and software packet distritouti employed for the RNs, using the connectivity matrix instead
mechanism is incorporated which tolerates packet loss atdrighto demarcate virtual 30-neuron “clusters” representing eeBh
loads for the goal of maintaining real time simulation. leigued  within the main RN population.

that this potential for loss in fact approximates the probabiis Conversely, creating a hardware-managed packet routing
nature of unreliable spike transmission in the brain and thatcon guration for complex connectivity between two large
e ective function can nevertheless be maintained with lasgike  populations is currently taxing for the con guration softwarks
volumes Khan et al., 2008; Furber et al., 201 contrast to  the PN layer connects all-to-all with AN, we therefore edss t
many other simulation platforms, the spike-event focus of theask by dividing the PN layer into separate PyNN populations,
architecture means that axonal delays can be employed widedpach comprising up to 8 30-neuron VR clusters.

and con gured in detail with little cost. A standard SpiNNake Thirdly, neurons with a erent synapses implementing spike-
neural model is primarily con gured through the provision of timing-dependent-plasticity (STDP) require more CPU and
the “sPyNNaker” implementationfowley et al., 20)5of the  memory resources on their parent chip, considerably reducing
Python-based PyNN{avison et al., 20Q08nodeling framework. the number of such neurons accommodated per core3%

For our sPyNNaker implementatiorir{gure 1B) the systemis currently). We therefore employed a separate PyNN population
rst con gured using PyNN (version 0.7.5) in terms of neuron for each AN class cluster (30 neurons). This also reduces the
populations and connectivity with input spike data provided bycomplexity of connectivity from the PN population.
pre-built spike-time sources combined with preset probalbdist
spiking populations (see Section Data Input Formation below)Data Input Formation
The simulation is then set to run for a xed period of The workstation rst generates the required set of N/R points
time after which the record of spikes that have occurred inn feature space by applying the neural gas algorithm to the
recorded populations can be extracted via PyNN functions antraining data set (alone). The dataset is then traversetjoing
interrogated. To perform another run requires the repetitioh a scalar, proximity-based VR response for each input in the set
this complete cycle, including model con guration. (seeSchmuker et al., 20%ér details of the response function).

To match this approach, we use just two extended runs of the As SpiNNaker currently o ers stochastic spiking populations
model, rstly exposing it sequentially to the complete traigin based only on a xed net rate, another approach was required to
dataset, then again to the complete test dataset. Duringitrgj  obtain RN populations with net spiking rates that change with
the model is constructed with plastic synapses enabled betwethe classi er input. We therefore generated, on the workstati
the PN and AN populations. At the end of the training run the a spike source le which stipulated spike times for exactiyxN

Frontiers in Neuroscience | www.frontiersin.org 4 January 2016 | Volume 9 | Article 491


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Diamond et al. Comparing Neuromorphic Solutions in Action

neurons, covering the complete period of exposing the wholaddress the need for both neuronal modeling exibility and
training or test dataset to the classi er. As we move throtigds  simulation performance by drawing upon the computational
dataset, the spiking rate for each of thesg:Meurons is set to power, low-cost, and wide availability o ered by highly pagll
be proportional to the response of its corresponding VR to thegeneral purpose graphics processing units (GP-GPU) running the
current sample. For each sample, the spike rate is maintaimed f€ompute Uni ed Device Architecture (CUDA). GeNN provides
a learning period of 120 ms—a duration determined empiricallya function library for a standard C/CC environment from
as the minimum below which classi er performance was foundwhich neuronal model can be de ned. The meta-complier is
to degrade. then invoked, which builds two optimized CUDA kernels, one
However, this rate coding only dictates the spike rate of &or the neurons' state update per timestep and another for the
single neuron for each VR. In order for the spiking of thesesynapses.' These act together to simulate the neuronal netwo
individual neurons to dictate the probabilistic net spikingte of — a parallel fashion, spawning a thread per neuron (neuron kérnel
30-neuron clusters we combined the spiking of each rate codw per post-synaptic neuron (synapse kernel). The meta-compiler
neuron with that of a random selection of 30 neurons takenalso generates a series of helper functions allowing the oser t
from a single shared 60 neuron pool of Poisson neurons ring atipload input data, step the simulation and extract resultquites
constant average frequency (details of this technique aréiged  events or other variables (such as membrane potentials). The

in the Supplementary Material). meta-compiler furthermore interrogates the deployment &irg
o ) GPU and automatically applies the manufacturer's optimization
Plasticity and Learning rules to the combination of its hardware properties and

On SpiNNaker, the simulation is run for the entire datasetthe model details to select appropriate CUDA deployment
before control returns to the workstation. This preC'UdeE th parameters (thread block Size’ shared memory a||ocatim'), et
use of custom learning rules implemented on the workstationThjs eliminates one of the main constraints of e ective CUDA
such as those employed for both the GeNN and Spike¥oding—the fact that greatly suboptimal performance can asil
platforms. In principle, our host-dependent learning rule abul occur if in-depth knowledge of the CUDA programming model
be approximated with a “three-factor” learning rule, that is,and the properties of the deployment hardware is lacking or
a synaptic learning rule that takes into account pre- anchyt of date. Neuron or synapse models can be user-speci ed
postsynaptic activity plus an external reinforcement sighakt in GeNN using an internal nomenclature. Standard examples
governs the direction of weight plasticitiz(ikevich, 2007; Porr - sych as Hodgkin-Huxley or Izhikevich models are availabke pr
et al., 200y However, sPyNNaker currently does not providerolled. Axonal delays are supported at a population-level but are
an implementation of a three-factor Iearning rule. We thUSexpensive in memory requirements_

replaced the learning rule of the conceptual model with an Our GeNN (version 2.1) implementation is illustrated
implementation that achieves a similar plasticity rule usthg  in Figure 1G and it follows essentially our previous
intrinsic STDP mechanism on the SpiNNaker system paired withimplementation of this designiamond et al., 2014. The
targeted activations of post-synaptic neurons (see @suppi  approach draws upon the ability that, after con guration and
etal., 201 In our approach, we adjusted STDP parameters tgneta-compilation, the simulation can be stepped under control
represent a symmetric STDP curve with positive weight changes§ the workstation whilst the complete state is retained oa th
for any order of spike pairing (see Supplementary Materiafievice. Unlike SpiNNaker, there is no concept of real time, the
for more details). This implements simple Hebbian learningentire simulation is run as fast as possible unless the uses add
(Hebb, 194}, creating associations between PN (VRs) and ANheir own code to throttle it back.

(classes) that are co-active. Before training, PN-AN wisiglere As GeNN kernels are less e cient managing numerous
initialized at zero Welght Then, as each input was presemed, separate popu|ati0n5, the model was con gured using a Sing|e
used a second synchronized spike source to provide a teachifguron population for each laye—RN, PN and AN. Thirty-
signal to externally stimulate concurrent activity in ther®ct  neuron VR and class clusters within these are demarcategjusin
class population of output neurons (sBegure 1B). Employing  appropriate connection matrices. The RN layer uses Poisson
an STDP plasticity curve with positive weight changes of th@eurons whose net ring rate is individually controllabley b
same magnitude for closely paired pre and post-synaptic spikegn uploaded block of rate code values. The PN and AN layers
irrespective of the spike order, (see Supplementary Material f;se lightweight “map” neuronsRulkov, 200p to maximize
details) hence led to strengthening of synapses betweeveactihroughput. The model timestep was set at 0.5ms. As with
PNs and the neurons of the COfreCtOUtpUtC'aSS.The comfmnati SpiNNaker, for e Ciency, |nh|b|tory interneuron popu|a‘[ions

of strong WTA connectivity between AN neuron populations, aare abstracted out by using direct inhibitory synapses.ti&tar
narrow window of positive weight changes in the STDP curvgyeights for the plastic PN-AN synapses are initialized rantyom
and the introduction of a 20 ms “silence” gap between preskenterixed synapse weight values and connection density between
inputs helped to minimize inappropriate weight changes due tgyopulations are detailed ischmuker et al. (2014)

accidental pairings of spikes in PNs and ANs. For each input in the dataset the VR's responses are calculated
) then converted to a set of rate codes, which are uploaded to the
Implementation on GeNN device to drive the RN neurons. The VR radial basis response

The GPU enhanced Neuronal Network (GeNN) meta-compileffunction is detailed inSchmuker et al. (2014)The simulation
(Nowotny, 2011; Nowotny et al.,, 201l4vas developed to is then stepped for a duration of 500 ms (simulated), being the
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minimum exposure time for the plasticity learning rule to reima  while the platform supports STDFP(eil et al., 2012 the very

e ective. At every timestep, the spike events occurring in PNimited number of available spike train inputs would severely

and AN layers are extracted from the device as the ability toonstrain, for example, the ability to generate associgmeing

collate these on the device is not currently a feature of GeNNby injecting concurrent teaching signals to the network.

This approach allowed the implementation of a perceptron-

based rule Rosenblatt, 199&or supervised learning described Hardware

previously Echmuker et al., 20)4and which is executed on For SpiNNaker, we used a “SpiNN-3” board that hosted

the host machine. Note that while transferring large nunsbef 4 SpiNNaker chips with 18 ARM9 cores each. The board

spikes between host and device incurs substantial demamds f@as connected directly to a workstation (8-core, 3.7 Ghz

communication bandwidth, this hardly presents a performancédntel Pentium Xeon, 32GB RAM) via 100 Mbps Ethernet.

bottleneck (at least not for the data volume in this applicajio The SpiNNaker board was provided by Steve Furber's group,

due to the very e cient PCl-express interconnect between CPWniversity of Manchester, United Kingdom. When using the

and GPU. The learning rule is applied at the end of theconnectivity pro le of our classi er application, this board cloli

presentation of each input pattern and a revised PN-AN weighaccommodate up to 10* neurons and 2 10’ synapses, running

matrix is uploaded to the GPU, overwriting the old one. inreal time. The limiting factor was the number of cores #aalie.
This cycle is repeated for the complete training dataseiVe used the sPyNNaker software base supplied by Manchester

Without reconstructing the model, but with the learning mul (Rowley et al., 20)5release “Little_Rascal.”

and weight update disabled, the test dataset is now presented.For GeNN we used the same workstation with a nVidia

As before, spikes are collected per timestep. For each input tigan Black GPU card (2880 cores, 6GB memory). This is

maximally spiking AN class cluster is ascertained and contpareclassi ed as a high end consumer/gaming product, connected

to the correct class. internally via PCI-Express bus. With this card, up t@ 10*
) _ neurons and 4 10’ synapses running at 3 real time could
Implementation on Spikey be accommodated when using the connectivity prole of our

The Spikey platform is a neuromorphic chip employing a mixed-application. The limiting factor was the amount of on-card gibb
signal approach combining analog neuron circuits with digitamemory available. Note that a second small video card was used
event routing. A detailed description of its architecturedan to drive the workstation's main display, freeing up the mainlGP
capabilities is available iRfeil et al. (2013)In the version that We used nVidia CUDA 7.0 and the GeNN 2.1 software release
we used it supports emulation of up to 192 spiking neuronssupplied by University of SusseX¢wotny et al., 2014
operating at a 1®speedup factor, that is, 1s biological time is The performance measurements on Spikey were acquired
executed in only 0.1 ms real time. Connectivity is uncoriegd, via remote access to a Spikey system that was connected
in that any of the 192 neurons can be connected to any other. £0 a host workstation via USB in Karlheinz Meier's group
total of 256 input driver lines are available that can sertleegias at Heidelberg University, Germany. Power measurements
spike inputs or to route spike events from internal neurons. were acquired on a second system provided by Karlheinz
The Spikey PyNN-based implementation has been describeédeier's group that was connected to the same workstation
in detail in Schmuker et al. (2014)including the use of that also hosted SpiNNaker and the GPU. The latest
inhibitory interneuron populations as per the conceptual modelsoftware version that we used was the spikey-demo package.
(Figure 1A). Important points are that, as with GeNN, the (github.com/electronicvisions/spikey_demo, commit €232
(same) plasticity rule is applied in training by workstationdeo
acting between sample presentations. Spikes are downloadé&¥wer Measurements
interrogated, and a full revised weight matrix uploaded te th For GeNN/GPU power measurement, mains electricity was
device. supplied via a power monitor with resolution of 0.1 W to the
It is worth noting that Spikey was developed as a researamain workstation running Ubuntu Linux with all non-esseati
platform a decade ago, and hence lacks some of the featutes tlapplications closed. To obtain an average no-load baseline
make current neuromorphic systems such an attractive choicemeasurement fasg we removed the GPU card and took the
for neuromorphic computing. The most drastic limitation lies  power/wattage reading every 30s for 2min. This process was
the fact that the version we used supported only 192 neuronshen repeated with the GPU installed to obtain a no-load “idle
Hence, although the general concept of the classi er archite  power measurement for the GPU board, using the “nvidia-
is identical to the one implemented on the other platforms,smi” diagnostic utility set to retrieve and log the “poweadr”’
compromises had to be made in the implementation. Firstlyparameter. During the classi er training and test, the sartikity
neuron counts in all populations are much smaller; for examplewas used to log the GPU powegR drawn every second while
we used only 6 RNs, 7 PNs, and 8 ANs per population. Tehe power meter reading Nitter was used to infer the CPU
achieve a robust population code with such low neuron countpower drawn during use, based on the simple formu¢g® D
we employed a Gamma process of order 5 to generate input spiRyeter  Popu  Psase
trains on the workstation, which produces more regular spike For SpiNNaker and Spikey, the external boards were also used
trains and a lower variability in spike count than the Poissorwith this same workstation, and with the GPU card removed.
processes used in the other implementations (Seémuker As before, CPU power drawn during classi er training and test
et al., 2014for a detailed discussion of this issue). Similarlywas measured using the meter. To obtain measurements for the
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SpiNNaker hardware boards this was repeated with the board®rrespondingly raises both the size of the input data to the

external PSU supplied via the meter. For Spikey, a powered USEassi er and also the neuron count (rises linearly) and ps&

hub was employed similarly. count (rises with a square law). It has been shown previously
that performance scales favorably when increasing the numbe
of VRs, exhibiting convergence but not over tting for largdrV

RESULTS counts Schmuker and Schneider, 200Dur results con rm
this observation (see below). Hence, for best classi catiba

Platform Comparison and Benchmarking network can simply be scaled up to the maximum number of VRs

Strategy that are supported on the platform at hand, without running the

Each of the classier implementations was developed]i3k of over tting due to excessive feature counts. Whilalswg
independently on each platform. It should be emphasized}'pthe classi er does come with some cost in runtime and energy
that our approach was to not use the smallest common featur@nsumption, as we will see below, it is much less expensive
set supported by all three platforms. Rather, we pursued thor neuromorphic hardware than it is on classical CPU based
more informative approach of addressing a realistic researchystems. Therefore, the scaling properties of the networkemak
problem via the particular feature set of each platform. Thusit @n attractive approach for massively parallel, neuromorphic
while all networks implement the same model, di erences exisByStems.
in their detailed operation. In consequence, parameteioreti
for best classi er performance di er, as presentedimble 1 The  Performance in the Classi cation Task
SpiNNaker and GeNN implementations were developed andlVe assessed how the model's performance scales when varying
tuned using only the training part of the MNIST data set andthe number of digits to be discriminated and the number of VRs
employing strati ed 10-fold cross validation against alldifits.  that are used to encode the input space. In order to provide
The test set was held unseen up to the actual benchmarkirgy fair comparison for classi cation performance, we provided
comparison. The Spikey implementation was initially develope@ach implementation with the same training and test data,
as described previoushs¢hmuker et al., 20)4Due to the low presented in the same order. Datasets for the following ve
neuron count, it was only trained and tested on training aedtt combinations of digits were generated as follows; [5,7],13,
sets containing each 1000 examples of the two digits 5and 7. [5,7,1,9], [5,7,1,9,3], and all 10 digits [0-9]. To gererabdth

For benchmarking we explored two primary dimensions alongraining and test datasets, the respective MNIST dataset was
which we varied the model parameters, the number of classes thtraversed without shu ing or altering the order. Each allalle
the network is to learn and the number of virtual receptors (YRs digit encountered was added to the dataset up to a maximum of
used to encode the data. 1000 examples of each.

The number of classes (MNIST digits) requiring For each digit combination, the number of VRs was varied
di erentiation directly relates to the di culty of the classation ~ between 10 and 200. The lower limit was set to the number of
task. But increasing the number of classes also dictatéghba classes (digits). Coincidentally, 10 is also the maximum &t
classi er must receive and manage a correspondingly largehat can be accommodated in Spikey without severe performance
amount of input data, given the same number of examples pdoss. The upper limit of 200 was selected because the resultant
class, and accordingly needs a longer period of time for ingin network size was the largest we were able to accommodateson th
and testing. More output spike data must also be extracte@4 core SpiNNaker “SpiNN-3" board.
and processed for each input to determine the “winning” class The respective training datasets were used to generate the
(classi cation decision). Finally, raising the AN outputuster requisite set of VR points by a self-organized mapping of the
count increases both the neuron count and, signi cantlye th input space, using the “neural gas” algorithridlgrtinetz and
synapse count from the PN layer and the WTA connectivitySchulten, 1995 The same VR set was employed across the three
within the AN layer. hardware platforms to eliminate a possible source of di erence

The number of VR points assigned by the self-organizingrhe presentation time of each sample varied by implementation
neural gas mapping process determines the resolution of thi@seeTable 1) as both synaptic plasticity (learning) and settling
classi er within the input space. Within the feature spacetime of the output activity are a ected by the presentation time
classes clustered in close proximity or overlapping will be bettebut this varies considerably between platforms. For SpiNNake
di erentiated as the number of VRs is increased. However, thiand GeNN this time was set empirically to the shortest period

TABLE 1 | Major parameterizations of models used for each platfor m.

Parameter GeNN SpiNNaker Spikey

Population size (neurons) 30 30 6 (RN,PN) 8 (AN)
Presentation time per sample for learning 500 ms 120ms 1000 ms

Inhibitory interneurons modeled No No Yes

Plasticity rule Reinforcement (off platform) Hebbian assition via STDP (on platform) Reinforcement (off platfojm
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before classifying performance was adversely a ected. Fke$pi neuron count limits the number of VRs that can be used, as
a nominal 1 simulated second was employed as real time spewtll as the population sizes. The smaller the size of a neuronal
in simulation is almost negligible on this platform. After a population, the lower is its ability to encode small di erences
single run of the entire training set, plasticity was disdblgeee in input strength via a population ring rate. This limitationsi
implementation details) before presenting the test set.lloedes, exposed by the failure of th8pikeynetwork to separate three
the classi er's verdict was obtained by extracting a coursjpkes  digits.
occurring in the competing AN output populations during the  The classi cation performance of the GeNN and
presentation period of each test set sample. The winning claSpiNNaker implementations appear comparable, suggesting
is assigned from the population with the highest spike countthat classi cation performance is likely determined by the
Representative spike raster plots showing Spikey classifyasj) a tunderlying classi cation model rather than by the details o
sample digit (L0VRs, 2 classes) and SpiNNaker classifying 8% implementations and their optimization. To illustrate
examples of the full 10 digit MNIST using 50 VRs are shown irthe similarity of performance in the GeNN and SpiNNaker
Figure 2 implementations we plotted the two against each other in
The classi cation score was measured as the percentag@ure 3D. All points are close to the diagonal indicating
correctly classi ed from a single presentation of the tests¢a. near-equivalent performance for GeNN and SpiNNaker
The classi cation scores for the three platforms coveringhea implementations.
tested combination of digits and number of VRs are plotted in
Figures 3A—Crespectively. Two observations can be made from
these results: (1) classi cation gets harder as more digies Speed Benchmarking
added to the task, and (2) classi cation performance incesas We next assessed the execution speed on the three platforms.
as the number of VRs is increased. The latter observation poinWWe measured the total time taken for a run of the training set,
out the utility of large-scale neuromorphic systems: As moréhen measured again for the test set. The dataset used was the
neurons become available to the algorithm, we can use mosame as for the classi cation test (see above) but restritie
VRs to encode input space, ultimately providing a very highthe two digit {5,7}, 10 VRs selection in order to include Spikey
dimensional representation. The massively parallel archite  in the comparison. Scalability of performance was compared for
of the lateral inhibition step Iters out redundancyK@sap and the GeNN and SpiNNaker platforms by repeating the test using
Schmuker, 2013; Schmuker et al., 20Without any penalty in 100 VRs and 200 VRs.
run time (at least on SpiNNaker or Spikey), and with a positive In order to understand where the time is used on each
e ect on accuracy. platform and how this prole may change with scaling, the
The Spikey system performed slightly better than par for theotal time was segmented (where separate measurement was
smallest problem (digits 5 and 7), being tuned for this speci gpossible) into time spent on each of the following stages: model
smaller datasetgchmuker et al., 20)4However, performance con guring/construction, input data uploading to neuromorgh
dropped to chance levels beyond two digits as a consequengkatform, pure model simulation time, weight updating, spikes
of the very low neuron count available on this system. Thelownload/extraction. The comparative performance resutis a
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FIGURE 2 | Representative spike raster plots of classi cati on of a test set at two levels of detail. (A)  Detail of spikes occurring during 1's presentation of a
single test digit to the trained Spikey classi er using 10 viual receptors. The banding discriminates individual pogations of 6 or 8 neurons. The colors distinguish the
main layers (bottom to top): RN layer (0-59), PN and laterahibitory LN neurons (60-129 and 130-189), AN output neuranand paired lateral inhibitory LN neurons
(190-205 and 206—222). High activity in the upper AN popul&n determines the classi cation decision.(B) The trained SpiNNaker classi er using 50 VRs and all 10
digits (0-9). Spiking activity occurring during consecute 120 ms presentations of 50 MNIST test digits ordered cyclically 0-9. The colors distingsh the main layers
(bottom to top): RN layer (50 clusters of 30 neurons), PN lay€50 clusters of 30 neurons) and at the top, AN output neurongl0 clusters of 30 neurons). A perfectly
regular “sawtooth” pattern of activity in the output wouldrply 100% classi cation. A similar representative raster pk from GeNN is available as Supplementary
Material.
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FIGURE 3 | Classi er performance on each platform for combination s of digit selections and number of virtual receptors (VRs). Performance is plotted
as percentage correctly classi ed test samples(A—C). (D) shows this performance comparatively between SpiNNaker athGeNN across all experiments. Note that
the performance is similar across platforms for networks aéqual size in spite of the implementation differences. Notthat the lines connecting markers are included
simply as a visual guide to associate results for the same nuber of VRs.

FIGURE 4 | Time taken to perform training and test phases broken down by primary tasks speci ¢ to each platform. Tasks that required less time than
could be displayed are not shown explicitly (they are groupkinto “other”), e.g., the spiking simulation on Spikey. Tadss that accomplish roughly the same job on
different platforms are shown in matching colors, whereasame tasks are speci c to each of the platforms and are shown in dstinct colors. Platforms shown:(A)
GeNN with CPU only,(B) GeNN using GPU,(C) SpiNNaker Spinn-3,(D) Spikey.

the makeup of the time expended for each platform are shown irelatively few spikes need to be retrieved every time the iriede
Figure 4. stepped.

Without the requirement to communicate with a  As expected, with the simulation pegged to real time, the
neuromorphic device, activity of the CPU-only implementation SpiNNaker implementation's pro leKigure 4C) is dominated at
(Figure 4A) is almost entirely concerned with model simulation small model sizes by time spent in simulation and SpiNNaker is
and generating input data (VR responses and rate-coding) fosutperformed by the other platforms in this case. Howeverhwit
the model from the MNIST dataset. Note that simulation timethe largest model of 200 VRs the ability to continue to deliver
increases quadratically with model size, data generatioly o both simulation and plasticity in real time begins to show in
linearly. the pro le while the CPU-only implementation begins to slow

Figure 4B shows that the GeNN GPU implementation down considerably. However, it is also clear that it would take a
shifts the load of the simulation to the device but addsmuch larger model in the order of 600—800 VRs for SpiNNaker
communication overheads, most signi cantly the time taken simulation time alone to outperform any of the other platforms
extract spiking data from the device memory. Even with theHowever, the plot also shows that supporting functionality of
largest model tested, this comprised a larger time componemhodel setup and data uploading currently also scales with inode
than the simulation itself, yet the time used remains almossize, raising a potential issue for this platform as a substiat
constant with model size, suggesting that it lies well withi very large model simulations.
the bandwidth limits of the interface and that the time is Scaling information for Spikey was not available as the
primarily used to marshal the call. This is unsurprising asnumber of neurons is too low to implement a larger classi er.
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Nevertheless, with a small model simulated &t 10real time, translates to total energy expended for the classi er builhgsi
high performance was expected, however the end-to-end asalysiach platform. Again, each is segmented into energy consumed
(Figure 4D) shows this to be the case for the testing stage onlyoy the neuromorphic platform and by the attached interacting
Studying the detailed constituents making up the PyNN run ofworkstation.

the model (se&chmuker et al., 2018upplementary Material) From the plots, a similar message to the speed benchmarking
suggests strongly that the workstation hosting the plastinithe ~ emerges here, namely that a large proportion of power and energy
training stage is the root cause, speci cally, the time to upda is consumed by extended use of the workstation, in particular
the connectivity weights after every sample and the subsequeior what might be considered “infrastructure tasks” such as
recon guration. device-workstation interactions.

Comparing the 4 implementations for a smaller model sized These interactions are not required by the CPU-only
for just 10 VRs, the CPU-only implementation is a clear winnerimplementation, therefore energy consumption is relatively |
over the neuromorphic platforms. This suggests three factorsn a small model (due to the short time required) but very high
are at play. Firstly, the lightweight neuron models selected f for a large model, because the simulation computation grows
GeNN and SpiNNaker do not greatly tax the CPU at lowsuper-linearly with the neuron count.
volume, compared to using relatively more computationally For SpiNNaker, where learning or testing is rst set up in full
expensive models, such as the Hodgkin-Huxley (HH) mode&and then runs autonomously at just 4 W without requiring the
(Nowotny, 201). With such lightweight models the overhead workstation, the result is a net low consumption of both power
of marshaling calls to a device and managing data movemen#nd energy, despite the longer simulation times. Howeves, th
become signi cant factors. Secondly, a real-time simatati workstation time taken to move data to and from the board
architecture such as SpiNNaker will also only see bene ts faresults in higher CPU energy that dominates the total usage.
larger models, where other platforms cease to manage real-ti ~ For Spikey, the consumption of the board is similarly very low,
or faster simulations. In our case, the CPU alone could sateul and the setup is relatively short but the continued invohesn
faster than real-time until the problem scale had passed 100 VRsf the CPU for spike and weight data and plasticity rules again
Thirdly, the role of a workstation controlling and interfely  dominates the total energy usage.
with neuromorphic hardware, (for example in constructing and  For the GPU/GeNN implementation, the workstation is also
compiling models, preparing compatible data structures foicontinually involved in the plasticity rule, weight adjustnie
transfer and extracting data etc.) generates a large ogdiflgove  and particularly communicating with, and shuttling data toda
the task of pure simulation. When a simulation model is smalffrom, the GPU device. Interestingly, however, the CPU power
enough these overheads become a dominating factor. consumption is twice as high for GeNN than for Spikey, even

When the model size is increased to 200VRs a di erenthough the CPU performs essentially the same task (i.e.,iogrry
picture begins to emerge. As expected, the serial simulatiaout the learning rule) in both implementations. This di ereac
time of the CPU-only implementation increased strongly, inmay be due to the fact that in GeNN, the CPU exchanges data
particular as the number of synapses increases quadraticidily with the GPU at every time-step during the simulation while
the number of neurons in the all-to-all PN-AN connectivity. on Spikey an interaction takes place only after the presemtatio
By contrast, the parallel-executed simulation time of theeot of a digit sample, leading to less communication. Furthermore
platforms has increased only little. However, we note thathe training phase on Spikey takes almost twice as long as on
other workstation tasks still scale with the model and, withGeNN, hence the same task is spread over a longer time interval
GeNN and particularly SpiNNaker, these now comprise an evewhich implies a lower power consumption if the overall energy
larger component of overall time than for the smaller model.consumption is comparable. Other di erences between GeNN
The conclusion for these platforms must be that, while theand Spikey that may play a role are di erent interconnects (PCI
challenge of scaling the actual simulation has been adelldesa  Express vs. USB) and di erent code bases (compiled code on
considerable extent, the scaling of associated tasksmertabe  GeNN vs. interpreted Python code for Spikey).

addressed better. We note that in spite of the higher CPU power draw in GeNN,
_ the even higher power draw of the GPU compared to Spikey or
Power and Energy Consumption SpiNNaker hardware (some 80 W compared to 4-6 W) means

We next assessed the power consumption of the three platforntat the total power and energy usage in GeNN is less dominated
during the benchmark task. We used the two digit [5,7], 10 VRoy the CPU as in the other cases.
task, the same as for the speed benchmark.

Figure 5 shows how the power drawn varies over the cours|SCUSSION
of the training and testing cycles, for GeNNrigure 5A),
SpiNNaker Figure 50), and Spikey Figure 5D). We included The work described here resulted from the aim of solving
the power drawn by the respective computing platforms (i.e.a general pattern recognition task on diverse hardware and
the SpiNNaker board or the GPU) as well as the considerabkoftware o erings in the form they were available to us at this
power consumed by the attached workstation during essentigime. All comparisons made between the three implementations
non-simulation associated tasks, such as uploading the modand platforms must therefore be interpreted in this contekgtt
and data, and collecting and analyzing spike couRigure 5B  is complementary to isolated rote-task benchmarking statsti
indicates how the power variation with timd-igures 5A,C,D)  that typically do not include non-essential but important dié$
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FIGURE 5 | Electrical power drawn and energy used by GeNN, Spi  NNaker and Spikey across training and testing when classifyi ng 2 digits with
10VRs. (A,C,D) power consumption across the course of training and testingof a 10 VR classi er for 2 MNIST digits (5,7), 1000 samples per dit. The graphs
compare the implementations on the GeNN(A), SpiNNaker (C), and Spikey (D) platforms. We report the power drawn by the GPU card, the SpiNaker, and
Spikey boards, as well as the power drawn simultaneously byhe attached workstation. The latter is reported as the powembove the baseline (51 W) drawn by
the workstation without GPU card and performing no task. SpINaker and Spikey power consumption was measured directly ith the inline meter while GPU
power draw was obtained via the reporting of the “nvidia-snfi utility (see main text).(B) Energy usage for a 10VR and a 200 VR classi er, applied to 2 MNIST
digits (5,7), 1000 samples per digit. The readings approxiate the total energy (above baseline) used during the traimg and testing by multiplying the power
usage in each stage of the process by its duration. The readgs are repeated for the GeNN GPU, SpiNNaker and Spikey (10 VRnly) platforms as well as for
GeNN when set to use the workstation CPU alone.

of support code and implementation specics related to theaddressed by the groups developing the interfaces to SpiNNaker
di erent constraints of di erent platforms. We would like to and Spikey (i.e., Spikey's successor systems). Togethes, thes
suggest that studies such as the present one help to draweasures will act to minimize the required role for the attedh
out and pinpoint where critical improvements may lie for a workstation and reduce the performance penalty for host-cevi
neuromorphic platform to become a strong candidate for uptakecommunication.

in future research projects and applications. For example, our .

study demonstrates that all tested platforms have greattmerP€rformance of the Neural Classi er

in accelerating spiking network emulations, but are at timesDeSign as a Benchmark

let down by the overheads of code running on the attachedll three implementations delivered a similar classi cation
workstation. This issue can be addressed on several l&@®els: performance with scores comparable to a standard neural
the network level, emphasis should be given to minimize th@etwork whilst trailing the performance of leading Al machin
communication between the device and the host machine, e.gearning approaches such as support vector machines and
by exploiting on-chip mechanisms for learning as much asleep neural networks (see http://yann.lecun.com/exdbatini
possible. Similarly, on the hardware side, future genenatiof  for wide-ranging comparison of MNIST classi cation scores).
neuromorphic systems will likely support faster interconrsect As expected, performance scales with the number of VRs
that alleviate the communication bottleneck. There isljkalso employed and falls with the number of classes included. The
potential in the control software to optimize communication similarity of this pro le, particularly illustrated betwee@eNN
throughput and/or latency, and in fact this issue is currgntl and SpiNNaker (where the majority of data was collected)

Frontiers in Neuroscience | www.frontiersin.org 11 January 2016 | Volume 9 | Article 491



Diamond et al. Comparing Neuromorphic Solutions in Action

suggests that the diverse implementations have succeededlmplementation Comparison—Constraints

reaching the limits of the classifying ability of the undéng or Advantages from Architecture,
model. This robustness against variations in implementatind Hardware. and Software

Zubstk:ate lfl:ggests th‘"?‘t the model rEgy T:otrfnprlse an etef;'“ﬁ]e relatively much smaller capacity of the Spikey chip haslglea
enchmark for comparing neuromorphic piatiorms agains eplayed a major role in guiding the model implementation on it
other relevant criteria discussed, namely; ease of impléatien,

d of . labilit d . and eventually constraining its observed classifying peréorce
Speed ot processing, scaiability, and power € ciency. in our benchmark. The small capacity of Spikey is currently

being addressed by new hardware desigishémmel et al.,

Optimization Targets . 2010. However, even though this is an obvious concern for
Our work revealed that there are some obvious targets fah&Ir o cyrrently available system it is in our opinion not helpful
development and optimization in the di erent platforms. to focus on momentary strengths and weaknesses of software

In GeNN, the high power draw of both, the CPU and 5ng hardware aspects of the tested system in order to pick
particularly the GPU suggest that minimizing the time in 5 «pest platform. Recall that the Spikey platform represents
simulation is important to reducing energy consumption. The,e class of accelerated hardware systems that operateakever
communication overheads, in particular the total time used t ;.qers of magnitude faster than real-time, aiming at pronii
extract spiking data on every timestep from the device memory,,cia| speedup to long-running simulations of neuronaleyss.
suggests that a mechanism, similar to SpiNNaker, to invoke §ogyare interfaces can be improved and hardware designs can
longer run on the device and pool spikes generated until thge modied and scaled up. Instead of entering a discussion of
end would prove bene cial, at least for model sizes on th§ynich approach is best overall, we would like to consider the
order of those tested here. The high bandW|d_th communigatio onstraints or advantages of each platform in addressingasne
o ered by the PCle bus means that transferring large amount§e main ndings, that a minimized role for the workstation is
of data more infrequently is considerably more e cient that potentially very advantageous. This focuses the discussitineo

transferring small amounts constantly. If spike data watateti  |o\e| of communication, data exchange and plasticity omlizay
on the card and transfers were limited to once at the end O'ﬁeacrequired for each model implementation.

500 ms (simulated time) input presentation this would stitizi@

the ability to enact computation on the host such as bespoke

plasticity rules. This argument is supported by the evidencata Input . .

from the time breakdown showing that the periodic upload ofAS GPU hardware o ers high bandwidth and large memory

the updated weight data comprises only a fraction of the totaP-device, data input for GeNN is best implemented in large
time. chunks, avoiding the potential bottleneck, which appears when

For SpiNNaker our results suggest that, in pure simulatiof€Peatedly passing small items of data across a bus. GeNN's

performance, SpiNNaker is strong for very large neurap?‘ta input functions—combipgd with the ability to specify a
simulations, which is what it was designed for. However, Wémgle rate code to govern spiking r_ates of a whole popul_a_tlon—
also observed that workstation and communication funcéibiy tak_e ad_vantage of th|_s con guration, as does the ability to
such as model setup and data-uploading scaled far less wuell. oswitch input by passing only a memory o set value. Full
results make a strong case for optimization e orts that tatet 1ardware memory state retention means that the stepwise
communication between host and device. Besides optimizatio €ONtrol of the model allows new data to be uploaded whilst in
on the software side that increase throughput, also incnegtsie simulation. ) _ o _
bandwidth of the Ethernet link on the SpiNNaker board may be a For SpiNNaker and Sleey, data input is via PyNN sp|ke
viable option (e.g., upgrading it to Gigabit Ethernet). It sitbbe ~ SOUICes and needs to be. stlpullated.per neuron for the gntlrety
noted that the large SpiNNaker boards equipped with 48 x18-cor‘éf the intended model S|mulat_|on time. Add_ltlon of variable
chips (“SpiNN-5") do support a high-speed AER-based interfacé"f‘te'cc’ded stochastic popul_atlons wpuld a_ld models of the
that is available through standard SATA connectors. Howevekind attempted here. For SpiNNaker in particular, the cost of
using these fast interfaces requires special hardware ghaati  €Puilding a model means that the ability to retain stateywihg
as generally available as Ethernet. a S|rr_1ulat|on to be pause_d and alterations made,_W|II prove of
Our work with Spikey suggests that the time to update theonsiderable value when it becomes generally available.
connectivity weights after every sample and the subsequent
recon guration were signi cant performance factors in Running a Simulation
the implementation. Potentially, a large improvement inThe step-wise approach and persistent state of GeNN o ers
performance could result from targeting this update processnaximum exibility to change inputs or implement additional
in the software interface. Moreover, in future implementaso computation or rules o -device. However, the overhead of time
one could aim at minimizing host-device communication byand power of marshaling many thousand repeated calls between
employing the on-chip STDP capabilities in a similar mannerthe workstation and the device is considerable compared to the
as in the SpiNNaker implementation, tackling the bandwidthother platforms, which run continuously without interrupticior
problem at the network design level instead of justincregtiire  the stipulated period. The addition of a similar “extended 'tun
channel throughput. function to GeNN would be of value.
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Implementing Plasticity and Learning Conclusion
All three platforms o er internal spike timing plasticity. This In conclusion, building on earlier work on each of the platfam
enables simple learning at maximum speed and e ciencywe have demonstrated in this work that all three platforms
as the workstation is not involved, yet it proved dicult can be used to implement a bio-inspired classi er to solve a
to achieve more complex learning on-platform without general pattern recognition problem. All three implementato
the introduction of somewhat convoluted teaching signalwhen compared at matching size, o er comparable classi cation
activity (SpiNNaker). Bespoke learning rules implementegerformance. Moreover, the two platforms supporting larger
o -platform require workstation time and power and introduce neuron counts exhibit very similar scaling behavior when
the overhead of transmitting updated weight data (GeNNincreasing network size. This observation suggests that th
and Spikey). Therefore, the addition, as standard, to thé&unctional behavior of the network was hardly a ected by the
three platforms of extended biologically-based learninghsu considerably di erent routes we chose in the platform-speci c
as reinforcement learning via a form of “dopamine” rewardimplementation. On ease of use, speed and energy consumption,
signal and time delayed eligibility trace functionality wid however, the three implementations dier considerably and
potentially greatly widen the opportunities for e cient in non-trivial ways. For small models a CPU-only solution
simulation of learning networks. Steps in this directionappears to be best while large models are better on GeNN
are already being undertaken on the next generation obr SpiNNaker. However, while speed and energy consumption
accelerated large-scale hardware systefgdmann et al., scale well for the actual simulation on the neuromorphic
2013. platforms, they scale much less favorably for supporting code
run on the connected workstation. As neuromorphic technglog
Extracting Spike Data matures toward gengral_computing ap_plications in research_and
. . . . . technology, emphasis will have to be given to address thesesiss
SpiNNaker and Spikey both implement PyNN functionality to. . )
record spikes and collect them at the end of the simulation"” order to bring out the neuromorphic advantage to the fulles
L . . . . extent.
This is an e cient approach, except where spike data is reqwre&
during the run, such as for a custom learning rule run outside
the platform. However, while SpiNNaker does support iveACKNOWLEDGMENTS

spike monitoring facilities, for a custom learning rule thiat . )
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