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enzymes, and this has led to these activities being modeled sa catalytic reaction
networks. Although deterministic ordinary differential guations of concentrations (rate
equations) have been widely used for modeling purposes in & eld of systems biology,
it has been pointed out that these catalytic reaction netwds may behave in a way
that is qualitatively different from such deterministic mresentation when the number
of molecules for certain chemical species in the system is sall. Apart from this,
representing these phenomena by simple binary (on/off) sysms that omit the quantities
would also not be feasible. As recent experiments have revéed the existence of rare
chemical species in cells, the importance of being able to mael potential small-number
phenomena is being recognized. However, most preceding stdies were based on
numerical simulations, and theoretical frameworks to angte these phenomena have
not been suf ciently developed. Motivated by the small-nurber issue, this work aimed
to develop an analytical framework for the chemical master quation describing the
distributional behavior of catalytic reaction networks. & simplicity, we considered
networks consisting of two-body catalytic reactions. We usd the probability generating
function method to obtain the steady-state solutions of thechemical master equation
without specifying the parameters. We obtained the time evation equations of the
rst- and second-order moments of concentrations, and the geady-state analytical
solution of the chemical master equation under certain conitions. These results led to
the rank conservation law, the connecting state to the winnetakes-all state, and analysis
of 2-moleculesM-species systems. A possible interpretation of the theorétal conclusion
for actual biochemical pathways is also discussed.

, chemical master equations, probability generating
dynamics
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1. INTRODUCTION than developing numerical schemes to solve it as was preyiousl
done Kim and Lee, 2012 Furthermore, we try to theoretically
Biochemical systems consist of a variety of chemicalsjdimy  describe the long-term behavior of the system by only using
proteins, nucleic acids, and also small metabolites. Entigma jnformation about relationships between elements, thereby
reactions, which play an important role in catalyzing manyimplying that we aim to produce results that could be applied to
biological reactions, are particularly important to maintehe  studies in any eld.
structure and aCtiVity of these SyStemS. Hence, biochdmica Our framework provides good operabi”ty because our
systems are often modeled as catalytic reaction networks. formulas have a specic and satisfyingly simple form, and
These networks are typically analyzed by using deterministienables us to obtain the steady state for a wide class of bataly
ordinary di erential equations with respect to concentrai® reaction networks because our framework never species any
of chemical species, so-called reaction rate equations [iapa parameters for the networks. We use a probability generating
di erential equations (reaction-di usion equations) for spally  function approach. The probability generating function apprioac
distributed, non-uniform cases]; i.e., the concentraoare to stochastic chemical kinetics itself has been proposed a long
represented by continuous variables. However, because eafthe ago (e.g.Krieger and Gans, 1960; McQuarrie, 1} 6after
chemical actually consists of molecules, the concentratib which it spread to biological stochastic kinetics studieg.(e.
each species should be a discrete variable. The e ects of susfochastic gene expressidhattai and van Oudenaarden, 2001;
discreteness as well as nite-size uctuations in stocitast Shahrezaei and Swain, 200hus, physicists as well as chemists
reactions become non-negligible if the number of molecihes and mathematical biologists are familiar with the approach.
the system is small. In theory, situations such as theseesultr Our main contributions in this paper relate to the e cient
in phenomena that cannot be described by rate equations (ks wasage of the probability generating function (asGadgil et al.,
as those equations with additional noiseggashi and Kaneko, 2005regarding rst-order reaction networks). Therefore, our
2001, 2007; Awazu and Kaneko, 2007, 2009 approach for obtaining the steady state is understandabigeas
In contrast, gene regulations are often modeled as than that followed in a previous studyA(derson et al., 20)0
combination of binary (on/o ) switches, typically represext while, as a consequence, our results are consistent with that
by Boolean network models<Gu man, 1969. However, this study (see Theorem 4.1 and 4.2 inderson et al., 2030
approach does not consider the quantities of chemicals sudfurthermore, since our method uses a procedure based on
as DNA, mRNA, and proteins. Even for the seemingly digitaknalytical calculations, it can be easily converted to a cderpu
expression of genes, a stoichiometry involving DNA cannot balgorithm.
ignored, as seen in X-chromosome inactivation (2 to 1) anel th  The present paper is organized as follows. In Section 2.1, we
trisomy syndrome (2 to 3). Thus, the use of a binary (on/o ) de ne the catalytic reaction network considered in this paper.
representation would also be inappropriate. We therefore neetlhe chemical master equation (CME) is provided in Section 2.2.
to consider the number of molecules. We introduce the probability generating function (PGF) and
Recent experiments have shown the existence in the cell dérive the generating function equation (GFE) in Sectio8. 2.
proteins that only consist of a few molecules ea¢hnfguchi In subsequent Sections (2.3.1-2.3.3), we show that the GFE
et al.,, 201)) and these potential biological phenomenaintroduces the time evolution equation of the rst-order dn
(sometimes referred to as themall-number issgie have second-order moments of concentrations (we refer to the- rs
been gradually recognized by biologists. General thedhias order moment time evolution equation as the pre-rate equatio
would enable predictions in small number situations wouldPRE), and the second-order moment expression of time-avdrage
be helpful to every biological scientist seeking to undedta concentrations (SME). Section 2.4 is devoted to obtainirgy th
biochemical processes on any level. Of course, the disioibeit ~ steady-state solutions of the GFE. To simplify the GFE, we
behavior of such discrete stochastic systems is descripéioeb neglect the non-catalytic reactions considered as pertighat
chemical master equation. However, it is generally dicuti t for the catalytic reaction network if the system is “entrel
obtain its solution; hence, most e orts have been devotechto t ergodic.” In Section 2.4.2.3 as the main result, we obta& th
development of approximation and simulation methods andprobability generating function without winner-takes-altates
their application Gillespie, 1976, 1977; Munsky and Khammash(PGFwoWTAS) including the solutions of the corresponding
2006; Lee et al., 2009; Kim and Lee, 3012 rate equation. In Section 3, we describe applications of these
The e ects of small numbers in particular systems, e.gresults: the rank conservation law, the connecting statéh&o
small autocatalytic systems have been mathematicallyinner-takes-all state, analysis of 2-moleclMespecies systems,
analyzed ©hkubo et al., 2008; Biancalani et al., 2012, 2014nd non-autocatalyzation of autocatalytic reaction netgoThe
Houchmandzadeh and Vallade, 2015; Saito and Kaneko,)201prospects of our theory in terms of the small-number issue are
In addition, a parameter representing the degree of discesten brie y discussed in Section 4.
in the number of molecules has been introduceda(una,
2010, 201p In this work, we pursue analytical frameworks 2. METHODS AND RESULTS
for studying the e ects of small numbers in catalytic reantio
networks by following an approach that is as general as possib@.1. Catalytic Reaction Networks
Our aim is to obtain the steady-state analytical solutiontfie  Consider an abstract catalytic reaction network consistifig o
chemical master equation without specifying parameterfierat M chemical species and molecules in a well-stirred reactor
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of volumeV, as in Awazu and Kanekq2007. Each species 2.2. The Chemical Master Equation

is labeled by each of the integers between 1 EhdThe total The rate constanRj in the catalytic reaction is de ned as the
number of moleculebl is always conserved in reaction processesiumber of reactions per unit volume, unit concentration, and
This chemical reaction system involves both catalytictieas  unit time. Therefore, the number of reactions per unit time in

and n_on-catalytic reactions, to prevent catalytic reactiémom the catalytic reaction ! j k. such that the concentrations axe
stopping: andy;, is
(i) Catalytic reactions (two-body catalysis):

I’I|nJ X

niN;
Rjcxi%V D Rji~ b Ry (5)

K 1)
where D N=V is the total density of molecules in the vessel.
where the speciegj;k 2 [1;M] represent a substrate, on the other hand, the number of reactions per unit time in the

a catalyst, and a product. The reaction rate constant ifon-catalytic reaction!  j with probability 1=M is
represented bRy > 0. Ifthis catalytic reaction does not exist,

we specifiRjk D 0. Therefore, the catalytic reaction networks 1 "

are determined bR In this paper, we impose the following XV 5y Doy (6)
conditions for the catalytic reaction networks;

(@) R D 0; SubstratéDCatalyst. Then, the timg-evolution of t.he probabilit(n; t), Wi1.:h which
(b) Rji D O; SubstratéProduct. the system is in the stateat timet, obeys the chemical master

(c) R D 0;  Autocatalytic reactions are not included. equation (CME):

(d) # k:Ry>0(@8i;j) D1,

. X
One product against a substrate and a catalyst. dp(drl, v D N Rijk(EiClEk Ly, niP(n; t)
(i) Non-catalytic reactions (one-body reactions): .i.;j;l)((
Prob. EM CM (E'ClE] ’ 1)nip(n; t); (7)
ir i 2 B

This reaction exists for all combinations between each sgeci whereE; ™ are step operators, i.e.,

but a productj 2 [1; M] is uniformly-randomly selected from

all species 1 tt. The rate constant is sét> 0 in common, E My ;ni; nu):Df(ng snomp snm).
where" is very small, i.e’,  minfRy > Og (8)

The state of this catalytic reaction network is specied beg th
combination ofM natural numbers D (ng; ny; ;Nv), where
ni 2 [0;N] is the number of molecules of thiéh-species.
For later convenience, we introduce the following notaticthe
state space of the catalytic reaction netwogk yMabbr. W) is

Of course, the state space on which the probabiRfy; t) is
supported, is the previously describét,:n.

2.3. Probability Generating Function

represented by Method
The probability generating function (PGF) is useful to analyee
W:Dfn2[0;N]MjniC CnuDNg (3) CME:
X
which consists of )} : D %? points; a collection (z1):D - AUD N ©)
consisting of (one species) winner-takes-all staiegdbbr.1) is v
represented by Note that the following expressions are translated to di eraht
forms of the PGF:
[:Dfn2 Wwm:n j9i2[1;M]s.t.ni D Ng 4)
which consists oM points. Of course, the winnsitake-all states niP(n; 1) 7! Zig (Z); (103)
of more than one species can be considered, but we focus on the @ @ .
winner-takes-all states of one species by supposing the system ninjP(n; t) 7! ziz — @ @ (zt) (60)  (10b)

satis es a certain conditiorgntire ergodicitysee Section 2.4.2.4).

In the present paper, we are interested in tiedependence E|Cl niP(n; t) 7! z— (z1) (i 60); (10c)
of the concentration of each specigs D nj=V. We basically @
consider a situation in which the total density of molecule® EiClEk In NP ) 7! Zze— @@ (z 1) (i 60 6Dk 60)).
N=V is conserved, even if the total number of moleculess @ @J
changed. (10d)
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Therefore, rewriting the CME to the equation governing thefFPG N. Therefore, the formula (Equation 15) always holds for an

enables the generating function equation (GFE) to be oletdin

@@zt X @
@ D *i;j;kRuk(Zk )Z'@| (Z t)
nw X @ -
CM ! (z zj)@ (z t). (1)

The GFE consists of continuous variables, unlike the CMEckvhi

consists of discrete variables.

Once we obtain the PGF as a solution to the GFE, we can

derive all statistics of the catalytic reaction network;ggample,

the ensemble averages ( rst-order moments) and seconeord

moments become

hii(t) D — (z t) ; (12a)
D1
hin;i (t) D ﬂ (z t) (ieD); (12b)
J @I @‘ )
@
n(n 1) t)D (z 1) ; (12¢)
- @12 zD1
and the marginal distributions become
pP(myD @n (z1) O n N); (13
@ zDO0l zD1(6D)
wherep;(n; t) is de ned by
pi(n; t): D PN 1) on - (14)
(exceptn)

2.3.1. The Pre-rate Equation
Rate equations are di erential equations for the concermbnag X;
of chemical speciedD 1; ;MwhenN!'1 . Weusethe GFE
to derive a formula, which is reminiscent of the rate equatio
Di erentiating both sides of Equation (11) by, substituting
z D 1, and writingx; D nj=V, leads to the following pre-rate
equation (PRE);
X
%I‘Xii D

Rk XX« Righixd C" — i (15)

ik

d
Note that, as we are considering a system of which the gt
total number of moleculedN is conserved, the concentration

conservation law (CCL) must be satis ed;

hii (t) D (8t); (16)

[

where the PRE (Equation 15)
CCL (Equation 16).

If the independencetx;x;i

D hxihxi (i 6D j) holds,

is consistent with the

arbitrary molecular numbeN unless the total molecular density
is changed.

2.3.2. Second-Order Moment Expression for
Time-Averaged Concentrations
We suppose the following ergodicity to replace ensemble-

averages with time-averagasp hnji i.e.,
Zq
lim = ni(t)dt D ni P (n); 17
g, modo P )

where P (n) is the steady-state solution of the CME
corresponding to almost all initial conditions. Considegin
the steady state in the PRE [that is, takihg! 1 on
both sides of Equation (15)], one obtains the following
second-order moment expression (SME) for time-averaged
concentrations:

1X
ik

RkiXXk  RiXiXe - (18)

The second term on the right hand side of
Equation (18) represents the dierence from the uniform
concentration=M.

If the independencexix; D XX; holds, Equation (18)
becomes an equation that only includes the concentrations
Xi. Therefore, in combination with the time-averaged version
of the CCL (Equation 16), the concentrationg can be
determined without including unknown quantities. Howeyer
the actual concentration&; depend on their second-order
momentsxX;.

2.3.3. Time-Evolution of Second-Order Moments
Determining the concentrations; from the SME (Equation 18)
requires us to know their second-order momeRriz;.

Di erentiating both sides of the GFE (Equation 11) lyy
and zy, (I 6Dm), substitutingz D 1, and writingx; D ni=V,
then, after simpli cation, the following time-evolution egtion
of second-order moments (TESM) is obtained:

X
— X Xmi D (Rimix|i C Repjt i Xmi )

N

X |
C  fRybhixxmi C Rimhaixixii (Rjj C Rmi)

iij

hXi X Xmig

"N 1 . ) _
CM N (i Chxmi)  2MhxXmi

1 I<m M. (19a)

the PRE (Equation 15) becomes the same expression as the
rate equation. On the other hand, the PRE does not explicitypn the other hand, twice dierentiating both sides of

include extensive variables, such as the total number o oubes

the GFE (Equation 11) byz, substitutngz D 1, and
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writing X; D nj=V, then after some simpli cation, the following Because the coe cients of variablgsmust be zero, "® must

alternative TESM is obtained: satisfy the following equations:
d X X @ne @ne ( ) ( )
fh(|(X| N)I D2 Rijl h(inX|i R“j h(iX|(X| N)I 0D - — 8i); 23
dt i j @l @
2 NCM 1 . . .
Cy — N i Mhdi equivalently,
@a 1 M. (19b) nc M nc
% D % % (8i). (24)
The expression of TESMs (Equation 19) consistdvigM C ! jpr =7

1)=2 equations containing the third-order momenks;x;xi (t).
Therefore, the TESMs are not e ective unless the syste
are restricted such that the third-order moments vanishy(e.

nfquation (24) implies that all o (D1 ;M)areequal
to each other, i.e.,

2-molecules systems). N D 2, becaus€@@@, D O ( is @™ _ @
a second-order polynomial), one can calculate the 2-mogscul @ : 1 i<j M) (25)
version of the TESMs (2mTESMs); ! @,
q X Considering that the PGF"(z) is anNth order polynomial of
—MXmi D =  fRmMiXmi C RimxiXii z, and must satisfy the condition"®(1) D 1 by de nition, the
dt 2 i following solution of Equation (25) can be found:
i C Rmii) X Xmi
(lﬁlml Rl )X Xmig o D 2C2C  C zu N ,
C o (h4i Chxni) 2"t @ v : (26)
@ I<m M), (20a)

Therefore, we obtain the following stationary distributionthe

d 2" MC1 - i i :
T )iD = i Mhdd @ 1 m). case of non-catalytic reactions only:
dt M 2
(200) P(n) D — N n2wy (27
MWD U% in iy M2WE@D)
Treatment of the 2mTESMs (Equation 20) to demonstrate their N NI
e ectiveness appears in a later section. where .. .y 0 D o my @re multinomial coe cients.
Furthermore, Equation (13) can also be used to derive the
2.4. Steady-State Solutions of GFE marginal distribution of the-th species:
If the GFE (Equation 11) can be solved, this would enable us N
to obtain all the statistics of the catalytic reaction netko p°(n) D L "1 & NP o on Ny (28)
n

However, it is generally dicult to solve. Here, we focus on
the steady-state solutions of the GFE and consider the base t
the "-term in the GFE can be ignored. Through the following
discussion, we see that the approximation is e ective onlyéf th
system is ergodic.

which is the binomial distribution with parametebi$ and =M.
If we suppose the ergodicity;i D 1, the following statistics
can be calculated from Equation (12):

2.4.1. The Case of Non-catalytic Reactions Only Do (DL M) (29a)
First, we consider the steady-state solutions of non- 2 1
catalytic reactions only as an introduction. The PGE(2), xxD — 1 —  (i60); (29Db)
. . . M N
corresponding to the steady state in the case of non-catalyti oM 1
reactions only, should satisfy the following equation: Var[xj] D N (iD1, ;M) (29¢)
X _
oD (z z,)— "C(2). (21)  where Vark]: D xi2 %2 is the variance of the concentration
isj Xi D nj=V.

2.4.2. The Case of Catalytic Reactions Only

By exchanging the subscripisand j in the second term, one ) : o
Next, we consider the steady-state solutions of catalyéictiens

obtains . . -
only, assuming that thé-term in the GFE (Equation 11) can be
X @ @nc ignored. The steady-state solutions are assumed to havera fo
0D Z @ @ (22)  similarto Equation (26), including undetermined coe ci¢s( ;)

i deriving from the network structureRj).
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2.4.2.1. A condition for nding the steady state:condition The 3 3 matrix (A) on the left-hand side can be rewritten in
The PGF ©(2), corresponding to the steady state in the case oferms of its column vectors:
catalytic reactions only, should satisfy the following g

AD Ri#r R Ry Rizes; Razier C Rozies

X (36)

00" Ry 2222 <) (30)
ik @ @

wheree;" D (1,0, 1),e' D (I; 1;0),andes’ D (0;1; 1).
Construction of the steady-state solution requires us tal n According to the determinant property, i.e., detb;c] D
a particular solution of Equation (30) as bases of linear det[b;a;c], one has

space consisting oN-th order polynomials. Accordingly, let

us assume the following extended form of Equation (26) by det(A) D 0. (37)
introducing parameter$ idY),, which eventually correspond to

the concentrations (per total density) of each species in the Therefore, the non-trivial solution of Equation (35), i.¢he

continuous limitN ! 1~ as shown in Section 2.4.2.3: eigenvector corresponding to the eigenvalue 0 of the marix
certainly exists and it has the following expression:
°‘@D. 1z2C 22C C wmzu/V; B 5, 3 3 2 3
12 R312R231 C R321R132C R312R321 33
where 4 1 39/ 4RnRe21C R3iR123C RadRoz® 4320
23 R123R312C R132R213C RizdRuse 31
! S . (38)
iDL O 1 2 ; wm 1 (32)
iD1

The proportionality constantX 0) can be determined by the
because (1) D 1. Substituting Equation (31) into Equation (30) condition (Eq_u_ation 32), {ind thus the desi_red nor_1-trivialuiion
and setting the coe cients of variablesz as zero, gives the ©fthe -condition (Equation 33) foM D 3 is obtained:
following condition forf j jg

3233
D : 39
o 1¥ 313,C3133C3,35 (292)
Ri kiCRj kj RkCRk ij DO ,D 3133 : (39b)
kD1 3132C3133C3233
@ i<j M. 3132
D . 39
(33) 37 313,C3135C32:35 (390)
The -condition (Equation 33) representdM(M 1)=2  Note that it is not guaranteed that the above solution always

homogeneous equations for j; therefore, ; can be calculated represents a non-trivial solution of the-condition (Equation
by combining the -condition (Equation 33) with Equation (32). 33). For example, the case ®; D 0 (where3, and 3 3 are

The -condition has trivial solutions: not zero) implies the existence of a trivial solution( »; 3) D
(3;0;0). In another example, the case 8f D 32 D 0
(1 Do ; m) D (G 101, 0; ; 0) 9 2 [1; M]. implies that the denominator becomes zero; thus, the exmessi

(34) becomes inde nite.

These solutions represent the states for which ittie species 2.4.2.3. PGF without winner-takes-all states

take all molecules (theinner-takes-all stajeOn the other hand, We are interested in those states in which any species does not
there is also a non-trivial solution. In the following paragha  take all molecules, because the actual simulations arerpetb

we treat three-species systers D 3) to demonstrate that non- by using the initial states excluding the winner-takes-tdtes.
trivial solutions do exist. The following procedures canilgase ~ The PGF without the winner-takes-all states is represented b

extended to those for arbitrafyl species systems. linear summation of winner-takes-all staE}%and Equation (31)
if the -condition has a non-trivial solution like Equation (39);
2.4.2.2. Demonstration for non-trivial solutions of the

-condition W W PN
The -condition (Equation 33) can be rewritten in matrix form; ‘2D biziN C bmca izi (40)
i.e., inthe case & D 3 for example, iD1 iD1
Ri23 Rois Rs312 Rao1 32 1 23 whereb; C  C byci D 1. Thetake-all exclusion conditioase
Ro13 Rizz Rsiz Rt 54 1 35DO0.  thatthe coe cients ofzN are zero;
Ri23 Ri32 Ros1 Rsaz 23
(35) biCbuct NDO (D12 ;M) (41)
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Therefore, we obtain the desired PGF without the winnereak also calculate the second-order momexit§ and the variances

all states (PGFwoWTAS); Var[x]: D x2 %2 from Equation (12);
P N aa i J E 2 1
il\lgl Z il\él z/N Xixj D Tpﬁ 1 N (i 60). (45b)
%2 D P : 5 kD1 k 3
! D1 i 2N Laci i N2
w Var[x] D 4 ——p=. N R 5 2
iD1 0 i< 1 (42) 1 iDL i 1 iD1 i
D1 (iDL ;M) (45c)
which immediately implies the following stationary distiion !N the continuous limitN ! 1, the above Equations (45b) and
in the case of catalytic reactions only; (45c) become; j and 0, respectively, that is, the concentrations
become mutually independent without uctuating variables.
8 Qv n We compare our formulas with simulation results that are
2 N D1 i obtained by applying the Gillespie algorithr@i(lespie, 197)/to
— L (h2wnl), . . . '
P°(n) D S hng v 1 {‘gl |N ( ) the following three-species systeRigure 1A) as an example:
0 (21 Ri23D Ri32D Ro13D Re31 D R312D 1, R321D Ol D1
(43) (46)
N N which implies the following by Equation (39):

where T A T multinomial coe cients.
Furthermore, we can calculate the marginal distributiontioé 1 D 2=11; 2 D 311 3 D 6=11. 47)

i-th species from Equation (13); . o L
: . (13) The marginal distributions are shown inFigure2 Our

formula Equation (44) is entirely in agreement with the

8 P
@ N Cn N hgl |N D 0). simulation results. When the total number of moleculdsis
1 ' M N (nD Oy, large, the marginal distributions can be approximated by narm
ID1 | L. . .. .
Pt (n) D N P PN distributions. Similarly, the formulas of the concent@ts and
! % 0 —Pu 1 n N 1) the variances, Equations (45a) and (45c), are completely in
_ 1 D1 | agreement with the simulation results as showifrigure 3 One
0 (nDN) can see that the variances monotonically decreadélzescomes
(44) larger.

Note that if the -condition (Equation 33) does not have a
d non-trivial solution like Equation (39), the expression ftire
PGF (Equation 42) cannot be applied. Such special cases are
treated in the following section.

If we suppose the ergodicitinii D nj, the time-average
concentrations can be derived from Equation (12);

B N ] 2.4.2.4. Ergodicity as a su cient condition for applying ou
Xi D TPM—N (iD1 ; M), (453) pGF
D1 i The PGFwoWTAS (Equation 42) would be applicable if the

_ o ~ catalytic reaction network was “entirely ergodic,” whicleams
The above equations indicate that means the concentration the following in this paper (it is reminiscent of tHe-limit set):
per total density in the continuous limitN ! 1 | that is,
i should be the solution of the classical rate equation. We can (ngl )DWnI (8); (48)

FIGURE 1 | Examples of catalytic reaction networks consistin g of 3 species. The rate constants are(A) Rip3 D 1, Ryj3p D 1, Rp33 D 1, Ry31 D1, R312 D 1,
R321 D 0, (B) Ri23 D 0, Ry32 D 0, Ro13 D 1, Rp31 D 1, R312 D 2, R3o1 D 1, and (C) Ryo3 D 1997=3, Ry3» D 1000=3, Rp31 D 1, R3o1 D 1, Ry13 D 0, R312 D 0.
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FIGURE 2 | Marginal distributions of
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Xj D nj=N (i D 1; 2; 3) in the three-species system of Figure 1A.
ND 2,(B)ND 5, (C)ND 10, and (D) N D 50. Cross symbols (red, green, blue) represent the simulatioresults obtained numerically using the Gillespie

algorithm @Gillespie, 1977, which is performed under the following condition; the tal number of reactions:108, the number of reactions for transient exclusion10?,
and the initial value(ny (0} ny (0} n3(0))is randomly selected fromW n| such that the average per one-species isN=M. Empty symbols (circle, triangle, square)
represent the theoretical expression\lpiC (Nx) [Equation (44)] for ; D 2=11, , D 3=11,and 3 D 6=11.

The total number of molecules in each gure igA)

FIGURE 3 | N-dependence of (A) the time-averaged concentrations
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X; D nj=N and (B) the variances of concentrations

three-species system of Figure 1A.

Empty symbols are numerically obtained using the Gillespigorithm, where the time averages are performed over a longme

Vax] D (n2  2)=NZ in the

seriesnj(t) such that the total number of reactions reachesL08. The initial values are randomly selected fror/ n1 such that the average per one-species isN=M, and
the number of reactions for transient exclusion i407. Lines in each gure represent the theoretical expressionsEquations (45a) and (45c), for, D 2=11, , D 3=11,

and 3 D 6=11. One can see that the rank of concentrations is conserved buthe rank of variances is exchanged betweeN D 2 and 4.

where

\
I (nol ): D
t

0

n( 1):

(49)

system offFigure 1A, the ergodic condition (Equation 48) can
be rewritten in terms of simpli ed conditions. As previously
described, the state space of catalytic reaction netwonksists

M

of

D

(MCN_1)!

M DN

points. Therefore, in the case d D

and represents one of the trials of the stochastic procgts
according to the catalytic reaction network.

3 for example, there areN( C 2)!=(2N!) points. The state
space of the three-species system forms a regular triangle in

We use a speci ¢ three-species system to intuitively illustratthree-dimensional Euclidean space (Begure 4A). The possible
what Equation (48) means. In the case of the three-speci@gsotion from each state point is shown iRigure 4B where
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FIGURE 4 | (A) State space of the three-species system ofrigure 1A in the case ofN D 10. Circles (red) represent the states that a single trajectgrcan visit, which
means that the system is “entirely ergodic.(B) Motion of the state point when one reaction occurs in the thre-species system ofFigure 1A . There are 6 possible
directions in which to move from one state point. Each dire¢on is randomly selected in proportion to the speci ed probalility. In the case ofFigure 1A, the state

point cannot move in the direction ofR3»1 since R3p; D 0. Note that the state point on the boundary (e.g.n; D 0) cannot move parallel to the boundary (in this case,
the directions of Ry13 and Rz12).

there potentially exist six possible directions, but the retwv where

structure forbids the direction dRsz21 in the case of the network

of Figure 1A Note that the state point on the boundary cannot I,(Jl);N(il; i2; ;i) :Dfn2Wynjn;Cn,C CnjDN
move in a direction parallel to the boundary. In this case &nj, > 0(8Kg (53)
obviously, a trajectory starting from an initial poimy 2 W n |

visits every point inW n |l as shown by the circles iigure 4A  \we omit the subscript® andN provided there is no concern for

(the setl is equivalent to the vertexes of a triangle). Therefore, agonfusion. The above gollections are not empty sets iN. Note
seen inFigure 4B, the necessary and su cient condition to hold that| D 1@ andW D .10, One can see that the following

the ergodic condition (Equation 48) fvl D 3 is: diagram holds if the catalytic network is fully connectedej
X X Rik > 0 foralli; j; k (i 60 60k 60)];
Rk>0 & R >0  (8Kk); (50)
Hi i 1Me 1@ 13) M 1) | (M) (54)

where the rst condition represents that at least one directi

for moving away from the boundarpm, D O is allowed, and where each arrow represents the direction in which a state
the second condition represents that at least one direct@n f point can move by one reaction. Eadi¥)(iy; ;i) is a
approaching the boundary, D O is allowed. Note that the (I  1)-dimensional object in the whole\{  1)-dimensional
condition (Equation 50) is no longer a su cient condition state spacaV. For example, the state space of four-species
for entire ergodicity in the case of four-species systems. Isystems forms a regular tetrahedriviy p 4N (SeeFigure 5B);
fact, in the following four-species systenfrigure 5A), the 1®)(1;2;3;4) is the interior of the regular tetrahedron;

condition (Equation 50) does not imply entire ergodicity; 19)(1; 2,3); 19)(1; 2, 4);149)(1; 3;4); and 19)(2,3;4) are
regular triangles that form the boundaries df¥; and
Riz2> 0, Rus> 0 Rozi> 0, Roaz> 0 Raa> 0 19012191 3) 19(1;4) 1902, 3); 19(2, 4); and 19(3; 4)
Riz> 0; (others 0). (51) are line segments that form the boundaries!&?. Note that
’ 1@1;i2) 1 13js; jo) for (ir;i2) 6D (j1;j2) is possible but

1@(ig;io) ' 1@(i1;iy) is always impossible as seen from

This  four-species  system  obviously satises th

condition (Equation 50), but most initial states [in partieu, 9F|gure 5C By considering the diagram (Equation 54) and

: ) . keeping in mind Figures 5B,C we can expect the following
n(0) > ~0(@K)] evenwally fall into any of 2-species ¢ i oniire ergodicity holds in the restricted system(rior

winners-take-all states, i.ény D nz D 0; n3C ng D Ng .| 3, then entire ergodicity holds in the whole state spada W
In the case oM-species systems, a necessary and su cient

. . ST . other words, in systems consisting bf-species, the su cient
condition for entire ergodicity is dicult to derive, althagh . . : - .
. . o - condition under which the ergodic condition (Equation 48)
we may consider a su cient condition instead. We discuss

the su cient condition for entire ergodicity by introducig the holds can be geometrically described as follows: each

: : . oo 1@y i) for 1l 3, at least one direction for moving away
collection of all-species winners-take-all stgte3 1; 2; i M): from each boundary (1 9(jy; i, 1) should be allowed,
n . O s L and simultaneously at least one direction for approachiog ea
Im;n: D IVANGH P K (52)  poundary f Y(1; :j 1) should also be allowed, where
1 <i M fi,  5hig fin  Sig
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FIGURE 5 | (A) Example of non-ergodic catalytic networks consisting of far species; the rate constants areRy3» > 0, Ry43 > 0, Rp31 > 0, Rog3 > 0,R314 > O,
R413 > 0, and others 0. (B) State space of four-species systems in the case oN D 4. Red circles represent the states a single trajectory cansit in the case that the
system is entirely ergodic. Blue circles represent winngekes-all states, i.e.,n D 4 (9k). (C) Motion of the state point when one reaction occurs in four-spcies
systems (viewed from the top ofB). Red and blue arrows represent upward and downward arrowstespectively. There are 12 possible directions in which to nve
from one state point. Each direction is randomly selected iproportion to the speci ed probability. Note that the state pint on each I(Z)Gl; ip) cannot move parallel to
itself (e.g., onl@(1; 2), the directions ofRy31; Ryaq as well asRy3,; Ry42 are not allowed).

2.4.3. The Case of Catalytic-Noncatalytic Mixed from the entire ergodicity ofigure 1A, which means that the
Reactions ergodic component spreads on the entire state space except for
We could not obtain the steady-state solution of the generalinner-takes-all states (se@ure 4A).

GFE (Equation 11) in the case of catalytic-noncatalytic edix
reactions { > 0), but we expect our PGF (Equation 42) to
be a good approximation for mixed-reaction systems' ifs
su ciently small (" minfRy, > 0g. More speci cally, we
expect the PGF (Equation 42) to be robust against non-catalyt

3. APPLICATIONS

The starting point of our analysis is the GFE (Equation 11),

reactions if the catalytic reaction system constituting thixed from which several useful formulas are derived, namely the
. y hsy 8 RE (Equation 15), SME (Equation 18), TESMs (Equation
reaction system has an ergodic component spread across t

. . - oo . §) and (Equation 20), the -condition (Equation 33), and
entlre:* state spaceeftire ergodicity cherW|se, i the'catalyuc .the? PGFv(vo(\qNTAS (Eq)uation 42). In th(isqsection, vae reveal
reaction system has several ergodic components in the entl[ﬁe e ectiveness of these formulas by showing important
state space, the non-catalytic reactions may imply that aert applications for several catalytic reaction networks
highly stable ergodic component attracts all possible trajés, '
which obviously means that our PGF is not applicable to such .

a mixed reaction system. Although we were unable to prove-1. Rank Conservation Law for
this mathematically, we used numerical simulations to datee ~ Concentrations
whether our PGF is a good approximation in the case of “entirelyWe show that the rank of concentrations is conserved evereif th

ergodic.” total number of molecules changes in catalytic reactionvoeks
Figure 6represents the non-catalytic reaction rate constant (excluding non-catalytic and auto-catalytic reactions).
dependencies of time-averaged concentratign®r the three- Suppose the concentration of thih-species is expressed by

species system dfigures 1A,B (As shown later, the system Equation (45a) in the state corresponding to the PGFwoWTAS.
shown inFigure 1Bis not entirely ergodic, which is the reason When determining the rank conservation, it su ces to con rm
why the systems shown iRigures 1A,Bare compared here.) that the relation between the amount of two arbitrary speéses

It can be seen that the di erences &f in Figure 6A between unchanged if the total number of molecules is changed. Let

" D O0and" D 0.1 are smaller than those Figure 6B. We 2 be the concentrations pertotal density in the continuous timi
consider the robustness in the caseFifure 6A to originate suchthat 1 < ».Because :\gl i D 1,theinequality 1C 2 <
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FIGURE 6 | "-dependence of the time-averaged concentrations xj (N D 10, D 1) in the case of (A) the three-species system of Figure 1A with

non-catalytic reactions and (B) that of Figure 1B with non-c atalytic reactions. Points in the gures are numerically obtained using the Gilpie algorithm in the
same way asFigure 3. The catalytic reaction network ofFigure 1A is entirely ergodic; thus, the non-catalytic reactions mape treated as perturbation. On the other
hand, that of Figure 1B is non-ergodic; thus, the non-catalytic reactions introdee relatively large differences compared with the case ofD 0.

FIGURE 7 | N-dependence of (A) the time-averaged concentrations X; D nj=N and (B) the variances of concentrations  Var[x;] D (ni2 ﬁiz):N2 in the
three-species system of Figure 1C.  Empty symbols are numerically obtained using the Gillespigorithm in the same way asFigure 3. Lines in each gure
represent the theoretical expressions, Equations (45a) @n(45c), for 1 D 1=1000, » D 1=3, and 3 D 1997=3000. It is clear that the rank of time-averaged
concentrations is conserved.

1 must be satis ed. Therefore, the following evaluationdsol As shown in Figure7, this system depends on the
total number of molecules for the time-averaged

o (2 ’2\')_’ (1 1) concentrations X; and the variances of concentrations
X2 X1 D 1 ' M N Var[x;], represented by Equations (45a) and (45c) with
D3 1 D 1=1000, ; D 13, and 3 D 199%3000. The
(2 1) N 1 rank of time-averaged concentrations is always conserved,
D 1 MoN 1 (2C ) but the rank of variances is exchanged at certin(see
# Figure 8).
X2 N 1
c 1 N1kk
k 2 1
kD1 3.2. A Special Case: The Connecting State
>0 (BN 2N »). (55)

to the Winner-Takes-All State
. . . There exists ail-molecular state, which connects to the winner-
This is the rank conservation law of concentrations. . . . .
. . . takes-all state in the continuous limfit | 1 . Asis later shown,
Note that the rank of the variances of concentrations S..1ch a special case is not the “weakly reversible” dasie(son
generally not conserved when the total number of molecules P Y

) . : tal., 201
changes. For example, let us consider the following three+m>ece a a

system Figure 10): We show this by taking the following limit in the
y 9 ' PGFWOWTAS (Equation 42):
R123D 199743, Ri32D 100G3; Rp31D R321D 1;
R:13D Rsi2D 01 D 1. (56) 1L 2 swm! 0 (57)
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FIGURE 8 | N-dependence of (A) the rank of time-averaged concentrations and (B) the rank of its variances in the three-species system of Figure 1C.
The ranks (lines) in the gures are depicted using the formusa(Equations 45a and 45c). Clearly, the rank of concentratits is conserved, although the rank of
variances is exchanged betweerN D 2 and 3, and alsoN D 6 and 7.

where we suppose the following constraints are always sdtis e where jj is the Kronecker delta,j D 0 (if i 60j) or 1 (if i D j).

The time-averaged concentrations calculated by Equati@®) (
i

D j iD 23 i M); 58 are
CsC C 2! (iD23 ;M) (58)
wheref ;g are positive constants, which are determined from b 1 5 (64a)
the network structuré R g (it is explained later). Evidently, the i _
following holds; Xi D N (iD2 i M); (64b)
X and the variances of the time-averaged concentrationsi
iD 1. (59) \
02 by Equation (12) are
I
The PGFwoWTAS (Equation 42) has the following limiting Var[x1] D 0 (65a)
expression: i@ 9 5 ,
Var[x] D ———~ (iD 2 i M). (65b)
N2
P wm N N Ppy N
72aC ipp iz T4 iD2- iz/ ) _ .
() D 1 . " ! 5 - Next, we derive the relation between the positive constants
% = i’\I/IDZ iN and the network structuréRyg The -condition (Equation
N1 ' ! 33) can be converged to conditions forig (the -condition)
! b1 A 22C C wzu/  Y2. (60) by taking the limit ; ! 1 as follows. Divide the -

condition (Equation 33) into two groups, of which one group is
The state corresponding to the PGF (Equation 60) is théhecaseof2 i<j M,
connecting state to the winner-takes-all state (CStoWTAS)
The stationary distribution corresponding to the CStoWTAS i Ruj 1 iCRyi 1j RjzCRia i j(1 1)

immediately obtained: N
02 ca Ri kiCRgikj RkCRkx ij DO
i 2 ), kD2
PmD Y 61
L 0 (h2WnJ; (61) (66a)
wheredy:N (abbr.J) is de ned as and the other group isthe caseidd 1,2 | M,

JDfN2Wynjn DN 1&9 2[2;M]s.t.niD1g (62) W
Raj k 1CRG1 xj0 1) RwCRwk 1j DO
Furthermore, the marginal distributions of theh speciescanbe  «p2

derived by Equation (13): (66b)
(
cS(n) D nN 1 for iD1; where we_substitgte_di D i(l_ 1),1 _ 2anddividedby 1 1.
P (1 )noC in1 for iD2 ;M; Then, taking the limit ;! 1 in Equation (66a),
(0 n N); (63 iRij C jRyi DO i.e., Rij DO 8i;)); (67a)
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and taking that in Equation (66b), of time-averaged concentration Va] D xTZ X2 in the steady
state depends solely on its concentration:
X
kRaj Rk DO (2 j M) (67b) MC 1
kD2 Var[xj] D Ve Xi X, (69)

The condition (Equation 67a) expresses that the 1st-species

cannot be a substrate, and the condition (Equation 67byvhere we supposed the ergodidiyi D X;. The above equation
represents the desired-condition. Note that the CStoWTAS €xpresses that the uctuation of the concentratignbecomes
must be a limiting state corresponding to the PGFwoWTAS [selarger as its time-averaged concentration approaches
Equation (60)]. Therefore, the network structuig, gmust have

denite f g <D MC1 (70)
For example, let us consider the following three-species am
system Figure 1B):

at which the uctuation takes the largest valudjst 2

Furthermore, the time-averaged concentrations potentiatlye
the maximum value because the variance must be positive;

Ri23D Ri32D 0; Ry13D Rp31 D Re21D 1, Rz2D 21 D 1,

which implies 2 D 2=3 and 3 D 1=3. Obviously, this system is MC1

not weakly reversible, which means that the theorems (Téeor Xi M (8i 2 [1; M]). (71)
4.1 and 4.2) in the previous studgiiderson et al., 20)@annot

be applied. This system should have a CStoWTAS becayse

», and 3 are de nite from Equation (39) with3; D O, Next, we focus on the rst formula in the 2mTESMs (Equation

3, D 2, and33 D 4. As shown inFigure 9, this system 20). Let us consider the steady state of Equation (20a) and

certainly has the time-averaged concentratiosrepresented suppose Fhe ergo_dicitt»qi D Xi.‘ Eliminating the r_st-order_
by Equation (64) and the variances \ial[ represented by moments in Equation (20a) by using the SME (Equation 18) gives

Equation (65). In this case also, the rank conservation I&w &he determination equation of second-order moments in the 2
concentrations holds. molecules system (2mDESM);

. . " X

3.3. M-Species 2-Molecules Systems with 4 %=C " f.Ry C Ryl 5% Rig¥X Ry XX
Non-catalytic Reactions i

The 2mTESM (Equation 20) becomes the closed equation of the 1 X L L L
second-order momentx xmi if the rst-order moments hx;i M Ril C Rim XX RijXiXi  RmijXiXm

are substituted by the second-order moments according & th I

PRE (Equation 15). In this subsection, we consider catahgit D 27 @ I<m M) (72)
catalytic mixed reaction systemsMdfspecies, consisting of only M?2

2 molecules in total.
We rst focus on the second formula in the Theabove 2mDESM canbe rewrittenin thidM 1)=2 M(M
2mTESMs (Equation 20). It can be seen that each variandd=2 matrix form. We demonstrate the procedure for processing

FIGURE 9 | N-dependence of (A) time-averaged concentrations X; D nj=N and (B) the variances of concentrations  Varx;] D (? ﬁiz):N2 in the
three-species system of Figure 1B.  Empty symbols were numerically obtained using the Gillespialgorithm in the same way asFigure 3. Lines in each gure
represent the theoretical expressions, Equations (64) an(5), for , D 2=3 and 3 D 1=3.
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FIGURE 10 | "-dependence of (A) the second-order moments XX D Tnj:N2 and (B) the time-averaged concentrations ~ X; D nj=N in the three-species
system of Figure 1A with non-catalytic reactions ( N D 2, D 1). Empty symbols are numerically obtained using the Gillesp@gorithm in the same way as
Figure 3. Lines in each gure represent the theoretical expressionsEquations (74) and (75). Note that there exist differencesebween the limit" ! 0 and the case
" D 0 for the second-order moments (solid black points) becausehte SME (Equation 18) breaks down at D 0. The solid black points are calculated from
Equation (45b) as 1 D 2=11, , D 3=11, 3D 6=11,ND2,and D 1.

the 2mDESM by considering the caseMfD 3. In this case, the
2mDESM (Equation 72) has a matrix of the following form:

2 "
4(RizsC R C* IRs12 4Rs21
3R:13 3(Riz2C Rsp) C £ IRz
3Ri23 IRi32 3(R231C Raz)) C £
2 3 2 3
X1X2 "
4xx30 D — 415 .
XoX3 1

(73) FIGURE 11 | (A) Autocatalytic reactions constituting the 2TK model andB)
ve-component non-autocatalytic reactions duplicating the behavior of the

. . . 2TK model; R142 D R153 D R231 D R254 D R351 D R452 D1 (otherso). If one
Moreover, we consider the specic three-species system ODfegards the species1, 3, and half of5 as the speciesA (similarly,2, 4, and half
Figure 1A ( D 1) including non-catalytic reactions. Solving | 5 as B), the behavior ofnp D n; Cng Cns=2 and ng D ny Cny C ng=2is

Equation (73) a8 > O and D 1 in the case ofigure 1A, | Similartothatofthe 2TK model,

then
2 2 %3 3.4. Non-autocatalyzation of Autocatalytic
4xx5D L &, 74y Reaction Networks
X2X3 6(%85") The framework we developed in this paper applies to non-

autocatalytic reaction networks. However, our framewowkyrbe
applicable to autocatalytic reaction networks if it were poigsi
which is consistent with the result obtained when solving th 5 convert autocatalytic to non-autocatalytic networksrel, we
CME (Equation 7) directly [recalixuxzi D zP(n1 D 12 D show several examples of such conversions using a minimal
1ng D 0), ixyxsi D and so on]. By the SME (Equation 18), gtocatalytic reaction network “2TK model'Ofikubo et al.,

the concentrations become 2008; Saito and Kaneko, 2Q1#hich is a well-studied model in
; . the context of discreteness-induced phenomena.
X1 £ % D }; %3 D ﬂ (75) The 2TK.modeI ponsists of only two species, anq includgs both
2(2C 3") 3 6(2C 3") autocatalytic reactions (rate const.and non-catalytic reactions

(rate const!' ) (seeFigure 11A);
Figure 10shows the second-order momern&g and the time-

averaged concentratiosas functions of . Note that in the case A B B (autocat. react) (76)
of " D 0O (catalytic reactions only), we need to derive the second- A '
order moments(x; from Equation (45b) corresponding top D A B (non-cat.react). (77)

2=11, , D 3=11, and 3 D 6=11. The non-catalytic reaction
rate constant' seems to be a singular perturbation against thdf we suppose that each of the speckeand B consists of two
second-order moments (not the concentrations). further species, we can convert autocatalytic reactionsafoju
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(76) of the 2TK model to non-autocatalytic reactions as show six non-trivial eigenvectors:
in Figure 11B The catalysis of the species 5 between the specigs
1 and 3 (or, 2 and 4) is to establish an equilibrium betweeng 3 2,3 2 2 2O3 23 203
Co Ca 1 Cuy C
1

0
the concentrations of the species 1 and 3 (or, 2 and 4), th 0
would make it possible to regard these as one species. The nog- 0
1
[0 Cac .
1
1
Ri42D Ri53D Ro31 D RosaD Rss1 D Rus2D 1 (others 0). 0 0 1
(78) (80)

=
o
o

autocatalytic reactions éfigure 11Bplus non-catalytic reactions
i Prob. 5

o O O =

j is the desired ve-component model, of which the Da

CME is simply described by Equation (7) with

[eNeNeoNoNoNoNo)

g oo N~ b w o b WwN
o
o
o

AW W NNNR R R

The above equation can be used to derive six types of nonitrivia
As shown inFigure 12 the behavior of the variablem D n1 C  solutions (1; 2; ; 5), which immediately correspond to the
n3z C ns=2 andng D n2 C ns C ns=2 in the ve-component model stationary states of catalytic reactions in the ve-compane
is similar to that of the 2TK model (compare with Figures 1A,Bmodel by using Equation (43):

in Saito and Kaneko, 20).5The -condition (Equation 33) of 8
catalytic reactions in the ve-component model can be writte () (0;c0cl 20;
in matrix form, % (i) (coc0l 20

(i) (21 2c0;0;0);

2 32 3 Dol 34l D 8c2 (0; 1=2);
000 0 00000 0° 1, (152 3 45 (v) (2c0;1 2c 0:0); 0:1=2)
0010 00000 GE 31 e o

1 4 . : - N . .

000 10000 1 15 (vi) (0;0;2¢c;1 2c0); o
000 0 10000 0fR25%, 0 o (81)
001 0 00OO0OO0O 2 4 ' o .

000 0 00100 1 ’ s where each case (i-vi) corresponds tod)D &, ¢ D o1
000 O 00O0O0O O 34 20) (others 0), (i) D &, 0 D ol 20) (others 0), (iii)
000 1 000O010 35 a D 201 2¢) (others 0), (iv)c; D 20(_1 20) (others 0),
000 O 00100 1 45 (V) c D 20(1 2C) (OtherS O), and (VI)C4 D 20(1 2C)

(others 0). The switching behavior of the ve-component mbde
may be explained in terms of transition processes between the
in which there exist six non-trivial eigenvectors corresgioy to ~ above six types of steady states and the ve trivial steadgssta

the 0-eigenvalue; hence, the general eigenvector corrdsmpto i D 1 (others 0) of catalytic reactions in the ve-component
the O-eigenvalue can be expressed as a linear summations# thanodel, which are sometimes caused by non-catalytic reaxtion

FIGURE 12 | Behavior of the ve-component model [Figure 11B plus non-catalytic reactions (" D 0.01, D 1)]. The behavior of the ve-component model is
reminiscent of the behavior of the 2TK model (compare with &ures 1A,B inSaito and Kaneko, 2019. (A) Time series of the total concentration of the specieq, 3,
and half of5 for N D 20 (red line) andN D 2000 (green line)(B) Stationary distributions of(n; C n3 C n5=2)=N, obtained numerically from a long time series;(t) using
the Gillespie algorithm whose simulation conditions are thtotal number of reactions:108, the number of reactions for transient exclusion10’, and the initial value is
randomly selected fromW nl such that the average per one-species isN=M. The unimodal distribution (blue), the at distribution (gen), and the bimodal distribution
(red) indicate the stationary distribution foN D 500, 40, and 20, respectively.
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Furthermore, the marginal distribution of the specigspa(n), that the results are not changed even in the other four-
can be derived by calculating the convolution of the marginacomponent model ofFigure 138 of which the catalysis role
distributions p1(n), p3(n), and ps(n), if p1(n), ps(n), andps(n)  of each the species 1 and 2 is exchanged by that of 3 and 4,
were obtained for the case including non-catalytic reatdio respectively.
Other non-autocatalytic reaction networks duplicating the
2TK model are shown inFigure 13A and consist of 4
components only. Although readers would think that the
four-component models do not function properly because theft- SUMMARY AND DISCUSSIONS
transitions between the species group 3L [or (2; 4)] depend . . .
on the other species group:(@) [or (L; 3)], the four-component The.frgmework we presented in this paper.facnltates the
models actually generate much the same behavior with the ZTRred'Ct'On ,Of the eect of Fhe .small-nur.nber ISSU€ on the
model (seeFigure 14). The switching behavior of the four- cor_mentratlon of each species in catalytic reaction netw.or_k
component model may also be explained as a transition proce%—n%scgiz;ﬁa?iiiglEggwgqer?r':hgxggrrlrt]iiu:?g?ﬁ; szl c;mp)arlng
between the following three types of steady states and the case of 2 moleculed (D 2). If the reaction network
8 does not include non-catalytic reactions (or, includesliggigle
2(0;0c1 o non-catalytic reactions), we can use the formula (Equation
(123 49D _(0c01 o 8c2(0;1); (82) 45a) to compare them. On the other hand, if the reaction
(0,1 cO) network includes (non-negligible) non-catalytic reactipnve
need to apply the formula, 2mDESM (Equation 72), with the
and the four trivial steady statesi D 1 (others 0) of SME (Equation 18) to obtain the concentrations in the case

catalytic reactions in the four-component model, which are®f 2 molecules. Although our theory has a presupposition

sometimes caused by non-catalytic reactions. We also coed  "eferred to asentire ergodicitythe presupposition is intuitively
veri able if the system is specied, as in Section 2.4.2.4.

We also demonstrated three examples rfion-autocatalyzation
conversions of autocatalytic reaction networkSection 3.4. We
consider this type of conversion to be generalized relativel
easily such that our analytical framework can be applied to
more general catalytic reaction networks including autabydic
reactions.

One might think that the analysis presented in this paper can
be straightforwardly extended to the case including autagtc
reactions [in fact, the CME (Equation 7) and GFE (Equation

FIGURE 13 | Four-component non-autocatalytic reactions dup licating

behaviors of the 2TK model; (A) Rj23 D Ry42 D Rog4 D Rogy D Rapq D 11) themselves hold even in the case including autocatalyti
Rg12 D 1 (others 0), and (B) Ry4p D Ry43 D Rogy D Rogy D Rgg D reactions]. However, if autocatalytic reactions are ideld (i.e.,
Ry32 D 1 (others 0). If one regards the speciesl and 3 as the speciesA the caseRikk > 0is aIIowed), we cannot consider catalytic

(similarly,2 and 4 as B), the behavior ofna D ny Cng andng D n; Cny is

almost equivalent to that of the 2TK model, reactions and non-catalytic reactions to be completely sdgpar

The reason is that, in the case including autocatalytictieas,

FIGURE 14 | Behavior of the four-component model [Figure 13A plus non-catalytic reactions (" D 0.01, D 1)]. The four-component model reproduces the
behavior of the 2TK model (compare with Figures 1A,B ifaito and Kaneko, 2015. (A) Time series of the total concentration of the specied and 3 for N D 20 (red
line) andN D 2000 (green line)(B) Stationary distributions of(n; C n3)=N, obtained numerically from a long time series;(t) using the Gillespie algorithm in the same
way as Figure 12 . The unimodal distribution (blue), the uniform distributh (green), and the bimodal distribution (red) indicate thetationary distribution forN D 500,
40, and 20, respectively.
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the absence of non-catalytic reactions generally implies@in bacteria (aniguchi et al.,, 2000 Li et al. further discussed
takes-all steady states. Generally, solving the CME (or ®GFE) the relationship between the copy number and synthesis rate,
catalytic-noncatalytic mixed reactions systems is moraaded and also the role, of proteins.i et al., 201}t According to
and a more di cult task than that of catalytic reactions onlyhe  the result, some transcription factors, particularly acdiiva,
proposed strategy, i.e., non-autocatalyzation conversisrene are rare, of the order of 0.1 to 10 molecules per genome
of our ideas to address the problem. equivalent. Although stochastic gene expression has been
The formulas obtained in the present work are speci c andintensively discussed for yearsI¢Adams and Arkin, 1997;
satisfactorily simple. Therefore, our theory has the cajisl Thattai and van Oudenaarden, 2001; Elowitz et al., 2002; Raj
to be developed into a general theory for catalytic reactiomnd van Oudenaarden, 2008; Shahrezaei and Swain,),2008
networks. On the other hand, there exists a mathematicahe discrete small-number nature of transcription factors
theory for a certain class of catalytic reaction networkatth has often been ignored; hence, the nding may urge us to
are “weakly reversible” and “de ciency zerdAr{derson et al., reconsider the issue. Synthetic approaches are also becoming
201Q. Our formulas (Equations 27 and 43) are consistent wittpopular to con rm small-number e ects. Ma et al. reported
the main theorems (theorem 4.1 and 4.2 Amderson et al., that an additional stable state in a genetic bistable toggitls
2010 in the above-mentioned mathematical theory. One of theattributable to the small-number e ect, which was predicted
advantages of our theory compared to the above mathematichy stochastic simulations, was indeed observed in bacteria
theory is understandably the probability generating fuanti containing the genetically engineered switdfia( et al., 201p
(PGF) approach, because the PGF is a major analytical todhese results suggest that such rare proteins, of the orderef o
for physicists, chemists, and mathematical biologists. @toee, molecule per cell, are common and a ect regulatory function in
our theory is easily veri able, and one can design a computebacteria.
algorithm to calculate our analytical formulas. We alsowsad Although eukaryotic cells are much larger than bacteriaythe
the extensibility of our theory by using applications (in Sec3), have complex membrane structures and cytoskeletons inside,
especially because of the CStoWTAS (Equation 61), which wasd the small-number issues can be particularly signi cant i
not suggested by the above mathematical theory. compartments or bottlenecks (e.g., if we consider the volufne o
Actual biochemical pathways in the cell involve thousands synaptic vesicle represented by a sphere 40 nm in diameter,
of chemical species, and their chemical properties vary. Ouhen 1 molecule corresponds to ca. 5nol/L). Rare proteins
theoretical framework is general and extensible to suchgtern  are also involved in physiologically important signaling pagtys
reaction networks, if they can be represented by CMEs sudh eukaryotes. In the Wnt signaling pathway, for example, the
as Equation (7). As our current model consists of simple twoeconcentration of axin is reported to be 20 pmol/L in Xenopus
body catalytic reactions, it is dicult to point out examples eggs I(ee et al., 2003(though suggested to be higher in
in actual biological systems that correspond exactly to oumammalian cellsTan et al., 2012 Another example is the
model. Biochemical reactions in reality may involve a numbeMAP-kinase cascade, where proteins of the order of merely
of intermediates. There are also autocatalytic process#sasi 10 molecules (e.g., Ste5) exist in a yeast cé&ho(son
autophosphorylation, and replication of templates such as DNAgt al., 201). For scaold proteins such as axin and Ste5,
in which the catalyst or template species is also a substrate speci cally, localization (locally high concentrations) eather
a product. Our framework is applicable to many such caseshemical species around the sca old may drastically change th
involving network conversion, as shown for simple autocatal reaction behavior, as spatial discreteness of the sca olcisrbes
cases. signi cant (Shnerb et al., 2000; Togashi and Kaneko, 2004
Nevertheless, the reaction kinetics of each enzyme is néurther studies in which spatial structures (cf. reactidrusion
always simple. Enzymes are complex macromolecules and theiguations) are considered are also expected to be important.
reaction cycles may depend on their conformational states. In the presented framework, we mainly focused on the
Therefore, the prediction of biological phenomena caused bgteady-state solutions of GFE. Of course, temporal counges a
small-number e ects in real biochemical reactions, woulda#in  biologically crucial in some cases. A well-studied example is
further analytical challenges for catalytic reaction ratvge  oscillatory behavior in circadian clock®¢ll-Pedersen et al.,
including arbitrary higher-order mixed reactions (rathéman  2005. In such oscillations, if a chemical factor is depleted
rst- and second-order reactions only) or internal dynamic down to a small number in a certain phase, then, the
of the enzymes (as modeled and analyzedTimgashi and period can be susceptible to stochastic reactions involving
Casagrande, 20).8s important issues. the factor in that phase; on the other hand, sequestration of
Throughout this work, our primary intention is to approach a factor may contribute to regular oscillationso(ley et al.,
small-number issues in biological systems. One mighR01). Again, the internal dynamics of enzymes can also be
wonder how general these small-number issues appear, anelevant in some systems. Although stochastic simulatenes
how important they are, in living cells. Recently, absoluténdeed powerful and many attempts are currently underway,
quanti cation of various proteins and mRNAs in the cell hasfurther theoretical understanding as well as the experimenta
become possible, and the integration of experimental resulguantitative observation of rare factors would be required.
(e.g., the construction of a databas®lo et al., 201) is also Note that a chemical “species” here can also be interpreted
underway. Taniguchi et al. investigated the copy numbeas a speci c state of a molecule; e.g., we can consider proteins
distribution for more than a thousand protein species inor genes, with and without modi cation, as separate species.
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Moreover, a similar interpretation is also applicable to ecplog FUNDING

and ethology Biancalani et al., 20)4if the laws governing

the system are analogous to reactions. We remain hopefdiihis work was supported by the Ministry of Education, Culture,
that theoretical frameworks including ours will facilitateet Sports, Science, and Technology, Japan (KAKENHI 23115007

exploration of small-number issues at equally higher lewéls “Spying minority in biological phenomena”), and Japan Agency
biological systems in future. for Medical Research and Development (Platform for Dynamic

Approaches to Living System).
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