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Functional magnetic resonance imaging at 7.0 Tesla was undertaken among
Schizophrenia participants (Sz), and clinical (major mooddisorder; MDD) and healthy
controls (HC), during performance of the Stoop task. Stroopconditions included
congruent and incongruent word color items, color-only items, and word-only items.
Previous modeling results extended to this most widely usedselective-attention task.
All groups executed item-encoding operations (subprocesses of the item encoding
process) at the same rate (performance accuracy being similarly high throughout),
thus displaying like processing capacity; Sz participants, however, employed more
subprocesses for item completions than did the MDD participants, who in turn
used more subprocesses than the HC group. The reduced ef�ciency in deploying
cognitive-workload capacity among the Sz participants wasparalleled by more diffuse
neuroconnectivity (Blood-Oxygen-Level-Dependent co-activation) with the anterior
cingulate cortex (ACC) (Broadman Area 32), spreading away from this encoding-intensive
region; and by less evidence of network dissociation acrossStroop conditions. Estimates
of cognitive work done to accomplish item completion were greater for the Sz
participants, as were estimates of entropy in both the modeled trial-latency distribution,
and its associated neuro-circuitry. Findings are held to besymptom and assessment
signi�cant, and to have potential implications for clinical intervention.

Keywords: clinical mathematical modeling, schizophrenia enc oding, schizophrenia stroop, clinical cognitive
neuroscience, schizophrenia neuro-circuitry

INTRODUCTION

Because of the prominence of thought disorder in the symptom picture of schizophrenia (Sz),
performance on cognitive tasks has long been a focus of investigation in the clinical science of this
disorder (e.g.,Maher, 1966). Deviations in neural circuitry unique to Sz likewise havecompelled
substantial research attention, at an accelerated rate with contemporary neuroimaging technology
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(Williamson and Allman, 2011). Mathematical modeling of
Sz cognitive performance has indicated cognitive processes
spared by the disorder (e.g., scanning and manipulation
of material in short-term, or working memory; response-
registration processes), and those that are disorder-a�ected
(notably stimulus encoding, or the cognitive transforming
of presenting stimulation into a format facilitating collateral
processes; reviewed inNeufeld, 2007a) Analytical mathematical
modeling moreover has set about identifying spared and
a�ected constituent parameters of disorder-a�ected processes,
and estimating associated neural circuitry through both fMRI
(Neufeld et al., 2010), and fMRS (functional Magnetic Resonance
Spectroscopy;Taylor et al., 2015).

The Stroop cognitive task, in turn, is arguably the most
widely used selective attention task in cognitive science (Eidels
et al., 2010). Its ascendant popularity extends to clinical cognitive
science (Macleod, 2010), including that directed to cognition in
Sz (e.g.,Minzenberg et al., 2009). In a typical Stroop task as used
in clinical cognitive science, performance requires the naming
of a color in which a word is written. Performance is impaired
when the named color, and the ink in which the name is written,
are mismatched. Recent developments in mathematical modeling
of Stroop performance (Eidels et al., 2010) have invited similar
analysis of its performance in Sz.

Here we extend previous modeling of Sz cognitive functioning
to that on this widely used task. Altogether, we examine if
previous formal modeling of Sz cognition also characterizes
their Stroop performance. We bring results ofEidels et al.
(2010) to bear on �ndings for the current groups of Sz
participants and controls [those with major depressive disorder
(MDD) and healthy controls (HC)]. We use a typical clinical-
science Stroop paradigm, but one that is extended in light of
mathematical Systems Factorial Technology (Eidels et al., 2010).
We also examine whether neurocircuitry over-connectivity
and its diversion away from encoding-intensive sites in
Sz are seen with the present analytically-modeled Stroop
task.

Mathematically Modeled Cognitive
Deviation in Sz
Experimental cognitive paradigms, such as those addressing
memory and visual search (late- and early-target paradigms;
Townsend and Ashby, 1983), have been used to triage processes
that are disorder-a�ected1. Convergent experimental evidence
and accompanying modeling have implicated stimulus encoding
as a Sz-a�ected process, potentially adversely a�ecting other
processes for which encoding is necessary. Stimulus encoding
refers to the conversion of presenting stimulation, such as an
alphanumeric probe of a memory-search task, into a cognitive
format entering into collateral processes, such as scanningfor the
probe's presence in a set of previously memorized alphanumeric
items (e.g., through memorial template matching). Experimental
isolation of this process, and its elongation in Sz, has exploited
1A review of mathematical modeling of schizophrenia cognition, alongwith
distinctions among analytical (mathematical), computational (with an emphasis
on computer simulation), and statistical modeling in clinical science, are available
in Neufeld (2015).

divergent paradigms (reviewed inNeufeld, 2007a; Neufeld et al.,
2010). Symptom signi�cance of this source of cognitive de�cit
also has been formally explored (e.g.,Neufeld et al., 1993;
Neufeld, 2007a).

Sources of Sz encoding elongation have been examined
using parametric stochastic models (e.g.,Neufeld et al., 1993).
Modeling results have reliably indicated that the speed of
transacting constituent encoding operations (i.e., encoding
subprocesses, such as implementing individual alphanumeric
features) is spared; the number of subprocesses undertaken,
however, is increased. By this account, cognitive workload
capacity at the subprocess level is preserved, but e�ciency
of its deployment has su�ered. Using a race horse analogy,
running speed is una�ected, but running takes place closer to
the outside rail, demanding more strides to complete the extra
distance.

Possible contributors to added subprocesses (enumerated in
Neufeld et al., 2010) include, for example, initial preparatory
activity, that ramps up, or primes the encoding apparatus;
Bluhm et al. (2007)have documented abnormal resting-
state, intrinsic-network neural circuitry in Sz, a �nding
compatible with potential stalling of resource recruitment
to the service of encoding.Williamson and Allman (2012),
moreover, cite evidence for reduced suppression of the
default network, potentially exacerbating task-network
activation.

The above combination of spared and a�ected encoding-
process parameters can be expressed in selected stochastic latency
distributions. One such distribution is the Erlang (e.g.,Evans
et al., 2000). Its density function isf (t) is

f (t)Erlang D
(vt)k0� 1

�
k0� 1

�
!
v e� vt

with mean

E(t)Erlang D
k0

v

and variance,

Var (t)Erlang D
k0

v2

where the shape parameter,k0, represents the number of
subprocesses, and the scale parameter,v, represents their rate
of completion. The diagnostic status of Sz is associated with
increasedk0, but no di�erence inv. Support for this parametric
account has converged from several paradigms and model
variants (reviewed inNeufeld et al., 2007a, 2010).

The additional-subprocess account has also been extended
(elsewhere) to mixture-model structures, providing for
individual di�erences in values of the above parameters
(e.g.,Neufeld et al., 2010). For example, mixing the parameter
k0 on a Poisson distribution with parameterm, and mixing the
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rate parameter,v, on a gamma distribution, with scale and shape
parametersr andk, produces a density function,

f (t)MixtureIPoisson; m.k0/ I Erlang; r; k(v)

D
1X

k0D 1

mk0

k0 e� m rk0 (k0 C k)tk0 � 1

0
�
k
� �

k0 � 1
�
! (r C t)kC k0

the distribution mean being

E(T)MixtureIPoisson; m.k0/ I Erlang; r; k(v) D
mr

k � 1

the expected variance givenk0andv being

E
�
Var

�
T

�
�k0; v

��
MixtureI Poisson; m(k0)I Erlang; r; k(v) D

mr2

(k � 1)(k � 2)

and total variance (i.e.,E[Var(T|k0, v)] C Var[E(T|k0, v)])
being

Total Var(T
�
�k0; v)MixtureI Poisson; m(k0)I Erlang;r; k (v)

D
mr2(2

�
k � 1

�
C m)

�
k � 1

� 2(k � 2)
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Here, the sole parameter to change with the occurrence of
Sz diagnostic status is that ofm, whose increase moves the
distribution of k0upward.

A further mixture—this time ofm via gammaR;K., allowing
for individual di�erences in a Poisson process that randomly
distributesk0over trials of individual performance (e.g.,Neufeld
et al., 2007b; see alsoBusemeyer and Diederich, 2010, pp. 169–
170)—also accommodates an account of increased subprocesses
with intact subprocess-level processing rate. It too accordswith
empirical-performance patterns of task encoding demands, and
diagnostic status2.

The expression of Sz encoding performance as an elevation
in subprocesses with intact speed of subprocess execution is
expected to extend to Stroop performance. The Stroop task
is considered to be encoding intensive in its requirements for
extracting task-prescribed properties from a stimulus complex,
and more so when a color word and the ink in which it is
written are incongruent. This condition demands the segregation
of imperative from detracting stimulus features. If subprocess
incrementation is the agent of increased latency, modeling Sz
performance by releasing the subprocess parameter but �xing the
subprocess-rate parameter (or their mixing distributions),across
groups, should �t empirical performance data. Furthermore,
diagnostic speci�cally of increased subprocesses, changes in
the additivity of performance latency should be observed with
increased encoding load (word-color incongruency) and the
entry of Sz diagnostic status.

2An additional mixture model, incorporating geometric and gamma distributions,
with similar accommodation of performance patterns tied to incremental
subprocesses, has been developed byCutler (2015)andCutler and Neufeld (2015).

Neuroconnectivity of Sz Deviations in
Stimulus Encoding
Abnormalities in fMRI-monitored neuro-activation during
stimulus encoding have centered on the anterior cingulate
cortex (ACC). Relative to controls, the pattern of activation
in Sz has consisted of more di�use, less ACC-channeled
responding (Boksman et al., 2005; Neufeld et al., 2010; Ungar
et al., 2010). Less ACC activation and more widespread
co-activation at less ACC-proximal locations, has indicated
diversion away from normal encoding-intensive sites. Encoding-
rich tasks, or task segments, have involved the summoning
of lexical associations to presented consonants (Word-Fluency
task; Boksman et al., 2005); Stroop performance (Ungar
et al., 2010); and encoding probe items, for memorial
comparison to a set of memorized items (memory-search task;
Neufeld et al., 2010).

The link between stimulus encoding and less ACC-
centered neuro-activation has been relatively robust across
Sz-groups—extending to �rst-episode, never-treated participants
(Boksman et al., 2005). It furthermore has been associated
with subtle dynamical di�erences in 7.0 Tesla measured
ACC glutamatergic activity occurring to repeated blocks of
Stroop-performance and rest periods (Taylor et al., 2015). For
example, healthy controls have generated increased glutamate
but not glutamine upon an initial block of randomized
Stroop conditions, the opposite increase occurring for Sz
participants.

MODELING fMRI-MONITORED STROOP
PERFORMANCE

Method
Overview
The Stroop task was performed during Blood Oxygenation Level
Dependent (BOLD) neuro-imaging of functional activation at
7.0 Tesla for Sz, MDD, and HC participant groups. The Stroop
paradigm combined selected conditions typically used in clinical
studies (e.g.,Perlstein et al., 1998), elaborated upon in light
of Systems Factorial Technology (SFT;Townsend and Nozawa,
1995), as applied to analysis of Stroop performance (Eidels et al.,
2010). Clinical science studies often include three conditions:
the naming of the ink in which a word corresponding with the
color is written (e.g., “green” written in green ink;congruent
condition); the naming of the ink color in which a di�erent-
color word is written (e.g., “red” written in green;incongruent
condition); and the reading of a non-color word, written in a
color (e.g., “sheep” written in green;neutralcondition).

Three conditions of the present paradigm required
participants to name the color of the ink in which a color-
word was written. In the congruent condition, the word and
ink-color matched, and in the incongruent condition, they
mismatched. In a third condition, the color of a color-patch,
consisting of a row of 5 “x's,” was to be named (color only).
A fourth condition (word only; red, green, blue, or yellow)
required the reading of a word printed in white against a black
background.
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Participants
There were 16 participants in the Sz and each of the control
(HC and MDD) groups who gave informed written consent
according to local Ethics Board Approval Guidelines. Prospective
volunteers with neurological or major medical illnesses, clinically
signi�cant head injury, other psychiatric disorders, MRI contra-
indications, or substance abuse within the previous year were
excluded from the study. Any healthy volunteer with a known
family history of psychiatric disorder in a �rst or second degree
relative was also excluded. A Stroop-task recording failurefor
one of the Sz participants reduced to 15 the number contributing
to the cognitive-behavioral analysis for that group. The fMRI
analyses, however, were applied to data from the original 16 Sz
participants, on the reasonable assumption (supported below)
that results from the remaining 15 participants nevertheless
would generalize.

A consensus diagnosis was established on all participants by
a psychiatrist and trained assistant with the Structured Clinical
Interview for DSM-IV (First et al., 1997). Sz subjects were
rated with the Scale for Assessment of Negative Symptoms
and the Scale for the Assessment of Positive Symptoms
(Andreasen, 1984a,b) and MDD patients were assessed with
the Montgomery Asberg Depression Scale (Montgomery
and Asberg, 1979) and the Young Mania Rating Scale
(Young et al., 1978). Thirteen Sz patients were receiving
atypical neuroleptics with Chlorpromazine Equivalent 426
� 299 mg (2 taking olanzapine; quetiapine/venlafaxine; 2
taking risperidone; quetiapine/paliperidone/escitalopram;
4 taking paliperidone; clozapine; risperidone/escitalopram;
quetiapine/escitalopram); and 2 patients were not medicated.
Ten of the 16 MDD patients were receiving antidepressant
medications at the time of the scan (bupropion/citalopram/
methylphenidate; venlafaxine; lamotrigine; desvenlafaxine;
bupropion/citalopram; escitalopram; citalopram; sertraline;
citalopram/mirtazapine/quetiapine; levothyroxine/melatonin).
While it is possible that some of the medications will a�ect
glutamatergic function, the actual functions of many of theabove
prescribed medications is unknown. Demographic information
including age, handedness, education, parental education,
clinical rating scores, and length of illness were collected in
accordance with methods described in our previous study
(Aoyama et al., 2011) and are shown inTable 1.

Procedure
Stroop Task
The stimuli (described above) were presented for 2 s and the
subjects were asked to respond as quickly and accurately as
possible within this time frame. A trial began with 1 s of
cross �xation (“C”) in the center of the screen. All visuals
were presented with a black background. Every participant
practiced outside the scanner until they achieved 80% correct
responses. Participants then underwent an MRI protocol that
consisted of a total of 8 min of the Stroop Task activity for
the purpose of examining glutamatergic activity in the ACC
(Taylor et al., 2015). The participants were then removed from
the MRI scanner for a 30 min break before re-entering to
complete the fMRI component (providing the current functional

TABLE 1 | Participant demographics.

Group Controls MDD SZ p

n 16 16 15

Age 24.18 � 4.67 22.62 � 4.75 22.70 � 2.98 0.510

M/F 10/6 5/11 12/3 0.019

R/L 14/2 14/2 15/0 0.842

Educ 3.06 � 0.77 2.56 � 0.63 2.20 � 0.86 0.010

PEduc 3.13 � 0.96 2.88 � 0.81 3.20 � 0.77 0.539

HAM-A 12.94 � 10.86

HAM-D 12.50 � 9.11

Mania 5.38 � 6.79

Montg 17.81 � 10.68

CPZ (mg) 368.83 � 314.67

SANS 9.60 � 8.01

SAPS 7.80 � 10.67

Illness duration
(months)

28.56 � 14.52 30.40 � 15.86

M/F, male/female; R/L, right/left; Educ, education rating of the participant (1, gr. 10
or lower; 2, completed high school; 3, 1–3 years of college/university; 4,> 3 years
of college/university); PEduc, education rating of the participant's parent (1, gr.10 or
lower; 2, completed high school; 3, 1–3 years of college/university; 4,> 3 years of
college/university); H Anx, Hamilton Anxiety Scale;Hamilton, 1959; H Dep, Hamilton
Depression Scale;Hamilton, 1960; Mania, mania rating from the Young Mania Rating
Scale; Young et al., 1978; Montg, result of the Montgomery Asperg Depression Scale;
Montgomery and Asberg, 1979; CPZ, chlorpromazine equivalent; SANS, Scale for
Assessment of Negative Symptoms;Andreasen, 1984a; SAPS, Scale for Assessment
of Positive Symptoms;Andreasen, 1984b; p, ANOVA test for signi�cance (alphaD 0.05,
two-tailed), bold values indicate signi�cance.

connectivity analysis), which consisted of nine, 1-min blocks
whose trials cycled between cross �xation and Stroop-Task
presentations, for a total of 4 min of Stroop activation during
the fMRI. A total of 80 Stroop stimuli were presented, twenty
from each condition (i.e., congruent, incongruent, word-only,
and color-only) presented pseudo-randomly throughout the
session (consistent order between participants). The paradigm
was written and presented using PsychoPy (Peirce, 2007).

MRI Signal Acquisition and Pre-processing
All data was acquired on a 7.0 Tesla Agilent/Magnex head-
only MRI (Agilent, Inc., Walnut Creek, California, USA) with a
Siemens AC84 head gradient coil (Siemens, Erlangen, Germany),
located at the Center for Functional and Metabolic Mapping at
the University of Western Ontario's Robarts Research Institute.
A transmit-only/receive-only head coil with 15 transmitters
and 23 receivers and a built in mirror was used for all scans
(Gilbert et al., 2011). A transmit-�eld shimming approach
facilitated optimized homogeneity of the transmit �eld for each
scan (Curtis et al., 2012). The magnetic �eld uniformity was
adjusted automatically using RASTAMAP (Klassen and Menon,
2004). The fMRI volumes were localized using anatomical MRI
images acquired with fast low-angle shot 2D (FLASH2D) images
[5 slices, repetition time (TR)D 6.3 ms, echo time (TE)D 3.5 ms,
�ip-angle D 11� , gap between slicesD 1 mm, thicknessD 2 mm,
�eld-of-view D 30 � 30 cm, matrix sizeD 128� 128] in each
of the sagittal, transverse, and coronal orientations. ThefMRI
images were then acquired using an echo-planar imaging (EPI)
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sequence (45 slices, interleaved sliced order, repetition time (TR)
D 3 s, echo time (TE)D 18 ms, �ip-angleD 90� , gap between
slicesD 0.2 mm, thicknessD 2 mm, �eld-of-viewD 22� 22 cm,
matrix sizeD 110� 110, GRAPPAD 3, 4 steady state scans),
angled to the AP line and aligned with the top of the brain.

Functional and anatomical data were preprocessed using
Statistical Parametric Mapping 8 (SPM8, Wellcome Trust Centre
for Neuroimaging, London, UK) implemented in MATLAB
R2013a (Mathworks Inc., Sherborn, MA, USA). Individual
functional images were corrected for motion by realignment
to the �rst volume of the session. All images were spatially
normalized (2� 2 � 2 mm) to an EPI template in MNI space
and spatially smoothed with a 6 mm full width at half maximum
(FWHM) isotropic Gaussian kernel.

Connectivity Estimation and Statistical Criteria
Statistical analysis proceeded in four steps. In a �rst-levelanalysis,
pre-processed fMRI data from each individual participant were
entered in a voxel-wise general linear model with design matrices
derived from the individualized instance of the Stroop paradigm
(i.e., epoch-related regressors). In the second step of this�rst-
level analysis, participant data obtained in the �rst step was
entered in a full-factorial design with a between-participant
factor of group (3 levels: HC, Sz, MDD) and a within-participant
factor of stimulus encoding load (2 levels: Low, High; stipulated
below). This step was used to identify brain regions activated
during transaction of the Stroop task common to all groups
and all stimulus encoding loads. In a third step, a second-
level analysis used the maximally-activated clusters obtained in
the previous step as seed regions of a functional connectivity
analysis. Speci�cally, we identi�ed regions with signi�cant
psychophysiological interactions (PPI) with the seed regions
(Friston et al., 1997). The seed region's activity time-course was
obtained by spatially averaging the activity of all imaging voxels
within a sphere of 10 mm radius centered on the coordinates of
the maximally activated voxel within the selected cluster at each
time point. The results of this analysis represent regions whose
BOLD fMRI time course of activity signi�cantly covaried with the
activity of the seed region during performance of the Stroop task,
relative to the baseline conditions (cross �xation). Theseregions
are said to be functionally connected to the seed region for the
explicit purpose of Stroop task transaction.

Note that, for the purpose of the fMRI analysis, two
stimulus encoding conditions—low and high—were constructed
as follows. The high encoding load consisted of the color-word
incongruent condition, for all groups. The low encoding load
for the HC and MDD groups comprised an amalgamation of
the color-word congruent and color-only conditions, and that
for the Sz group comprised an amalgamation of the color-only
and word-only conditions (elaborated upon below; Section Data
Properties Narrowing Model Selection). In a �nal step, the results
of the PPI analysis were entered in a second-level full factorial
design with group as a between subject factor and encoding load
as a within-subject factor, to identify brain regions connected to
the seed region in a group- and load-speci�c manner.

To distinguish common protuberant regions of functional
activation (second step of our analysis), we adopted a

whole-brain family-wise error (FWE) rate of 0.05. To
balance Type-I error protection against false negatives in
our functional-connectivity analysis (third step, above),our
SPM t-maps were thresholded atp < 0.001 (voxel-level) with
minimal cluster sizek D 10 (Lieberman and Cunningham, 2009;
see also,Ahn et al., 2011). Our SPM8 analysis used a within-cell
error term (df D 90) throughout, with its potential increase in
Type-I error protection for all contrasts involving the High-Low
encoding-load factor (Kirk, 2013, chapters 10, 12).

Cognitive-Behavioral Data Organization and
Analytical Methods
Means and inter-trial variances for responses within the 2 s trial-
time window were computed and adjusted for movement time. A
value of 0.160 s was subtracted from the means, and (0.036 s)2

was subtracted from inter-trial variances (Woodworth and
Schlossberg, 1954; Townsend, 1984; cf. endnote 4 ofTownsend
and Wenger, 2004).

Because trial numbers had to accommodate reasonable
demands on clinical participants performing in an MRI
environment, it was necessary to aggregate data across
participants, while avoiding the con�ation of systematic
individual di�erences (Estes, 1956; Neufeld and Gardner, 1990).
As previously done in clinical cognitive science, signi�cant
heterogeneity could be accommodated through mixture-model
structures, allowing for inter-participant di�erences in model
properties (e.g.,Batchelder, 1998, 2007; Riefer et al., 2002). With
relative homogeneity of performance, on the other hand, a group
could be represented as a homogeneous participant according
to the data centroid (e.g.,Townsend, 1984; Carter and Neufeld,
1999; Neufeld et al., 2007b).

Tacks to modeling comprised a combination of parametric
and nonparametric methods. Estimation of mixture-model
hyper-parameters and tests of empirical �t for the current
candidate architectures have been described elsewhere (Neufeld
et al., 2007b, 2010). Alternatively, given contraindication
of systematic individual di�erences, parameter estimates for
candidate architectures were directly available through the
method of moments (moment matching; e.g.,Evans et al.,
2000). Numerical simulation indicated that moment-matching
estimates equalled those of maximum likelihood, within a
constant of proportionality. Estimates also agreed with those
from direct solutions, where manageable subsets of predictions
were equated to corresponding empirical values, followed by
solving simultaneously (moment �tting).

Testing of model predictions against observed latencies, and
mean inter-trial variances, used the following ANOVA-based� 2

formats (Snodgrass and Townsend, 1980; Carter and Neufeld,
1999; see,Kirk, 2013). The �rst was

� 2 D
X W

wD 1

(� observedw � � model� predictedw)2

� 2
model� predictedw

(1)

with df D W � (number of parameter estimates), whereW is
the total number of combinations of groups and performance
conditions contributing to model-predicted empirical values.
Here, the term� observedw is either thewth empirical-sample
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mean latency, or inter-trial-latency variance;� model� predictedw
is the corresponding modeled mean, or inter-trial variance;
and � 2

model� predictedw
is the model-prescribed variance of the

sample mean or inter-trial variance. In the case of mean
latency, � 2

model� predictedw
becomes (model-predicted inter-trial

variancew)/qw, whereqw is the number of task trials making
up � observedw. Where � observedw consists of inter-trial variance,

� 2
model� predictedw

becomes
2(� 2

model� predictedw
)2

qw
. Division is by qw

rather thanqw -1 because maximum-likelihood estimates were
used for sample estimates (e.g.,Evans et al., 2000). It is assumed
that sample values are normally distributed, which is defensible
in view of the Central Limit Theorem.

A second version of� 2 was

� 2 D
WX

wD 1

qw(Meanlatencyobservedw
� � model� predictedw)2

� 2
model� predictedw

C
WX

wD 1

qwX

i D 1

(� iwobserved� Meanlatencyobservedw
)2

� 2
model� predictedw

(2)

with df D
P W

w D 1 qw � (number of parameter estimates). Here,
the individual latencies$ iwobservedin the double summation are
less likely to be normally distributed. In actual testing, both
Equations (1) and (2) nevertheless had to agree on tenability of
model �t. Essentially, Equations (1) and (2) address the degree to
which the proposed model speci�es a population whose summary
statistics are coherent with empirical values. Results from these
equations also agreed with those from selected applications of
multinomial-likelihood G2(� � 2), and Pearson� 2 applied to
proportions of responses binned into 5 equally-spaced latency
intervals (exempli�ed below).

Results
Participant Characteristics
Signi�cant di�erences occurred with respect to participant
education, but not parental education (parent with the higher
education-level;Table 1). Although the proportion of males in
neither the Sz nor the MDD group di�ered signi�cantly from
that of the HC group,p > 0.10, the two patient groups
di�ered signi�cantly from each other,� 2

(1) D 7.429,p D
0.0064. Overall, however, males responded signi�cantly faster
than females,t(141) D 3.8862,p < 0.001, partial� 2 D 0.269.
Any e�ect of sex di�erences on response latency therefore would
be in the direction of increased speed in the Sz group. Note,
as well, that individuals with Sz, especially those with paranoid
symptomatology (all but 3 of the present sample) tend more
often to be male. The ratio of female to male prevalence rates
for MDD, in turn is 1.64 (Romans et al., 2007). Eliminating such
(intrinsic) group di�erences risks the introduction of other, more
intractable issues of interpretation (e.g.,Cochran, 1957; Evans
and Anastasio, 1968; Meehl, 1971).

There were no signi�cant correlations between
Chlorpromazine (CPZ) daily-dosage equivalents (mg.
per day) and any of the performance variables (e.g.,
rCPZ; all response latenciesD � 0.179,p D 0.522).

Data Overview
Results from analyses of all latency responses, and those
from analyses of correct-only responses were highly similar
throughout, and analyses of correct-only responses yielded
no additional information (proportion correct generally
exceeded 0.90, and in no case were there signi�cant group
di�erences on proportion correct). Therefore, only results
based on all responses are reported (cf.Link, 1982). Table 2
presents adjusted latency means and inter-trial variances,in
each case along with corresponding inter-participant standard
deviations—taking into account all responses occurring
inside the 2-s trial intervals. Also listed are the percent of
correct trials and their inter-participant standard deviations.
Table 3 presents latency means and inter-trial variances, along
with inter-participant standard deviations, but for correct
responses only.

Note that mean latencies reported inTables 2, 3 were
computed directly from all values, rather than as the average
of participant-wise means. Data ensembles from individual
participants thereforede factowere weighted according to their
numbers of valid observations.

Likewise, inter-trial variances were computed as the sum
of squared deviations from the grand mean, above, of all
observations in the group-condition combination, divided by
the total number in that combination (maximum-likelihood
estimate; e.g.,Evans et al., 2000). Like mean latency values,
individual participants' data ensembles were consequently
weighted according to their numbers of valid observations.
Although such variance estimates included between-participant
variance in mean latencies, they were logically coherent with a
homogeneous-participant approach to data treatment (further
elaborated upon, below; Section Within-Group Performance
Homogeneity), including relative homogeneity of mean
latencies.

One HC participant reported having accidentally reversed
green and yellow response buttons during the experimental trials
(despite meeting the 80% correct criterion on practice trials).
Values for percent correct, and their standard deviations, with
this participant excluded, are presented in the last two columns
of Table 2. It was decided to retain this individual's latency data
throughout, because apart from the response-button reversal,
Stroop-item processing of principle interest was deemed to have
occurred. Again, results from analyses of all responses within the
2-s trial time interval, and those from correct responses only,
essentially were interchangeable.

Within-group Performance Homogeneity
It was �rst examined as to whether mean latencies and inter-trial
variances, across participants within groups, tenably emanated
from a single population, according to conformity to an
hypothesized normal distribution. To this end, Kolmogorov-
Smirnov (Lillifors corrected) and Shapiro-Wilks tests were
applied (as done, e.g., inNeufeld et al., 2010). None of these
24 tests—4 Stroop conditions per group, on each of the above
quantities—were signi�cant, despite appreciable statisticalpower
(Wilcox, 1997).
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TABLE 2 | Response time latencies to each of the Stroop conditi ons with inter-participant standard deviations using all r esponses.

Group Condition Means (s) Variances (s) a % Correct b % Correct c

HC Congruent 0.6072 � 0.0922 0.0479 � 0.0205 0.9500 � 0.1125 0.9767 � 0.0372

Incongruent 0.7885 � 0.1714 0.0784 � 0.0242 0.8875 � 0.1147 0.9100 � 0.0737

Color-only 0.6118 � 0.1096 0.0381 � 0.0334 0.9563 � 0.1276 0.9733 � 0.0417

Word-only 0.7081 � 0.0840 0.0614 � 0.0160 0.9438 � 0.1250 0.9867 � 0.0399

MDD Congruent 0.6362� 0.0866 0.0531 � 0.0325 0.9906 � 0.0202

Incongruent 0.8854 � 0.1088 0.0621 � 0.0227 0.9625 � 0.0532

Color-only 0.6495 � 0.0787 0.0492 � 0.0236 0.9781 � 0.0364

Word-only 0.7111 � 0.0943 0.0539 � 0.0241 0.9781 � 0.0364

SZ Congruent 0.6645� 0.1029 0.0791 � 0.0519 0.9633 � 0.0352

Incongruent 0.8906 � 0.1245 0.0764 � 0.0336 0.8700 � 0.1709

Color-only 0.7075 � 0.1267 0.0756 � 0.0378 0.9567 � 0.0417

Word-only 0.7060 � 0.1208 0.0613 � 0.0355 0.9633 � 0.0516

HC, healthy controls; MDD, Major Depressive Disorder; SZ, schizophrenia.
aVariances: inter-trial latencies.
bNon-responses are considered incorrect.
cExcluding responses from one healthy control subject who confused green and yellow buttons during the fMRI task.

TABLE 3 | Response time latencies to each of the Stroop conditi ons with
inter-participant standard deviations using correct resp onses only.

Group Condition Means (s) Variances (s) a

HC Congruent 0.5988 � 0.0964 0.0458 � 0.0210

Incongruent 0.7893 � 0.1759 0.0772 � 0.0244

Color-only 0.6075 � 0.0879 0.0367 � 0.0155

Word-only 0.7051 � 0.1117 0.0621 � 0.0345

MDD Congruent 0.6331� 0.0839 0.0492 � 0.0277

Incongruent 0.8870 � 0.1090 0.0616 � 0.0224

Color-only 0.6479 � 0.0929 0.0487 � 0.0244

Word-only 0.7109 � 0.0785 0.0544 � 0.0235

SZ Congruent 0.6545� 0.0987 0.0734 � 0.0519

Incongruent 0.8914 � 0.1277 0.0749 � 0.0331

Color-only 0.6947 � 0.1231 0.0665 � 0.0312

Word-only 0.6975 � 0.1121 0.0563 � 0.0313

HC, healthy controls; MDD, Major Depressive Disorder; SZ, schizophrenia.
aVariances: inter-trial latencies.

With performance data tenably emanating from a single
population per group, questions remain regarding relative
homogeneity of inter-participant performance within each
group. This possibility was initially examined according to
coe�cients of variation (cof v). Results generally did not indicate
any over-dispersion that would signal systematic individual
di�erences in model operation (see, e.g.,Batchelder and Riefer,
2007). For example, thecof v calculated on the inter-participant
standard deviation, pooled across conditions and groups, divided
by the grand mean was 0.1518. This value was signi�cantly
lower than that of a provisional benchmark of 0.297 for
mixture-model status of response latencies (Neufeld et al., 2010;
McKay's approximate� 2

(46) D 12.7966,p ! 1.0). A further

example is thec of vfor Sz participants, under the incongruent
condition of 0.139, McKay's approximate� 2

(14) D 3.27,
p D 0.9977.

An additional assessment of performance data, for evidence of
inter-participant heterogeneity in model operation, appropriated
a version of coe�cient alpha that addressed homogeneity
of response proportions over the 5 bins of adjusted-latency
intervals (2 s divided into 0.4 s segments). This version of
coe�cient alpha was 1� (Mean-squareparticipants� bins/Mean-
squarebins) (e.g., Neufeld and McCarty, 1994). Homogeneity
of values was supported according to an overall mean value,
taken across conditions and groups, of 0.985. Similar support
was obtained according to computations of the proportion
of variance accounted for by the bins in each group's bins�
participant layout (cf.Schmitt, 1996). Note that a� 2 test on
the bin-by-participant frequencies was contraindicated by
sparseness of some individuals' cell frequencies (Delucchi,
1993; Tollenaar and Mooijaart, 2003). Altogether, these
preliminary analyses indicated that group centroids were
not unrepresentative of data con�gurations for the separate
participants.

Data Properties Narrowing Model Selection
Given the uniform temporal properties of responding, attention
is turned to the stochastic cognitive modeling of performance
and its accounting for di�erences across groups. With a tenable
stochastic model in hand, cognitive-process dynamics are poised
for projection onto those of neuro-connectivity monitored
during task trials.

Examination of the pattern of latencies inTable 2 discloses
marked similarities and di�erences in values across groups and
conditions. Mean latencies for the color-only and congruent
conditions were highly similar, for both the HC and MDD groups
(2-tailed p's � 0.455). In the case of the Sz group, those for
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the color-only and word-only conditions were nearly identical
(2-tailedp D 0.981).

Also apparent was the similarity in di�erences between
the color-only (� congruent) and incongruent condition means
for the HC group, and that between the color-only (� word-
only) and incongruent means for the Sz group. When the
HC color-only and congruent means were amalgamated, and
the Sz color-only and word-only means were amalgamated,
the group di�erence in the contrast for the incongruent
condition (i.e., the 2nd-order di�erence) was only 0.00633,
t(Huynh-Feldt-epsilon-corrected dfD 124) D 0.24011,p D 0.798, 2-
tailed. Therefore, although these groups di�ered signi�cantly
from each other in their latency values (e.g., 2-tailedp D 0.039
and 0.012 for the incongruent and color-only conditions), and
di�erences between the incongruent and other conditions were
highly signi�cant throughout (2-tailedp D 0.003), the e�ects
on latency of HC-Sz group status, and higher (incongruent
condition)- vs. lower-encoding load (color only� congruentHC;
color only� word onlySz), were highly additive. Such additivity
shrinks considerably the set of eligible model structures and
parameter changes across groups.

The equivalent latency of color-only and word-only
conditions was unique to the Sz group. Note that this result
was not observed in the earlier session on fMRS, where 40 trials
had been performed under each Stroop condition (Taylor et al.,
2015). The present equivalence therefore was speci�c to the Sz
group in the second session of task performance.

Also unique to the Sz group was a seeming reduction in
latency under the congruent condition, relative to the color-
only (� word-only) condition. A more pronounced congruent-
condition facilitation e�ect for Sz participants has been
previously indicated in the literature on their Stroop performance
(e.g.,Perlstein et al., 1998). In SFT terms, “target-redundancy
gain” under the congruent condition may have specially bene�ted
the Sz group. Stochastic mechanisms endowing redundancy
gain include “statistical advantage,” occurring to an independent
parallel-channel architecture (see e.g.,Townsend et al., 2007;
Khodadadi and Townsend, 2015); transition to a highly e�cient
capacity-workload architecture, (notably a co-active parallel-
channel structure, e.g.,Townsend et al., 2007); or a structure
with cross-channel facilitation (e.g.,Johnson et al., 2010, their
Equation A.1.1, Box II); or possibly transition to a Gestalt-model
structure (Townsend and Ashby, 1983, chapter 13;Snodgrass and
Townsend, 1980).

Certain inter-condition di�erences in latency means
were in keeping with such possibilities. Speci�cally, unlike
the HC group, with little evidence of redundancy gain, the
Sz group displayed signi�cantly lower latencies under the
congruent condition than under their color-only� word-
only conditions (2-tailed p D 0.037). The second-order
di�erence (meancolor-only—word-only amalgam � meancongruent)Sz
� (meancolor only � meancongruent)HC, however, fell short
of signi�cance, t(124) D 1.3413, p D 0.0911, one-tailed.
This marginal evidence from mean latencies for Sz-speci�c
congruency facilitation nevertheless is formally probed
(below), in terms of estimated di�erences in the presence
of redundancy-gain mechanisms.

Also evident in Table 2 is a more pronounced color-
only—incongruent latency di�erence for the MDD group
(0.24 s) than for the HC or Sz groups (0.18 s). The test
on the second-order di�erence, (meancolor-only—congruent amalgam
� meanincongruent)MDD � (meancolor-only—congruent amalgam �
meanincongruent)HC, t(Huynh-Feldt corrected dfD 124) D 2.486,p D
0.0143,dz D 0.507, signaled a possible disproportionate MDD
cognitive workload-capacity reduction. Across-channel (color-
word) impedance may have occurred in the MDD processing
system operative during their incongruent trials. The MDD
group's performance data is also evaluated, expressly for this
possibility, below.

Candidate Model Structures
Mean Diagnostics
Focusing initially on the Sz and HC groups, the preliminary
analysis on latency data, above, was mean diagnostic of eligible
models. Candidate model structures and parameter changes
were required to generate additive e�ects on mean latencies
of elevation in encoding load—transition from color-only, and
its congruent or word-only equivalent, to the incongruent
condition—and Sz diagnostic status. This additivity corresponds
to the associated near-zero second-order di�erence (0.00633),
above.

A model generating mean additivity with increased encoding
load and Sz clinical diagnosis is the Erlang distribution,
above. With meank0/v, k0 being the number of constituent
processing operations (subprocesses), andv their rate of dispatch
(subprocess-level capacity), elevation ink0 across encoding load
and Sz diagnosis produces the requisite mean additivity.

Other structures (reviewed inNeufeld et al., 2010) also
produce the requisite con�guration of latency means. One
such structure is the Independent Parallel Moderately Limited
Capacity structure (IPMLC;Townsend and Ashby, 1983), whose
E(T) is

E(T)IPMLC D
X k0

i D 1

1

(k0� i C 1)( v
k0

P k0

j D 1
1
j )

Another, is a parallel structure with unlimited capacity during
completion of the �rst subprocess, followed by a decline and then
partial recovery—known as the First-Stage Unlimited Capacity
Parallel model (FSUCP;Neufeld et al., 2010; originating with
Townsend, 1984). For this model,E(T) is

E(T)FSUCP D
X k0

i D 1

1

(k0 � i C 1)
�

k0v
2
�
i � 1

2

�
.k0� 1C1/

� .

These expectations emanate from density functionsf (t) that
are instances of the General Gamma distribution (McGill and
Gibbon, 1965). The density function of the General Gamma
distribution is

f (t)General GammaD
k0

X

i D 1

Cik0cie� ci t
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where

Cik0 D
1

Q k0

j D 1Ij6Di

�
1 � ci

cj

�

andci is the exponential–distribution rate parameter for theith
stage of processing,i D 1.2, . . .k0. For the IPMLC model,ci is

ciIPLMC D
�
k0� i C 1

� v
k0

X k0

jD1

1
j
;

and for the FSUC model,ci is

ciFSUC D

�
k0� i C 1

�
k0v

2(i � 1
2)(k0� i C 1)

.

Each of the above candidates is considered further in the next
section.

Inter-Trial Variance Considerations
Like latency means, inter-trial variances in principle can
contribute to the selection of eligible model structures and their
parameter changes across experimental factors. For example,
inter-trial variance of the Erlang distribution isk0/v2, which,
again, increases linearly with an increase ink0. The variance of
the FSUCP model is

Var(T)FSUCPD
X k0

i D 1

1

[(k0 � i C 1)( k0v
2
�
i � 1

2

�
.k0� i C 1/ )]2

D
1
3

(4k02 � 1)
k0v2 ;

which to all intents and purposes is also linear onk0. That for the
IPMLC model is

Var (T)IPMLC D
X k0

i D 1

1

[ .k0� i C 1/v
k0 (

P k0

j D 1
1
j )]2

;

which accelerates onk0.
A di�culty with the diagnostic signi�cance of inter-trial

variances, and those of higher-order moments, is the instability of
their empirical estimates [e.g.,Ratcli�, 1979; consider the model-
predicted variances of empirical means vs. those of inter-trial
variances of Equation (1), above].

To illustrate, using the mean and inter-participant standard
deviation averaged across all groups and conditions, thec of
v for the mean latency (0.1585) was almost ¼ that of the
variances (0.5935). Likewise, taken as a representative surrogate
for population values the mean and inter-trial variance of theHC
group under the incongruent condition, thecof v for the sample
mean latencies (0.081479) once again was roughly ¼ that of the
variances (0.32444).

With these quali�cations in mind, sample variances somewhat
decelerated opposite to theoretical variances of the IPMLC
model when supposing a progressive increase ink0 with greater
encoding load and Sz group membership. The linear increases
in variances of the Erlang and FSUCP structures at minimum

were not opposite to the sample values' second-order di�erence
for encoding-condition and diagnostic groups.

The empirical variances' relative instability presents a
challenge to models in which variances �gure into parameter
estimation and tests of empirical �t. On balance, the Erlang
distribution was selected as the structure to be tested for
empirical �t given the random departure of sample variances
from model linearity onk0, and considering its straightforward
composition. Although this selection was spawned by the Sz and
HC groups' performance data, in the interests of parsimony, it
was also tested against data of the MDD group.

Hazard-Function Considerations
Note that the Erlang distribution's hazard functionh(t) D
f (t)/S(t), f (t) being the density function andS(t) the survivor
function, increases monotonically overt. Here, the density
function is that stated in Section Mathematically Modeled
Cognitive Deviation in Sz, and the survivor function is

S(t)Erlang D 1 �
1X

j D k0

.vt/ j

j!
e� vt D

k0� 1X

j D 0

.vt/ j

j!
e� vt D

0
�
k0; vt

�

0 (k0)

Where 0
�
k0; vt

�
is the incomplete gamma function

R1
vt xk0� 1e� xdx. Empirical estimates ofh(t), however, have

been non-monotonic, �rst increasing, then decreasing overt
(Bloxom, 1984, 1985; Luce, 1986).

Note that latency aggregates, such as those emphasized in the
current work, nevertheless can be functions ofh(t), with values
of these functions themselves being similar for monotonic and
non-monotonic shapes. For example,S(t), a function that bears
directly on the binning of proportions of empirical latencies
according to intervals oft, can be expressed for any continuous
distribution as

S.t/ D e� st
0 h. t0/dt0

Simulation ofS(t)'s from monotonic and non-monotonich(t)'s—
the latter created via probability mixtures (Barlow and Proschan,
1975)—shows that their trajectories acrosst can essentially
converge.

Observe, as well, that thenth momentE(Tn) is equal to

E
�
Tn�

D n
Z 1

0
S(t)tn � 1dt.

Inferences fromS(t) and E(Tn) generated by monotonich(t)'s,
as opposed to certain non-monotonic extensions, therefore, are
arguably not imperiled given acceptable model �t at this level of
analysis.

Parameter Estimation and Tests of
Empirical Fit
Results of parameter estimation and tests of empirical �t were
similar for the Sz and HC groups whether considered separately
or alongside the MDD group. For brevity, therefore, we report
those for all three groups taken together.
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Parameter estimation commenced with moment-matching
solutions for the subprocess-rate parameter,v, separately at each
combination of group and encoding-load condition (e.g.,Evans
et al., 2000). For all three groups, higher encoding-load was
represented by the incongruent condition; again, the color-only
and congruent conditions were amalgamated as low-encoding
load for the HC and MDD groups, and likewise the color-only
and word-only conditions for the Sz group. These estimates ofv
were then simply averaged, with the resulting value provisionally
�xed for all groups. Subprocess numberk0 was estimated using
the mean and inter-trial variance, for each group and encoding
load. The estimates were then, in turn, averaged at each group-
encoding-load combination, and �xed at those combinations.
The parameterv was subsequently re-estimated at each of these
combinations, with its overall mean in turn being �xed for all
groups. As estimates essentially converged at this point, they were
retained for subsequent tests of empirical �t.

Parameter estimates were 12.0698 forv. The estimate ofk0

for the HC group was 7. This value was incremented for all
three groups under the incongruent condition by an estimated
constanth D 3. The added subprocess-number for the Sz group
wasg D 2, and that for the MDD group wasg0 D 1. Estimated
subprocesses thus ranged fromk0D 7 tok0C h C g D 12.

Using Equation (1), � 2
(7) was 6.26457,p D 0.5092.

Similarly, with Equation (2),� 2
(174) was 179.038,p D 0.3740.

Probability values of Equation (2), computed separately at
each combination of group and encoding load, ranged from
0.1789 (HC, incongruent) to 0.5482 (MDD incongruent), with
a mean of 0.3700. Plots of empirical latencies and inter-
trial variances, as set against their model predictions, are
presented in Figures 1, 2. These results are called upon
when integrating the dynamics of Stroop-performance with
those of the fMRI hemodynamic response function (hrf),
below.

Formal Analysis of Possible Sz Word-Color
Congruency Facilitation
The possible Sz-speci�c performance facilitation under the
congruent word-color condition was examined using a
combination of parametric and distribution-general (SFT)
strategies. Mechanisms of stochastic-model structures that
are potentially responsible for congruency facilitation are
those of redundancy gain, occurring when multiple targets
are co-present on a given trial. Both the word and color can
be considered candidate stimulus features to the extent that
reporting either one is an eligible response, as is the case for
their solo appearance. In this way, the congruent condition
potentially quali�es as a double target relative to the word-
only and color-only conditions3. Candidate mechanisms of
redundancy gain include the following: statistical advantage
accompanying the operation of an independent (regular) parallel
model, with unlimited processing-channel capacity (UCIP
3Note that the present word-only and color-only conditions were not strictly
single-targets. Their formats di�ered from that in their congruent condition (e.g.,
color “x”'s, vs. color word), which inadvertently may have introduced display
features that became incidental distractors with a switch in format (Little et al.,
2015).

FIGURE 1 | Empirical latencies and model predictions, across H igh and
Low Encoding Loads and diagnostic groups. Sz, Schizophrenia
participants; HC, Healthy Controls; MDD, Major DepressiveDisorder
participants. Low Encoding Load: Mean of color-only and congruent Stroop
conditions, for MDD and HC groups; Mean of color-only and
word-only conditions for Sz group. High Encoding Load: Incongruent
color-word condition for all groups. Error bars are standard deviations (pooled
for low-encoding-load conditions) across participants within groups and
Encoding Load.

FIGURE 2 | Empirical inter-trial variances in latencies and t heir model
predictions, across High and Low Encoding Loads and diagnos tic
groups. Sz, Schizophrenia participants; HC, Healthy Controls; MDD, Major
Depressive Disorder participants. High and Low Encoding Loads, and error
bars, are as those for mean latencies (Figure 1 ).

model); transition to a highly e�cient, super workload-capacity
structure, (notably represented by co-active, or cross-channel
facilitative parallel structures); and transition to a Gestalt-
model structure. Each of these possibilities now is taken up
in turn.

Statistical Advantage, Super-Capacity, and Related
Model Structures
Statistical advantage occurs in a redundant-target condition
when two independent target-processing channels sum their
workload capacity together toward attaining a single su�cient
completion. Statistical advantage can be quanti�ed as the sumof
the individual channels' integrated hazard functions
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Z t

0
h(t0)dt0color C

Z t

0
h(t0)dt0word

D � ln (S(t))color � ln (S(t))word;

in view of the equalityS.t/ D e�
Rt

0 h. t0/dt0. This sum is also
expressed as, “theCapacity Indexfor color, added to theCapacity
Indexfor word,” denotedCIcolorC CIword. TheCapacity Indexfor
the double target condition, in turn, is denotedCIcolor; word.

Capacity properties of the processing system can be assessed
according to the SFT's Capacity–OR-Coe�cient,

CORT �
CIcolor;word

CIcolorC CIword
; (Townsend and Nozawa, 1995).

Statistical advantage, a property of the UCIP model structure,is
identi�ed as aCORT value of 1.0. In line with the expressions,
above, this value indicates that channel processing-capacity is
una�ected when channels are added to the processing system.
Values of CORT exceeding 1.0 imply system super-capacity,
and those less than 1.0 signify limited capacity. Super-capacity
occurs when channel-level processing speed actually increases
with additional channels, or when a highly e�cient system
architecture is operative. In contrast, limited capacity occurs
when channel-level speed diminishes with additional channels.
As a special case, capacity is said to be “�xed” if single-
target values are spread across target-processing channels in
a redundant-target condition. TheCORT of a �xed, limited-
channel system is 0.5.

As a possible agent of congruency facilitation, super-capacity
can take place with highly e�cient processing structures. In the
case of a co-active parallel structure applied to redundant targets,
the signals (aligned, e.g., with subprocess completions) of each
independent processing channel are pooled with those of the
other channel—as tributaries to a common conduit—with the
trial being �nalized when the required complement is reached.
A cross-channel facilitative super-capacity system, on the other
hand, terminates when completions of one or the other target-
processing channel reaches a criterial level. The channels in this
case are not independent; for instance, either or both channels
can share their completed elements (e.g., subprocesses) with
the other, boosting the recipient's progress toward the requisite
amount.

We �rst test for Sz congruency facilitation through a
parametric UCIP structure, speci�cally a simultaneous
Erlang system. Other facilitation mechanisms then are brie�y
considered, followed by the application of distribution-general
assessments of system capacity. The latter includeCORT, and
related indexes known as the Race-Model Inequality (RMI) and
Grice Inequality (GI; see, e.g.,Eidels et al., 2010).

Unlimited-Capacity, Independent Parallel Process
The simultaneous Poisson process can be used as a parametric
expression of an unlimited-capacity, independent parallel
architecture (e.g., Townsend, 1984; cf. clinical-science
implementations ofCarter and Neufeld, 1999). Its distribution
analytically provides mean latencies and inter-trial variances
of redundant-target trials. It was conjectured that channels of

color-only and word-only single-target presentations would
simultaneously be operative during redundant-target trials.
Because their latencies were nearly identical, color-onlyand
word-only values again were amalgamated for parameter
estimation. These estimates were now derived speci�cally from
the Sz data. The value ofv was 10.00076, and that ofk0 + g was
7, the Sz-isolated values each being correspondingly lower than
their counterparts in the 3-group analysis. These parameter
values were assigned to each of the simultaneous processes.

The predicted mean for the congruent word-color
condition was

E(T)Stroop; congruentI simultaneous PoissonD

2
X k0C g� 1

sD 0

(
k0C g C s� 1

s
)( 1

2)
k0C g� 1

2

� s
(k0 C g C s)

2v
(3)

Expressed here isPr(color-channel �rst-completion) E(T|color-
channel �rst-completion) C Pr(word-channel �rst-completion)
E(T|word-channel �rst-completion); Equation (3) shows that the
terms of the left- and right-hand side of this summation are
assumed to be identical. By similar reasoning, the predicted
variance was
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In Equation (4), each conditional expectation ofT2 is weighted
by the probability of the condition (color �rst or word �rst), and
summed; subtraction of the squared value of the predicted mean
yields the predicted variance.

This model seriously under-predicted observations. The
predicted mean was 0.553327, vs. the observed 0.664508, and the
predicted variance was 0.03383, vs. the observed 0.079147. For
Equation (1), the obtained� 2

(2) was 17.939, and for Equation (2),

the � 2
(20) was 49.791,p ! 0 in each case. Considering the failure

of predictions even at the level of statistical advantage, those of a
super-capacity variation can be dismissed out of hand.

Gestalt Parallel Model
In a Gestalt parallel model, redundant targets are merged into
a single unit. An Erlang structure again was applied, withk0 C
g D 7. A unique Gestalt-rate valuevg was estimated from the
Sz color-word—congruent data itself by allowing the color and
word targets to be combined into a single unit. As expected,
this model's predictions closely �t the empirical data. They
nevertheless did not �t better than the predictions that were
constructed using parameter values estimated and imported from
the Sz group's color-only (� word only) data. The estimated value
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of vg was 9.96925, almost identical to the imported value of
10.00076.

The �t was similarly acceptable in each case. For example,
Equation (2)'s Gestalt-model� 2

(1) was 0.5633,p D 0.4599,
and that for the color-only (� word only) imported parameter
values was� 2

(2) D 0.52956,p D 0.7673. A tendered Gestalt
model therefore did not improve predictions of the congruent-
condition observations over those of the Erlang distribution
using the Sz group's color-only (� word-only) parameter values.

The tests of �t for the Erlang distribution importing the
color-only (� word-only) parameter values, using Equations
(1) and (2), were augmented by binning response frequencies
according to latency intervals (described in Section Within-
Group Performance Homogeneity, above), and computing
Pearson� 2 and multinomialG2 (� � 2) values.

Results generalized to these formats of empirical testing,
Pearson� 2

(4) D 1.9339,p D 0.7479;G2
(4) = 1.9303,p D 0.7485.

Likewise, importing the parameter estimates of the Sz group as
obtained in the analysis on all three groups (k0 C g D 9, v D
12.0699), Pearson� 2

(4) D 3.4009,p D 0.4391, andG2
(4) = 3.5413,

p D 0.4716.
The imported parameter values' validity was also probed

through parameter-sensitivity analysis. Departure from estimates
led to marked elevation in the present statistics. For example,
with v D 10.00076 (as estimated from the Sz group's color-only
[� word-only] data), andk0C g raised from 7 to 10, Pearson� 2

(4)
became 9.09, andG2

(4) rose to 9.356.

Distribution-General Indexes
The Sz performance data was further assessed for possible
congruent-condition facilitation according to distribution-
general measures of system capacity. Three indexes were
computed from the binned latency frequencies, described above.
The race-model inequality

(RMI) is stated as follows:

S(t)congruent � S(t)color � S(t)word C 1.0� 0

whereS(t) is the empirically-estimated survivor function att.
Inequality violations (negative values) indicate super-capacity.
TheGI, in turn is

MIN [S(t)color; S
�
t)word

�
� S(t)congruent� 0.

Violations indicate highly limited capacity. Values for these
indexes, along withCORT, are presented for the Sz and HC groups
in Table 4.

Changes over intervals oft resemble those reported byEidels
et al. (2010). Values ofRMI increased, and those ofCORT tended
to decrease. In all, capacity dynamics of trial completion were
roughly similar across these groups. There was no evidence of
super-capacity for either group.

The index,CORT nevertheless was lower than 1.0 throughout.
The mean for the Sz group was 0.596, and that for the HC group
was 0.670. Taken together, theGI andCORT values indicate that
for the HC group, single-channel processing, as expressed under

TABLE 4 | Race-Model Inequality, Grice Inequality, and the
Capacity-OR-Coef�cient for schizophrenia and healthy cont rol groups in
the color-word congruent condition.

t(s) 0.4 0.8 1.2 1.6

SZ RMI 0.023678 0.684039 0.959520 0.976500

GI 0.016722 0.018302 � 0.013037 0.000090

CORT 0.810699 0.574320 0.466000 0.531270

HC RMI 0.006310 0.697062 1.029344 0.993692

GI 0.003254 � 0.003155 � 0.003155 0.000000

CORT 0.975500 0.606450 0.545700 0.552700

RMI, Race-Model Inequality; GI, Grice Inequality; CORT, Capacity-OR-Coef�cient; SZ,
schizophrenia; HC, healthy controls.

the color-only condition, arguably was transferred to the color-
word congruent condition. Considering the structure ofCORT,
a value exceeding 0.5 would be expected for this group. Unlike
the Sz group, targets were not strictly redundant, in thatCIcolor>
CIword was observed for each bin.

For the Sz group, color or word single-channel processing,
as expressed in their color-only� word-only condition
data, again is supported. The values ofGI and CORT
together also indicate the possibility that system capacity
was divided between the color and word channels in
the congruent condition. This possibility is empirically
equivalent to single-channel processing, given �rst-completion
termination, and the requisite complement of subprocess
completions.

Formal Analysis of Possible
Disproportionate MDD Word-Color
Incongruency Impairment
The possibility of disproportionate MDD impairment under the
incongruent condition also was examined with a more �ne-
grained analysis. Estimates ofCI were computed separately for
the MDD and HC groups under each bin for the color-only
(� congruent) and incongruent conditions (Table 5).

Also presented inTable 5 are capacity ratios (Wenger
and Townsend, 2000). Computations addressed inter-
condition ratios, CIincongruren/CIcolor-only� congruent or
CRincongruent=color-only� congruent for each group. Inter-group
ratios,CIMDD/CIHC (CRMDD=HC), were computed separately for
the color-only (� congruent), and the color-word incongruent
conditions.

The meanCRincongruent=color-only� congruentfor the MDD group
was 0.5358, highly similar to that of the HC group's 0.5486,
contraindicating a more pronounced MDD incongruity
impairment. The mean CRMDD=HC for the color-only
(� congruent) condition was 0.8536, and that for the incongruent
condition was 0.7719. Overall, the con�guration ofCI and CR
values were not out of keeping with an Erlang structure, above,
that has a single value ofv; an incremented subprocess number
attending higher encoding load, shared by both groups; and an
incremented subprocess number with MDD diagnostic status,
occurring to both encoding loads.
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TABLE 5 | Capacity Indexes for Color-Only ( � congruent) and Incongruent
Conditions ( CIcolor -only � congruent ; CIincongruent ) and Capacity Ratios
(CR) for the Major Depressive Disorder (MDD) and the Healthy C ontrol
(HC) groups.

t (s) 0.4 0.8 1.2 1.6

MDD CIcolor-only � congruent 0.0953 1.6063 3.5501 5.2569

CIincongruent 0.0221 0.5056 2.2420 5.0750

HC CIcolor-only � congruent 0.1134 1.8173 4.0540 6.4509

CIincongruent 0.0494 0.8570 2.4817 4.3536

MDD CR
( incongruent
color-only � congruent )

0.2320 0.3147 0.6310 0.9654

HC CR
( incongruent
color-only � congruent )

0.4356 0.4712 0.6122 0.6749

Color-only �
congruent

CR(MDD
HC ) 0.8399 0.8839 0.8757 0.8149

Incongruent CR(MDD
HC ) 0.4285 0.5900 0.9034 1.1657

Performance Accuracy
Tests on group di�erences in performance accuracy were
negative throughout (Section Data Overview). A more
pronounced accuracy reduction under incongruent conditions
among Sz participants (Sz impairment), however, has been
obtained in selected studies (e.g.,Perlstein et al., 1998). Such
accuracy di�erences, where found, are interpretable within the
present theoretical formulation of additional subprocesses. This
account is presented in Appendix A.1. Performance Accuracy.

Where signi�cant accuracy di�erences have not been
obtained, as in the present case, some investigators (e.g.,Barch
et al., 2004) have opted for so-called Process-Dissociation analysis
of correct response proportions at various timest following trial
onset (Lindsay and Jacoby, 1994). Using this analysis, group
di�erences signifying Sz de�cit purportedly have been revealed
with respect to probabilities of color and word completions by a
time t. It is questionable whether this analysis is coherent with
the present developments, and indeed with analytical validityof
the Process-Dissociation measurement model altogether. Taken
up in Appendix A.2. Evaluation of Process-Dissociation Analysis,
these issues contraindicate the use of this analysis in clinical
cognitive science (or elsewhere).

Integration of Modeled Functional, and
Hemodynamic Response Function
Dynamics
We precede our presentation and discussion of our fMRI
�ndings with an exposition of our model-based measurement
strategy, emanating from the above developments. Cognitive-
task performance dynamics, and those of the hrf (seeAshby,
2011), proceeds as follows. We �rst construct a model-informed
representation of the dynamical trajectory of Stroop-item
processing for each combination of encoding load and diagnostic
group. Considered alongside are dynamical aspects of the hrf,
as set against the model-estimated trajectories of Stroop-item

processing. This combination, in turn, guides our selection
of MRI-signal analysis—speci�cally Psychophysiological
Interaction Analysis (Friston et al., 1997; SPM8, http://www.
�l.ion.ucl.ac.uk/spm). Di�erences across encoding load and
diagnostic groups in time-series covariance are addressed
between a theoretically-speci�ed “seed voxel,” and other
(searched) voxels residing within an a-priori determined brain
region. This form of MRI-signal treatment is considered
advantageous in the present context, for reasons stated below.

When implementing the Erlang distribution (Sections
Mathematically Modeled Cognitive Deviation in Sz; Candidate
Model Structures; Parameter Estimation and Tests of Empirical
Fit), the modeled probability of continued processing overt is
its survivor function,S(t). Model values ofS(t) for the three
diagnostic groups, under the lower and higher encoding load
conditions, are presented inFigures 3A,B. Superposed onto
theseS(t) trajectories is a modeled hrf [i.e., hrf(t)], along with its
time derivative [d(hrf(t))/dt]. The latter are the 0–2 s segments
extracted from the protracted hrf and its derivative, presented
in Figure 3C. The juxtaposition of hrf(t), d(hrf(t))/dt, and S(t)
contours indicate methods of choice for MRI data analysis in the
present context.

Note �rst that that the time derivative of hrf(t) increases
earlier than the hrf(t) signal itself. Note as well that the
time-series covariance between a seed and searched voxel
(Cs;hIt) exploits this increased temporal resolution. Consider
the time derivatives of hrf-estimated seed- and searched-
voxel activation, d(hrf(t)s)/dt, and, d(hrf(t)h)/dt. The quotient
[d(hrf( t)h)/dt]/[d(hrf( t)s)/dt] D d(hrf(t)h)/d(hrf( t)s) expresses
the momentary change att of the searched-voxel hrf to that of
the seed-voxel hrf. To the degree that their non-linear relations
to t align with each other, the linear covariance between hrf(t)h
and hrf(t)s increases, and vice versa. Change in hrf contours
elevate more quickly than the contours themselves, promoting
the relatively early hrf-covariance estimation of seed-searched
voxel association (Neufeld, 2012). More formally,

[
Z T

0
f . t/ dt] � 1

Z T

0
f . t/

d
�
hrf. t/h

�

d(hrf(t)s)
dt

D [
Z T

0
f . t/ dt] � 1E[

d
�
hrf. t/h

�

d(hrf(t)s)
] t2[0;T]

and Cs;hIt D w{E [d(hrf( t)h) / d(hrf( t)s)] t 2 [0;T] }; hereE {� } is
the expectation of temporal change in the searched voxel to that
in the seed voxel over a trial-wise measurement periodT (D2 s),
andw is an increasing function.

Bringing forward the estimation of neuro-connectivity, in
principle, increases measurement sensitivity to neuro-circuitry
associated with targeted processing by stochastically favoring
the intersection of high intra-trial process likelihoodS(t)
and estimated voxel co-activation. This asset has been of
demonstrable value in the context of rapid-processing paradigms
in clinical cognitive neuroscience (e.g.,Boksman et al., 2005;
Neufeld et al., 2010). It squarely is coherent with the goal of
selecting cognitive processesper seas the events of express
interest in event-related fMRI.
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Functional MRI Findings
As described in Section Connectivity Estimation and Statistical
Criteria, we conducted a search for Stroop-activated regions
common to all groups and encoding conditions in the second
step of our functional connectivity analysis. Large clusters of
signi�cantly activated voxels were found mainly in the parietal
lobes (bilaterally), in the dorsal ACC (bilaterally) and inthe
motor cortex (mostly left sided). Detailed cluster-wise results are
presented inTable 6.

In the third step of the analysis, we recruited regions presented
in Table 6 to conduct our functional connectivity analysis.
Again, our focus is on connectivity and di�erential connectivity
associated with our Sz and control groups and task encoding
load, speci�cally for the seed region located in the dorsal
ACC (Broadmann area 32). This area is of particular interest
in the cognitive neuroscience of Sz, including that of Stroop
performance (Taylor et al., 2015). Figure 4presents a glass brain
representation of the distribution of connectivity clusters for each
group and encoding condition, along with directional encoding-
load di�erences within groups. Cluster details are presented in
Table S1 of the online supplement.Figure 5 similarly presents

the distribution of clusters for group di�erences under the more
challenging high encoding load condition. Also presented are
second-order contrasts, addressing patterns of between-group
changes in encoding-load di�erences. Details of these latter
contrasts are presented in Table S2 of the online supplement.

DISCUSSION

Stroop Modeling
A parsimonious account of Stroop-task performance comprises
the operation of a single process (color-processing channel).
This process is expressed as a parametric Erlang distribution
having a single rate parameter, but whose subprocess parameter
is incremented under word-color incongruent conditions and
with the occurrence of clinical diagnostic status. Cognitive-
workload capacity, operationalized as the rate of subprocess
transaction, is preserved with Sz, and MDD. Its deployment
e�ciency, however, is disorder-a�ected. This account agrees with
previous formal modeling of Sz cognition (e.g.,Neufeld et al.,
2010). The present �ndings indicate a tenable extension of this
parametric combination to MDD (thep-values for separate MDD

FIGURE 3 | (A) Modeled process survivor functionsS(t) for diagnostic groups (abbreviations are as inFigures 1 , 2), under low Stroop-item encoding conditions. hrf(t)

is the hemodynamic response function (of timet), modeled as the difference in two gamma-distribution density functions: 1
C [ tn1� 1

�
n1
1 0(n1)

e
� t

� 1 � a tn2� 1

�
n2
2 0(n2)

e
� t

l 2 ], where

a D 0.3, n1 D 4, n2 D 7, l 1 D l 2 D 2, and C D
R50
0 [�] dt (Friston et al., 1998; Glover, 1999). (B) As in (A), except S(t) are for higher encoding load.(C) Modeled hrf(t),

and its time derivative d(hrf(t))/dt, from t D 0 to t D 50 s, whose extracted 0–2 s segments are inserted into(A,B); hrf(t) and d(hrf(t))/dt are scaled by a constant (D22),
for visualization. The time derivative in(C) is scaled byc D 4.05, for visualization.

TABLE 6 | Local Maxima of statistically signi�cant clusters r esulting from Stroop task activation (all groups and stimulus encoding loads combined).

MNI Coord. x,y,z R/L Lobe Gyrus Brodmann area k t-value (voxel-level)

10, 16, 38 R Limbic Cingulate gyrus 32 532 6.40

� 4, 2, 56 L Frontal Medial frontal 6 532 9.65

� 40, � 2, 36 L Frontal Precentral gyrus 6 622 7.66

44, 0, 28 R Frontal Precentral gyrus 6 111 5.71

� 36, 18, 30 L Frontal Middle frontal 9 12 5.24

32, � 6, 52 R Frontal Middle frontal 6 11 5.15

� 44, � 38, 52 L Parietal Inferior parietal lobule 40 4357 11.35

� 30, � 64, 40 L Parietal Precuneus 19 4357 9.70

34, � 58, 44 R Parietal Inferior parietal lobule 40 791 8.65

34, 20, 4 R Sub� lobar Insula 13 194 6.73

� 32, 16, 8 L Sub� lobar Insula 13 39 5.37

All entries represent an exhaustive list of clusters with p-valuesreaching FWE-corrected statistical signi�cance p< 0.001.
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FIGURE 4 | Glass-Brain Representation of fMRI Data Within-Gr oup tests Results ( k D 10, p < 0.001).

� 2's provided by Equation (2) were 0.49 and 0.55, for lower
(color-only � congruent) and higher (incongruent) encoding
loads, respectively). The ordering on the subprocess parameter of
the HC, MDD, and Sz groups is in keeping with previous �ndings
of their positions in encoding-intensive cognitive performance
(e.g.,Highgate-Maynard and Neufeld, 1986; George and Neufeld,
1987).

Stroop performance across participants, within groups,
was ascertained to be relatively homogeneous. The parallel
participant performance pro�les allowed for their aggregation,
and within-group �xed-parameter status of subsequent modeling
(Neufeld and Gardner, 1990; Neufeld, 2007b). The present

homogeneity di�ers from performance on other paradigms,
where mixture models have been constructed to accommodate
apparent systematic individual di�erences in parameter values
(e.g., Neufeld et al., 2002, 2010). Requirements of such
paradigms arguably have gone beyond the current item-feature
identi�cation, instead comprising more involved item encoding
in the service of memory search. The more basic Stroop-item
encoding evidently was less permissive of variability in parameter
values across individuals, within groups.

Potentially important innovations to the Stroop task have
been introduced byEidels et al. (2014). In their developments,
word reading is ensured by requiring statement of an item's
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FIGURE 5 | Glass-Brain Representation of fMRI Data Between-G roup tests Results ( k D 10, p < 0.001).

ink color if and only if the carrier word itself is the name of
a color (e.g., combination of “yellow” printed in green, but not
“mellow” printed in green). The procedure is designed to reduce
individual di�erences in word impingement on processing, and
potentially to increase incongruent-condition interference. In the
present case, performance nevertheless did not systematically
di�er across participants within groups or conditions. The
incongruity-interference e�ect also was consistent throughout.
Using Eidels et al. (2014)enhanced methodology, however, the
latter may become more pronounced. The present modeling
interpretation moreover should withstand such paradigmatic
variation; clinical groups should be characterized speci�cally by
elevation in encoding subprocesses.

Turning to the color-word congruent condition, for each
group, processing could be understood as being the same as
that occurring in the color-only (color-onlySz � word-onlySz)
condition. The result parsimoniously supports the operation ofa
self-terminating color-target process in the congruent condition
(cf. Wenger et al., 2010). Implied is a speci�c version of the
GI, namely MIN[S(t)color-only, S(t)word-only] � S(t)congruentD 0.
Values ofGI approximating 0 are evident inTable 4, for both
the Sz and HC groups. Recall, as well, that mean latency can

be considered summarily to aggregateS(t), becauseE.T/ DR1
0 S(t)dt, and there was no signi�cant second-order HC-

Sz di�erence in mean latencies involving the congruent, and
color-only (color-onlySz � word-onlySz) conditions. Again, the
apparent equivalence of the congruent- and color-only (color-
onlySz � word-onlySz) condition performance may change with
the paradigmatic variation ofEidels et al. (2014).

The modeling results did not support Sz-speci�c, congruent-
condition facilitation. The essential equivalence of color-only
and word-only processing, however, was Sz speci�c. The
mechanism(s) of such unique equivalence has yet to be
understood. It is possible that these lower-encoding conditions
were mutually a�ected by default-network continuance (Bluhm
et al., 2007; Ongür et al., 2010; Williamson and Allman,
2012). Meanwhile, the result nevertheless suggests that neuro-
connectivity for this condition amalgam may be di�erent from
that of the color-only—congruent amalgam, associated with the
HC and MDD groups.

As stated at the outset, the Stroop task has been widely used in
clinical-science studies, among various clinical groups. In meta-
analytic reviews of cognitive deviation in ADHD, for example,
a disproportionate susceptibility to word-feature interference
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has been noted (Boonstra et al., 2005; Lansbergen et al., 2007).
Also observed has been greater across-study heterogeneityof
abnormalities, which, contra our �ndings, may be an extension
of within-group heterogeneity.

In their SFT analysis of the Stroop task among non-clinical
participants,Eidels et al. (2010)used an incongruent-trial format
for their designated single-target condition. Again, thisformat
contrasts that of the current study, where color-only and word-
only trials represented the single-target condition. Also,rather
than naming the presented color,Eidels et al.'s (2010)participants
indicated the presence-absence of either a target ink-color, or
target color name. For example, the color red, and word “red”
each might be targets. A single-target incongruent condition
could be the word “blue” written in red ink, or the word “red”
written in blue ink. The word “red” written in red ink would
constitute a double-target condition. Using such combinations of
single and double targets, the SFT analysis ofEidels et al. (2010)
supported the operation of an independent-channels unlimited
capacity (i.e., UCIP) processing architecture.

Our paradigm's incongruent condition corresponds toEidels
et al.'s (2010)ink-color single-target condition. Allowing this
condition also to stand as a surrogate for the word single
target condition, we examined our performance data for the
presence of a UCIP architecture. Treating our incongruent
condition this way, results for our HC participants agreed with
those found withEidels et al.'s (2010)non-clinical sample. Like
theirs, ourCORT values were close to the UCIP-prescribed 1.0
(averaging 0.9631 for latency frequencies binned over intervals
appearing in Tables 4, 5). We also tested empirical �t of
predictions from a simultaneous Poisson process (as described
in Section Unlimited-Capacity, Independent Parallel Process),
using Equations (1) and (2), as well as multinomialG2's and
Pearson� 2's applied to congruent-condition binned frequencies.
Results again were uniformly supportive for the HC group (e.g.,p
for Pearson� 2 was 0.5687). Results for the Sz and MDD groups,
on the other hand, were non-supportive (e.g., Sz'sp for Pearson
� 2 D 0.0001). Treating our incongruent trials as conveying a
single target, then, an independent-channels unlimited capacity
architecture is seen to be viable for our HC group. Such may
or may not hold with the use of a bona �de incongruent-format
single-target word condition, rather than its current incongruent-
format single-target color surrogate.

MRI Findings
We consider �rst the functional connectivity di�erences
associated with the low and high encoding conditions, for each
of the HC, MDD, and Sz groups, presented inFigure 4. In the
low-encoding condition, the HC group demonstrated prominent
connectivity of the ACC seed region to the posterior cingulate
with some connectivity in medial frontal areas. The MDD and
Sz groups showed more distributed and smaller clusters of ACC
connectivity in the low encoding condition.

In the high encoding condition, the healthy controls
demonstrate prominent connectivity in bilateral parietal lobes,
with signi�cant clusters of temporal lobe activity. This pattern
is in contrast to the functional connectivity observed in the
MDD and Sz groups, where the activity is scattered and larger

numbers of co-activated clusters are present. The majority of
the MDD activity is located in posterior regions, particularly on
the left side of the brain, whereas the Sz group demonstrates
mostly medial activity, throughout the cingulate and into the
thalamus. An increase in the co-activation in the MDD and Sz
groups is consistent with the notion of increased subprocesses or
constituent operations and less optimal deployment of processing
resources. The more encoding intensive incongruent condition
elucidates the further elevation of encoding subprocesses present
in the diseased state at the neuro-connectivity level of analysis.
These observations are consistent with previous �ndings of more
di�use over-connectivity in the ACC of people with Sz, using
word-�uency, and memory-search tasks (Boksman et al., 2005;
Boksman, 2006; Neufeld et al., 2010).

It is interesting to note that healthy controls show two areas
of statistically greater ACC connectivity when comparing the
high stimulus encoding load to the low stimulus encoding load.
Such di�erences between high and low encoding loads persist
in the MDD group and involve a more posterior region of
the brain. Also of note is the absence of statistically registered
di�erences between ACC connectivity in the high and low
encoding conditions in patients with Sz.

Group comparisons under high encoding and second-order
di�erences, comprising changes in high-minus-low encoding-
load contrasts across groups, are presented inFigure 5. Although
impairments in brain circuitry appear to be present in both
the Sz and the MDD groups, the spatial distribution patterns
do appear to be di�erent when looking at the within-condition
group comparisons (upper panel ofFigure 5). Speci�cally, there
is more frontal and prefrontal ACC connectivity in the Sz
group compared to the MDD group, and increased but di�use
connectivity with posterior regions of the brain in the MDD
group compared to the Sz group.

The second-order di�erences of encoding-load conditions
and groups (lower panel ofFigure 5) are considered in light of
the other results presented inFigures 4,5. First, the second-order
di�erence (High-Low Encoding Load)Sz - (High-Low Encoding
Load)HC occurs amidst no statistical ascendancy of high vs.
low encoding di�erences among the Sz participants (Figure 4,
lower right frame). By its structure, the second-order di�erence
nevertheless can be positive if the HC group has locations of
ACC co-activation that are elevated under low encoding relative
to high encoding. Such locations may be selectively attenuated
by a network of connectivity recruited speci�cally to the high
encoding condition. In this case, the network evidently also
includes high-encoding speci�c sites, as seen in the reverse
second order di�erence (High-Low Encoding Load)HC � (High-
Low Encoding Load)Sz.

This pattern is absent from the MDD control group.
First, Figure 5's (High-Low Encoding Load)MDD � (High-Low
Encoding Load)HC comparison indicates no perseveration of
low-encoding ACC co-activation with the transition to high
encoding relative to the HC group. Second, there is once again
evidence of HC-unique recruitment of sites according to the
reverse second-order di�erence.

Results from the second-order contrasts involving the Sz
and MDD groups resemble those of the Sz and HC groups,
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as follows. Certain regions of ACC co-activation under low
encoding evidently give way to a di�erent set of regions under
high encoding for the MDD group, but perseverate in the Sz
group. Altogether, there is “multiple-dissociation” evidence of a
reduced separation between low- and high-encoding networks
among the Sz group, relative to both the HC and MDD control
groups.

Note that, in general, participant motion can raise
di�culties with functional connectivity analyses as any
departure from the orientation att D 0 (very �rst image
acquisition) could introduce an artifact in the time-courses
of signal-intensity at each voxel. Although post-processing
methods are available and do help reduce the artifact, it
has previously been demonstrated that subject motion
is still a signi�cant issue (Power et al., 2012). It may be
expected that between the psychiatric conditions and the
healthy controls there may be a tendency for decreased
(or increased) subject motion. For this reason, the average
translational (X, Y, Z) and rotational (pitch, yaw, roll) measures
throughout the fMRI acquisition of each individual were
compared among groups. No signi�cant di�erences were
observed [Pillai-Bartlett-V approximateF(2; 70) D 0.867,
p D 0.643], suggesting that there was no systematic variation in
movement that would be expected to in�uence the connectivity
analysis.

Model-Guided MRI Inferences
The presenting picture of Sz neuro-connectivity, parallelingthat
of parameterized reduction in cognitive encoding e�ciency,is
one of apparent dis-inhibition of ACC co-activated regions,
especially under the higher cognitive encoding demands. The
less concentrated pattern of co-activation resembles previous
�ndings, including speci�c locations of increased spread, notably
in medial and frontal and parietal positions (e.g.,Boksman et al.,
2005; Boksman, 2006; Neufeld et al., 2010).

Part and parcel of the more di�use co-activation is reduced
attenuation under higher encoding demands, of regions co-
activated with the ACC under lower encoding demands.
Altogether, the comparative neuro-circuitry of the Sz group
appears expressly isomorphic with the identi�ed quantitative
properties of cognitive performance. Less evident in this group is
the strategic deployment of ACC neuro-connectivity, including
selective adaptation of networks speci�cally to encountered
encoding conditions.

A consequence of lower encoding e�ciency, and its
associated neuro-circuitry, is an increase in work-output for
completing a given encoding task. The number of discrete events
(subprocesses) completed by timet for an Erlang distribution is
vt (e.g.,Townsend and Ashby, 1978). The across-trial expected
value is

E(number completed)Erlangv
D

Z 1

0
f . t/ vtdt D vE(T).

From this perspective, elevatedE(T) implies additional outlay of
cognitive work done in Sz to achieve a normal encoding result.

The less channeled neuro-circuitry observed in Sz suggeststhe
possibility of more entropy in their modeled encoding-latency

distribution. Computation of Shannon-Weaver entropy
was carried out using the probability values for the �ve
bin intervals described above. Shannon-Weaver bits of
uncertainty for the HC, MDD, and Sz groups, under the
low encoding load, were 1.365, 1.467, and 1.455. Those
under the high encoding-load condition were 1.499, 1.586,
and 1.640. In this way, the more entropic patterns of
ACC connectivity, seen inFigures 4, 5, were co-extensive
with quantitatively greater entropy of modeled cognitive
performance.

GENERAL DISCUSSION

A mandate of clinical cognitive modeling is to broker symptom
signi�cance to deviations in functional neuro-circuitry among
clinical groups. To that end, a quantitative account of potential
symptom signi�cance of elevation in encoding subprocesses,
notably for thought-content disorder (delusions and thematic
hallucinations), has been developed. Detailed elsewhere (Neufeld,
2007a; Neufeld et al., 2010), the crux of the development is
that such encoding elongation disproportionately jeopardizes
the input to working memory of cues that signal the objective
signi�cance of other successfully encoded material. Without
being �anked by contextualizing information, the surviving
material is subject to false, if internally coherent, inferences
(cf. Yates, 1966; Maher, 1988). The present developments
extend formally modeled symptom-signi�cant encoding de�cit
to perhaps the most widely used selective-attention task in
cognitive science, and have ferreted out associated functional
neuro-circuitry via high-�eld MRI. Findings for Sz moreover are
separable from those of both healthy and clinical controls, and are
founded on a common formal-model platform. Results add to the
cognitive neuro-science arsenal on Sz, including recent �ndings
on fMRS of glutamatergic functioning of the ACC (Taylor et al.,
2015).

The mental architecture indicated by the selected Erlang
distribution of trial latencies is the standard serial (sequential)
model of subprocess completion, or a mimicking parallel
(concurrent processing) counterpart. The latter include a �xed-
capacity parallel model, with reallocation of the processing
capacity released by (stochastically) completed subprocesses to
those still in progress (Townsend and Ashby, 1983); as well as
a �rst-stage unlimited capacity parallel model (FSUCP, above;
Townsend, 1984). Cognitive-behavioral model selection in turn
has led to estimation of its functional neuro-circuitry. Illustrated
here is the pre-establishing of a prevailing mental architecture,
which avoids di�culties of inferring its structure from thevery
neuro-circuitry being charted (Neufeld, 2007b; cf. Poldrack,
2011).

Identifying encoding elongation, speci�cally with
incremented subprocesses, stands to have certain implications
for clinical intervention as follows. The speed of subprocess
transaction,v, tenably is more aligned with network neuro-
dynamics than is the Erlang shape parameter,k0, which
defensibly relates more to e�ciency of their implementation
(seeCarter and Neufeld, 2007, for neuro-connectionist- model
analogs ofv andk0). As such, an increase ink0may signal more
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ultimate tractability of encoding de�cit to therapeutic correction
than reduction inv.

Furthermore, to intervention, �ne-tuned analyses of intra-
trial encoding dynamics have been undertaken byTaylor et al.
(in press). The additional subprocesses are shown to take their
main toll during earlier time windows of processing trials, where
the likelihood of successful encoding by Sz participants lags
behind that of controls. Interventions depending on information
intake thus might exploit the closing of the gap in control-Sz
encoding success as the processing opportunity is extended.

The concept of e�ciency has had a longstanding role in
clinical science (Wishner, 1955). Psychopathology has been
characterized in part as an unfavorable ratio of focused to di�use
behavior, analogous to a reduced amount of work accomplished
by a machine, relative to its energy consumption. In the current
work, this concept has been tied to cognitive neuro-science
speci�cs, including cognitive work transacted, cognitive system
entropy, neuro-circuitry di�useness, and reduced matching of
network connectivity to processing conditions.
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APPENDIX

A.1. Performance Accuracy
Additivity of performance latency does not imply additivity of
performance accuracy. Let correct responding occur by time
t whenever the necessary processing for an informed answer
has taken place, with its probability de�ned by the distribution
function F(t). In the absence of such information, 1� F(t), a
correct response may happen through guessing, with probability
g. The probability of an accurate response by timet thus becomes
F(t) C (1 � F(t))g D F(t)(1 � g) C g, and the probability of an
error is

1 � F .t/
�
1 � g

�
� g (A.1.1)

With g being a constant, Equation (A.1.1) obviously is linear
on F(t).

For an Erlangv;k0 structure,F(t), in turn, is nonlinear onk0

(Neufeld and Williamson, 1996). Speci�cally,

F .t/ D 1 �
0 (k0; vt)

0 (k0)
(A.1.2)

Section Hazard-Function Considerations. Its second-order
di�erence,4 2

k0; F(t), is seen to be negative in regions ofk0andv
representative of the present parameter estimates (e.g.,k0 D 9,
v D 11), and notably in the vicinity of the current trial deadlines
(e.g.,t D 1.9 s). Incrementation in subprocesses therefore implies
non-additive (potentially, disproportionately greater) error rates
alongside additive latencies.

A.2. Evaluation of Process-Dissociation
Analysis
In the Process-Dissociation model (PD), the probability of a
correct response (i.e., indicating the presented color) in a Stroop
color-word congruent condition, at a designated time from trial
commencement, is de�ned as

Pr
�
correctjcongruent

�
� Pr

�
color

�
C Pr

�
word

�

� Pr
�
word

�
Pr(color) (A.2.1)

Equation (A.2.1) aligns with an independent race model for a
correct response in an OR experimental paradigm (encoding
of either the color or the word produces a correct response,
the contribution of guessing set aside; see, e.g.,Townsend and
Wenger, 2004).

In considering this de�nition further, we de�ne a random
variableTcor as the time at which the participant makes a correct
response, whereTcor is set to in�nity if the participant does not
make a correct response4. Then, using notation of a dynamical
stochastic process, for a designated �nite time of trial progression,
t, Equation (A.2.1) can be written as

Pr.Tcor � t/ D F(t)colorC F(t)word � F(t)colorF(t)word

(A.2.2)
4We thank Donald Bamber for suggesting this de�nition and relatednotation.

whereF(t) is a stochastic-process distribution function.
The PD stated probability of a correct response in a color-

word incongruent condition, at a designated time from trial
commencement, is

Pr(correct)Stroop;incongruentIPD � Pr(color)(1 � Pr(word))

(A.2.3)

Restated in terms of stochastic-process distribution and survivor
[S(t) D 1� F(t)] functions, Equation (A.2.3) becomes

F(t)colorS(t)word (A.2.4)

Equation (A.2.3), hence Equation (A.2.4), putatively provide
for the necessity of only color completion by timet, whereby
responding is said exclusively to be controlled by the color-
naming process.

Coherent with a race-model structure implied by Equation
(A.2.1), dominance of the color-naming process requires only
that the color process be completed before the word process [i.e.,
color-feature �rst-passage time; Equation (5) ofKhodadadi and
Townsend, 2015; cf. (Eidels, 2012)]. Remaining with stochastic-
process notation, its race-model probability is

Pr(Tcor � t) D
t
s
0

f (t0)colorS(t0)worddt0 (A.2.5)

where the integrand is the density function for color �rst-
completion. Note that in contrast to the density function
that appears in Equation (A.2.5), the density function
resulting from Equation (A.2.4), obtained as its time
derivative, is

f (t)colorS(t)word � f (t)wordF(t)color.

Equation (A.2.3) therefore is mis-speci�ed. Arranging empirical
observations according to the PD measurement model results
in the following consequences for estimation ofF(t)word and of
F(t)color.

Unlike the distribution function Equation (A.2.5) and that
of the Erlang structure (text Sections Mean Diagnostics through
Hazard-Function Considerations), each of which monotonically
increase ont, the expression Equation (A.2.4) �rst increases
and then recedes back to 0 asS(t)word decreases to 0. As
with continuous stochastic distribution functions generally, the
empiricalPr(Tcor � t) itself is monotone increasing (e.g.,Lindsay
and Jacoby's, 1994; Figure 2).

The mis-speci�cation in Equation (A.2.3) rami�es to other
expressions in which it participates. Included are estimates
of F(t)word and F(t)color. By the structures of PD Equations
(A.2.1) and (A.2.3),F(t)word becomes Equations (A.2.1) and
(A.2.3), estimated as the corresponding di�erence in empirical
congruent- and incongruent-condition values. A result of this
subtraction is areductionin PD-based estimation ofF(t)word
acrosst (as seen inLindsay and Jacoby's, 1994; Figure 3). Again,
this direction of change is contrary to an inevitable stochastic-
distribution increase for any continuous distribution function
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F(t). More speci�cally, with Equation (A.2.1) modelingPr(Tcor
� t)congruentand Equation (A.2.3) modelingPr(Tcor � t), positive
values of the PD-estimatedF(t)word, (evident in Lindsay and
Jacoby's, 1994; Figure 3), require only that empiricalPr(Tcor �
t)congruent > Pr(Tcor � t)incongruent, as indeed is seen in their
Figure 2. For PD-estimatedF(t)word then to actuallydecrease
over time, the empiricalPr(Tcor � t)incongruent must increase
with t more than does the empirical Pr(Tcor � t)congruent, again
as is seen inFigure 2. The implausible decrease in estimated
F(t)word once more presents itself as a product of a mis-speci�ed
measurement model.

Turning to higher estimatedF(t)word and lower estimated
F(t)color among Sz participants (Barch et al., 2004), such a result
is compatible with model mis-speci�cation combined with lower

empiricalPr(Tcor � t)incongruent. The PD expression ofF(t)word as
Equations (A.2.1) and (A.2.3), obviously is a decreasing function
of Equation (A.2.3). The same combination is su�cient to
generate a reduction in estimatedF(t)color. The PD equations are
combined to estimateF(t)color as

1
1 � [Pr(Tcor� t )congruent� Pr(Tcor� t )incongruent]

Pr(Tcor � t )incongruent

D
1

1� Pr(Tcor� t )congruent
Pr(Tcor� t )incongruent

C 1

which is seen to be an increasing function ofPr(Tcor �
t)incongruent.
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