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controls (HC), during performance of the Stoop task. Stroopconditions included
congruent and incongruent word color items, color-only itens, and word-only items.
Previous modeling results extended to this most widely usedelective-attention task.
All groups executed item-encoding operations (subprocesss of the item encoding
process) at the same rate (performance accuracy being simaifly high throughout),
thus displaying like processing capacity; Sz participantshowever, employed more
subprocesses for item completions than did the MDD participnts, who in turn
used more subprocesses than the HC group. The reduced efciacy in deploying
cognitive-workload capacity among the Sz participants wagparalleled by more diffuse
neuroconnectivity (Blood-Oxygen-Level-Dependent co-ativation) with the anterior
cingulate cortex (ACC) (Broadman Area 32), spreading awansofn this encoding-intensive
region; and by less evidence of network dissociation acrosStroop conditions. Estimates
of cognitive work done to accomplish item completion were geater for the Sz
participants, as were estimates of entropy in both the moded trial-latency distribution,
and its associated neuro-circuitry. Findings are held to besymptom and assessment
signi cant, and to have potential implications for clinichintervention.

Keywords: clinical mathematical modeling, schizophrenia enc
neuroscience, schizophrenia neuro-circuitry

oding, schizophrenia stroop, clinical cognitive

INTRODUCTION

Because of the prominence of thought disorder in the symptontupécof schizophrenia (Sz),
performance on cognitive tasks has long been a focus of iigatisin in the clinical science of this
disorder (e.g.Maher, 196} Deviations in neural circuitry unique to Sz likewise haampelled

substantial research attention, at an accelerated rateseiitemporary neuroimaging technology
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(Williamson and Allman, 201l Mathematical modeling of divergent paradigms (reviewed kteufeld, 2007a; Neufeld et al.,

Sz cognitive performance has indicated cognitive processe81(). Symptom signi cance of this source of cognitive de cit

spared by the disorder (e.g., scanning and manipulatiomlso has been formally explored (e.gleufeld et al., 1993;

of material in short-term, or working memory; response- Neufeld, 2007a

registration processes), and those that are disorder-acecte Sources of Sz encoding elongation have been examined

(notably stimulus encoding, or the cognitive transformingusing parametric stochastic models (elgeufeld et al., 1993

of presenting stimulation into a format facilitating collas® Modeling results have reliably indicated that the speed of

processes; reviewed lteufeld, 2007pAnalytical mathematical transacting constituent encoding operations (i.e., encgdi

modeling moreover has set about identifying spared andubprocesses, such as implementing individual alphanumeric

a ected constituent parameters of disorder-a ected processe$eatures) is spared; the number of subprocesses undertaken,

and estimating associated neural circuitry through both fMRIhowever, is increased. By this account, cognitive workload

(Neufeld et al., 20)0and fMRS (functional Magnetic Resonancecapacity at the subprocess level is preserved, but e ciency

Spectroscopyiaylor et al., 2016 of its deployment has suered. Using a race horse analogy,
The Stroop cognitive task, in turn, is arguably the mostrunning speed is una ected, but running takes place closer to

widely used selective attention task in cognitive sciegéeég|s the outside rail, demanding more strides to complete the axtr

et al., 201)) Its ascendant popularity extends to clinical cognitivedistance.

science [{lacleod, 201)) including that directed to cognition in Possible contributors to added subprocesses (enumerated in

Sz (e.gMinzenberg et al., 2009In a typical Stroop task as used Neufeld et al., 200)0include, for example, initial preparatory

in clinical cognitive science, performance requires the imgm activity, that ramps up, or primes the encoding apparatus;

of a color in which a word is written. Performance is impairedBluhm et al. (2007)have documented abnormal resting-

when the named color, and the ink in which the name is written state, intrinsic-network neural circuitry in Sz, a nding

are mismatched. Recent developments in mathematical modelimpmpatible with potential stalling of resource recruitment

of Stroop performanceHidels et al., 20)thave invited similar to the service of encodingWilliamson and Allman (2012)

analysis of its performance in Sz. moreover, cite evidence for reduced suppression of the
Here we extend previous modeling of Sz cognitive functioninglefault network, potentially exacerbating task-network

to that on this widely used task. Altogether, we examine ifctivation.

previous formal modeling of Sz cognition also characterizes The above combination of spared and aected encoding-

their Stroop performance. We bring results &fidels et al. process parameters can be expressed in selected stochasty lat

(2010) to bear on ndings for the current groups of Sz distributions. One such distribution is the Erlang (e.Gvans

participants and controls [those with major depressive digord et al., 200)) Its density function i (t) is

(MDD) and healthy controls (HC)]. We use a typical clinical-

science Stroop paradigm, but one that is extended in light of (vt)ko 1

mathematical Systems Factorial Technologyléls et al., 2030 f(D)eriang D Ve vt

We also examine whether neurocircuitry over-connectivity S

and its diversion away from encoding-intensive sites in

Sz are seen with the present analytically-modeled Stroopith mean

task.

Mathematically Modeled Cognitive E()erang D —

Deviation in Sz

Experimental c.ognitive paradigms, such as those addrgssi%gld variance,

memory and visual search (late- and early-target paradigms;

Townsend and Ashby, 198%ave been used to triage processes 0
that are disorder-a ectel Convergent experimental evidence Var (t)griang D
and accompanying modeling have implicated stimulus encoding

as a Sz-aected process, potentially adversely aecting other

processes for which encoding is necessary. Stimulus ergodiwhere the shape parametek’ represents the number of
refers to the conversion of presenting stimulation, such s asubprocesses, and the scale parametergpresents their rate
alphanumeric probe of a memory-search task, into a Cognitiv@f completion. The diagnostic status of Sz is associated with
format entering into collateral processes, such as scarfairige  increased<, but no di erence inv. Support for this parametric
probe's presence in a set of previously memorized alphanumer@gcount has converged from several paradigms and model
items (e.g., through memorial template matching). Experitabn Vvariants (reviewed imNeufeld et al., 2007a, 2010

isolation of this process, and its elongation in Sz, has etquloi The additional-subprocess account has also been extended
I - - ) ) ) o , (elsewhere) to mixture-model structures, providing for

A review of mathematical modeling of schizophrenia cognition, alevith P . .

distinctions among analytical (mathematical), computationaltifwan emphasis individual dierences in values of the above parameters

on computer simulation), and statistical modeling in clinical scie, are available (e.g.,Neufeld et al., 2090 For example, mixing the parameter
in Neufeld (2015) k°on a Poisson distribution with parameten, and mixing the

V2
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rate parametew, on a gamma distribution, with scale and shapeNeuroconnectivity of Sz Deviations in

parameters andk, produces a density function, Stimulus Encoding
Abnormalities in fMRI-monitored neuro-activation during
f(t) Mixturel Poissonm. k9| Erlang r; k(v) stimulus encoding have centered on the anterior cingulate
R ko (KO C k)tko 1 cortex (ACC). Rglative to controlg, the pattern of activation
D e 5 in Sz has consisted of more diuse, less ACC-channeled
o1 K 0k KO 11(r C ek responding Boksman et al., 2005; Neufeld et al., 2010; Ungar
et al.,, 201)) Less ACC activation and more widespread
the distribution mean being co-activation at less ACC-proximal locations, has indidate
diversion away from normal encoding-intensive sites. Ercgd
EM) _ D mr rich tasks, or task segments, have involved the summoning
Mixturel Poissonm. k91 Erlang r; k(v) = ™1 of lexical associations to presented consonants (Word-FElyien
task; Boksman et al., 2005 Stroop performance Wngar
the expected variance givehandv being et al., 201 and encoding probe items, for memorial
comparison to a set of memorized items (memory-search task;
a mr2 Neufeld et al., 2000
EVaI‘ Tk,V Mixture|Poissonm(k(MErlangr;k(v) D m The I|nk betWeen Stlmu|US eﬂCOding and |ESS ACC'

centered neuro-activation has been relatively robust acros

and total variance (i.e E[Var(T|k% v)] C Var[E(T[K® v)]) Sz-groups—extending to rst-episode, never-treated partru:_nsa
being (Boksman et al., 20051t furthermore has been associated
with subtle dynamical dierences in 7.0 Tesla measured
ACC glutamatergic activity occurring to repeated blocks of

Q
Total Var(T K%, V)yyqyre Poissopm (K91 Erlangr; k (v) Stroop-performance and rest period$af/lor et al., 2016 For
mr’2 k 1 Cm) example, healthy controls have generated increased glutamat
K 1 2(k 2) : but not glutamine upon an initial block of randomized

Stroop conditions, the opposite increase occurring for Sz

) articipants.
Here, the sole parameter to change with the occurrence é)f P

Sz diagnostic status is that of, whose increase moves the
diSXi?Uttiﬁn ofk.otjpwariiﬁl ; . lowi MODELING fMRI-MONITORED STROOP
urther mixture—this time ofm via gamma._, allowing

for individual di erences in a Poisson process that randomlypERFORNIANCE
distributesk®over trials of individual performance (e.gleufeld  Method
et al., 2007psee als@usemeyer and Diederich, 2Q1@p. 169— Qverview
170)—also accommodates an account of increased subprecespge Stroop task was performed during Blood Oxygenation Level
with intact subprocess-level processing rate. It too accwiitts  Dependent (BOLD) neuro-imaging of functional activation at
empirical-performance patterns of task encoding demands, ang.0 Tesla for Sz, MDD, and HC participant groups. The Stroop
diagnostic stattfs paradigm combined selected conditions typically used in dihic

The expression of Sz encoding performance as an elevatigfudies (e.g.Perlstein et al., 1998 elaborated upon in light
in subprocesses with intact speed of subprocess executiongsSystems Factorial Technology (SFBwnsend and Nozawa,
expected to extend to Stroop performance. The Stroop taskgoj, as applied to analysis of Stroop performaniaiéls et al.,
is considered to be encoding intensive in its requirements f 201(). Clinical science studies often include three conditions:
extracting task-prescribed properties from a stimulus complexhe naming of the ink in which a word corresponding with the
and more so when a color word and the ink in which it is color is written (e.g., “green” written in green inkpngruent
written are incongruent. This condition demands the segtém  condition); the naming of the ink color in which a di erent-
of imperative from detracting stimulus features. If subpreEe color word is written (e.g., “red” written in greefincongruent
incrementation is the agent of increased latency, modeling Sondition); and the reading of a non-color word, written in a
performance by releasing the subprocess parameter but xiag theolor (e.g., “sheep” written in greeneutralcondition).
subprocess-rate parameter (or their mixing distributioreg);oss Three conditions of the present paradigm required
groups, should t empirical performance data. Furthermore,participants to name the color of the ink in which a color-
diagnostic speci cally of increased subprocesses, chamgesiord was written. In the congruent condition, the word and
the additivity of performance latency should be observechwit ink-color matched, and in the incongruent condition, they
increased encoding load (word-color incongruency) and thenismatched. In a third condition, the color of a color-patch,
entry of Sz diagnostic status. consisting of a row of 5 “xs” was to be named (color only).
2An additional mixture model, incorporating geometric and gamma disttibns, A foyrth condmon (word only; r?d. g.reen,.blue, or yellow)
with similar accommodation of performance patterns tied to incremental required the reading of a word printed in white against a black
subprocesses, has been developedifijer (2015)and Cutler and Neufeld (2015)  background.
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Participants TABLE 1 | Participant demographics.
There were 16 participants in the Sz and each of the controGi control oD -
(HC and MDD) groups who gave informed written consent " ontrols p

according to local Ethics Board Approval Guidelines. Prospect 16 16 15
volunteers with neurological or major medical illnessesjcally Age 2418 467 2262 475 2970 298 0510
signi cant head injury, other psychiatric disorders, MRI comt |, 10/6 511 1273 0.019

indications, or substance abuse within the previous yeaewer,, 1402 14/ 15/0 0.842
excluded from the study. Any healthy volunteer with a known,, 306 077 256 063 220 086 0.010
family history of psychiatric disorder in a rst or second deg - 313 096 288 081 320 077 0.539
relative was also excluded. A Stroop-task recording faifare AMLA 1204 1086

one of the Sz participants reduced to 15 the number contritaytin HAMLD 1250 9411
to the cognitive-behavioral analysis for that group. The fMRI

. . ania 5.38 6.79
analyses, however, were applied to data from the original 16 éﬂ%m 1781 1068
participants, on the reasonable assumption (supported below 9 ’ ’
S . PZ (mg) 368.83 314.67
that results from the remaining 15 participants nevertheless
. SANS 9.60 8.01
would generalize. APS 180 1067
A consensus diagnosis was established on all participants Ey ) )
lliness duration 28.56 14.52 30.40 15.86

a psychiatrist and trained assistant with the Structured iCéih
Interview for DSM-IV (First et al., 1997 Sz subjects were
rated with the Scale for Assessment of Negative SymptonysF. male/female; R/L, right/left; Educ, education rating of the participan(l, gr. 10
and the Scale for the Assessment of Positive Symptorﬁ%"’we” 2, .compllletled high schooI;AB, 1—3 years of coll§ge/unliversity; 4> 3 years
. .., of college/university); PEduc, education rating of the participant's parentl( gr.10 or

(Andreasen, 1984@'tﬂnd MDD patlents were assessed WlthIower; 2, completed high school; 3, 1-3 years of college/university; 4> 3 years of
the Montgomery Asberg Depression Scal®lo(itgomery  college/university); H Anx, Hamilton Anxiety Scalesamilton, 1959, H Dep, Hamilton
and Asberg, 1939 and the Young Mania Rating Scale Depression Scale;Hamilton, 1960, Mania, mania rating from the Young Ma_nia Rating
(Young et al, 1976 Thirteen Sz patients were receiving S °1 ° 1 7T¢ Mo o e ersonen e pesey v
atyplcal neu"0|ept|05 with Ch|0rpr0mazme EquV&|ent 426Assessment of Negative Symptoms;Andreasen, 19845 SAPS, Scale for Assessment

299mg (2 taking olanzapine; quetiapine/venlafaxine; 2fPositive Symptoms;Andreasen, 19841 p, ANOVA test for signi cance (alphaD 0.05,
taking  risperidone;  quetiapine/paliperidone/escitalopramwo-tailed), bold values indicate signi cance.
4 taking paliperidone; clozapine; risperidone/escitalopram;
quetiapine/escitalopram); and 2 patients were not medicate@onnectivity analysis), which consisted of nine, 1-min blocks
Ten of the 16 MDD patients were receiving antidepressanjyhose trials cycled between cross xation and Stroop-Task
medications at the time of the scan (bupropion/citalopram/presentations, for a total of 4 min of Stroop activation digin
methylphenidate; venlafaxine; lamotrigine; desvenlaixi the fMRI. A total of 80 Stroop stimuli were presented, twenty
bupropion/citalopram; escitalopram; citalopram; sertralinejfrom each condition (i.e., congruent, incongruent, wordhp
citalopram/mirtazapine/quetiapine; levothyroxine/melatio).  and color-only) presented pseudo-randomly throughout the
While it is possible that some of the medications will a ectsession (consistent order between participants). The pamadig
glutamatergic function, the actual functions of many of #i®ve \vas written and presented using PsychoPyi(ce, 2007
prescribed medications is unknown. Demographic information
including age, handedness, education, parental educatioMRI Signal Acquisition and Pre-processing
clinical rating scores, and length of illness were colidte All data was acquired on a 7.0 Tesla Agilent/Magnex head-
accordance with methods described in our previous studpnly MRI (Agilent, Inc., Walnut Creek, California, USA) with a

(months)

(Aoyama et al., 20)and are shown iMable 1 Siemens AC84 head gradient coil (Siemens, Erlangen, Ge)many
located at the Center for Functional and Metabolic Mapping at

Procedure the University of Western Ontario's Robarts Research Institute

Stroop Task A transmit-only/receive-only head coil with 15 transmitse

The stimuli (described above) were presented for 2s and thend 23 receivers and a built in mirror was used for all scans
subjects were asked to respond as quickly and accurately @silbert et al., 201l A transmit- eld shimming approach
possible within this time frame. A trial began with 1s of facilitated optimized homogeneity of the transmit eld for&a
cross xation (“C”) in the center of the screen. All visuals scan (Curtis et al., 2012 The magnetic eld uniformity was
were presented with a black background. Every participardadjusted automatically using RASTAMARIg&ssen and Menon,
practiced outside the scanner until they achieved 80% cbrre2009. The fMRI volumes were localized using anatomical MRI
responses. Participants then underwent an MRI protocol thaimages acquired with fast low-angle shot 2D (FLASH2D) insage
consisted of a total of 8 min of the Stroop Task activity for[5 slices, repetition time (TR) 6.3 ms, echo time (TH) 3.5ms,
the purpose of examining glutamatergic activity in the ACC ip-angle D 11 , gap between slic& 1 mm, thicknes® 2 mm,
(Taylor et al., 2016 The participants were then removed from eld-of-view D 30 30cm, matrix sizé&d 128 128] in each
the MRI scanner for a 30min break before re-entering toof the sagittal, transverse, and coronal orientations. TVRI
complete the fMRI component (providing the current functional images were then acquired using an echo-planar imaging (EPI)
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sequence (45 slices, interleaved sliced order, repetitien(TR)  whole-brain family-wise error (FWE) rate of 0.05. To

D 3s, echo time (TEP 18 ms, ip-angleD 90, gap between balance Type-l error protection against false negatives in

slicesD 0.2 mm, thicknes® 2 mm, eld-of-viewD 22 22cm, our functional-connectivity analysis (third step, aboveuyr

matrix sizeD 110 110, GRAPPAD 3, 4 steady state scans), SPM t-maps were thresholded pt< 0.001 (voxel-level) with

angled to the AP line and aligned with the top of the brain. minimal cluster sizé& D 10 (Lieberman and Cunningham, 2009
Functional and anatomical data were preprocessed usingge alsofhn et al., 201). Our SPM8 analysis used a within-cell

Statistical Parametric Mapping 8 (SPM8, Wellcome Trust Centrerror term df D 90) throughout, with its potential increase in

for Neuroimaging, London, UK) implemented in MATLAB Type-I error protection for all contrasts involving the Higlew

R2013a (Mathworks Inc., Sherborn, MA, USA). Individualencoding-load factoriirk, 2013 chapters 10, 12).

functional images were corrected for motion by realignment » ) o

to the rst volume of the session. All images were spatiallylc0dnitive-Behavioral Data Organization and

normalized (2 2 2mm) to an EPI template in MNI space Analytical Methods

and spatially smoothed with a 6 mm full width at half maximum Means and inter-trial variances for responses within the 2ad-tr

(FWHM) isotropic Gaussian kernel. time window were computed and adjusted for movement time. A
value of 0.160's was subtracted from the means, and (0.936's)
Connectivity Estimation and Statistical Criteria was subtracted from inter-trial VarianCGQNOOdWOI’th and

Statistical analysis proceeded in four steps. Ina rst-lamelysis, Schlossberg, 1954; Townsend, 19#4endnote 4 offownsend
pre-processed fMRI data from each individual participant wereénd Wenger, 2004

entered in a voxel-wise general linear model with desigrries Because trial numbers had to accommodate reasonable
derived from the individualized instance of the Stroop pagad ~demands on clinical participants performing in an MRI
(i.e., epoch-related regressors). In the second step oftis ~ €nvironment, it was necessary to aggregate data across
level analysis, participant data obtained in the rst step waarticipants, while avoiding the conation of systematic
entered in a full-factorial design with a between-participan individual di erences Estes, 1956; Neufeld and Gardner, 990
factor of group (3 levels: HC, Sz, MDD) and a within-participantAS previously done in clinical cognitive science, signi cant
factor of stimulus encoding load (2 levels: Low, High; stipetl heterogeneity could be accommodated through mixture-ntode
below). This step was used to identify brain regions actigat Structures, allowing for inter-participant di erences in med
during transaction of the Stroop task common to all groupsProperties (e.gRatchelder, 1998, 2007; Riefer et al., 300ith

and all stimulus encoding loads. In a third step, a secondtelative homogeneity of performance, on the other hand, aigro
level analysis used the maximally-activated clustersimédain ~ could be represented as a homogeneous participant according
the previous step as seed regions of a functional connectivito the data centroid (e.glownsend, 1984; Carter and Neufeld,
analysis. Specically, we identied regions with signidan 1999; Neufeld etal., 200)b

psychophysiological interactions (PPI) with the seed region Tacks to modeling comprised a combination of parametric
(Friston et al., 1997 The seed region's activity time-course wasand nonparametric methods. Estimation of mixture-model
obtained by spatially averaging the activity of all imagiogals hyper-parameters and tests of empirical t for the current
within a sphere of 10 mm radius centered on the coordinates dtandidate architectures have been described elsewhere¢(d

the maximally activated voxel within the selected clusteragh €t al., 2007b, 20)0 Alternatively, given contraindication
time point. The results of this analysis represent regionsseho Of systematic individual di erences, parameter estimates fo
BOLD fMRI time course of activity signi cantly covaried withe ~ candidate architectures were directly available througie t
activity of the seed region during performance of the Stromgkt Method of moments (moment matching; e.gzvans et al,
relative to the baseline conditions (cross xation). Thesgions 2000. Numerical simulation indicated that moment-matching

are said to be functionally connected to the seed regionHer t €stimates equalled those of maximum likelihood, within a
explicit purpose of Stroop task transaction. constant of proportionality. Estimates also agreed with those

Note that, for the purpose of the fMRI analysis, two from direct solutions, where manageable subsets of predisti
stimulus encoding conditions—low and high—were constedct Were equated to corresponding empirical values, followed by
as follows. The high encoding load consisted of the colorewo Solving simultaneously (moment tting).
incongruent condition, for all groups. The low encoding load  Testing of model predictions against observed latencies, an
for the HC and MDD groups Comprised an ama|gamati0n offmean inter-trial Variances, used the fO“OWing ANOVA'baSéd
the color-word congruent and color-only conditions, andath formats GSnodgrass and Townsend, 1980; Carter and Neufeld,
for the Sz group comprised an amalgamation of the color-onlyt999 seeKirk, 2013. The rstwas
and word-only conditions (elaborated upon below; SectioneDa X 5
Properties Narrowing Model Selection). Ina nal step, the fesu 2p W (observed model predicteq,) L
of the PPI analysis were entered in a second-level full fedtor wD1
design with group as a between subject factor and encoded lo
as a within-subject factor, to identify brain regions contedl to  with df D W (number of parameter estimatewhereW is
the seed region in a group- and load-speci ¢ manner. the total number of combinations of groups and performance

To distinguish common protuberant regions of functional conditions contributing to model-predicted empirical vakie
activation (second step of our analysis), we adopted Here, the term gpserveg is either thewth empirical-sample

2
model predicteg,
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mean latency, or inter-trial-latency variancemodel predicteg, ~ Data Overview
is the corresponding modeled mean, or inter-trial varianceResults from analyses of all latency responses, and those
and = ogel predicteg, 1S the model-prescribed variance of the from analyses of correct-only responses were highly similar

sample mean or inter-trial variance. In the case of meafhroughout, and analyses of correct-only responses yielded
latency, r%]odel predicteq, becomes rfodel-predicted inter-trial N0 additional mform_atlon (proportion corregt _generally
variance,)/dy, whereqy is the number of task trials making exceeded 0.90, and in no case were there signi cant group

; ; ; ; dierences on proportion correct). Therefore, only results
u . Where consists of inter-trial variance, - ’
P observeg observed based on all responses are reported (dhk, 198). Table 2

nzmdel predicteg, becomes . Division is by gy  presents adjusted latency means and inter-trial varianies,
rather thangqy, -1 because maximum-likelihood estimates wereeach case along with corresponding inter-participant staddar
used for sample estimates (efvans et al., 2000It is assumed deviations—taking into account all responses occurring
that sample values are normally distributed, which is defdas inside the 2-s trial intervals. Also listed are the percent of
in view of the Central Limit Theorem. correct trials and their inter-participant standard deviais.

A second version of 2 was Table 3 presents latency means and inter-trial variances, along
with inter-participant standard deviations, but for correct
responses only.

Note that mean latencies reported imables?2, 3 were

2 2
2( model predicteq,)
Gw

2
2 p X QW(Meanatenqébservw model predicted)
2

wD1 model predicteg computed directly from all values, rather than as the average
X (L Meanatenc )2 of participant-wise means. Data ensembles from individual

C e Boserved (2) participants thereforele factowere weighted according to their
wD1iD1 model predicteg, numbers of valid observations.

Pw _ Likewise, inter-trial variances were computed as the sum
withdf D ,p 10w (number of parameter estimateldere, of squared deviations from the grand mean, above, of all
the individual latenciesbiy,,..,.,in the double summation are observations in the group-condition combination, divideg b
less likely to be normally distributed. In actual testingtb  the total number in that combination (maximum-likelihood
Equations (1) and (2) nevertheless had to agree on tenabilit estimate; e.g.Evans et al., 2000Like mean latency values,
model t. Essentially, Equations (1) and (2) address therded¢o individual participants' data ensembles were consequently
which the proposed model speci es a population whose summarweighted according to their numbers of valid observations.
statistics are coherent with empirical values. Results fioes¢  Although such variance estimates included between-pasitt
equations also agreed with those from selected applicatibns eariance in mean latencies, they were logically coheretit avi
multinomial-likelihood G?(  2), and Pearson 2 applied to homogeneous-participant approach to data treatment (further
proportions of responses binned into 5 equally-spaced latenaylaborated upon, below; Section Within-Group Performance

intervals (exempli ed below). Homogeneity), including relative homogeneity of mean
latencies.

Results One HC participant reported having accidentally reversed

Participant Characteristics green and yellow response buttons during the experimentdétria

Signi cant dierences occurred with respect to participant (despite meeting the 80% correct criterion on practice trials)
education, but not parental education (parent with the highenvalues for percent correct, and their standard deviationish w
education-levelTable 1. Although the proportion of males in this participant excluded, are presented in the last two colsmn
neither the Sz nor the MDD group di ered signi cantly from of Table 2 It was decided to retain this individual's latency data
that of the HC group,p > 0.10, the two patient groups throughout, because apart from the response-button reversal
diered signicantly from each other, (21) D 7.429,p D  Stroop-item processing of principle interest was deemed to have
0.0064. Overall, however, males responded signi cantltefas occurred. Again, results from analyses of all responsesnvittle
than femalesf(141) D 3.8862p < 0.001, partial 2 D 0.269. 2-s trial time interval, and those from correct responsesypnl
Any e ect of sex di erences on response latency therefore woul@ssentially were interchangeable.
be in the direction of increased speed in the Sz group. Note,
as well, that individuals with Sz, especially those with paign
symptomatology (all but 3 of the present sample) tend mor&Vithin-group Performance Homogeneity
often to be male. The ratio of female to male prevalence ratdswas rst examined as to whether mean latencies and inte-t
for MDD, in turn is 1.64 Romans et al., 200.ZEliminating such  variances, across participants within groups, tenably emdnate
(intrinsic) group di erences risks the introduction of othenmore  from a single population, according to conformity to an
intractable issues of interpretation (e.@.pchran, 1957; Evans hypothesized normal distribution. To this end, Kolmogorov-
and Anastasio, 1968; Meehl, 1971 Smirnov (Lillifors corrected) and Shapiro-Wilks tests were
There were no signicant correlations betweenapplied (as done, e.g., iReufeld et al., 2000 None of these
Chlorpromazine (CPZ) daily-dosage equivalents (mg24 tests—4 Stroop conditions per group, on each of the above
per day) and any of the performance variables (e.ggquantities—were signicant, despite appreciable statisgioaler
fcpz all response latenciéd  0.179p D 0-522)- (Wi|COX, 1997-
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TABLE 2 | Response time latencies to each of the Stroop conditi ons with inter-participant standard deviations using all r esponses.

Group Condition Means (s) Variances (s) 2 % Correct P % Correct ©
HC Congruent 0.6072  0.0922 0.0479  0.0205 0.9500 0.1125 0.9767 0.0372
Incongruent 0.7885 0.1714 0.0784 0.0242 0.8875 0.1147 0.9100 0.0737
Color-only 0.6118 0.1096 0.0381 0.0334 0.9563 0.1276 0.9733 0.0417
Word-only 0.7081 0.0840 0.0614 0.0160 0.9438 0.1250 0.9867 0.0399
MDD Congruent 0.6362 0.0866 0.0531 0.0325 0.9906 0.0202
Incongruent 0.8854 0.1088 0.0621 0.0227 0.9625 0.0532
Color-only 0.6495 0.0787 0.0492 0.0236 0.9781 0.0364
Word-only 0.7111 0.0943 0.0539 0.0241 0.9781 0.0364
Sz Congruent 0.6645 0.1029 0.0791 0.0519 0.9633 0.0352
Incongruent 0.8906 0.1245 0.0764 0.0336 0.8700 0.1709
Color-only 0.7075 0.1267 0.0756 0.0378 0.9567 0.0417
Word-only 0.7060 0.1208 0.0613  0.0355 0.9633 0.0516

HC, healthy controls; MDD, Major Depressive Disorder; SZ, schizophné.

aVariances: inter-trial latencies.

YNon-responses are considered incorrect.

CExcluding responses from one healthy control subject who confused gen and yellow buttons during the fMRI task.

example is the of vfor Sz participants, under the incongruent
condition of 0.139, McKay's approximate 2 D 3.27,

TABLE 3 | Response time latencies to each of the Stroop conditi ons with

inter-participant standard deviations using correct resp onses only. (14)
p D 0.9977.
Group Condition Means (s) Variances (s) 2 An additional assessment of performance data, for evidehce o
inter-participant heterogeneity in model operation, appropeidt
HC Congruent 0.5988  0.0964 0.0458 0.0210 3 version of coe cient alpha that addressed homogeneity
Incongruent 0.7893  0.1759 0.0772 00244 of response proportions over the 5 bins of adjusted-latency
Color-only 0.6075 00879 0.0367 00155 jntervals (2s divided into 0.4s segments). This version of
Word-only 0.7051 0.1117 0.0621 0.0345 coe cient alpha was 1 (Meansquar%articipants binJMean'
MDD Congruent 0.6331 0.0839 0.0492 0.0277 S?uarlging (e'g"NEUfelddand Mg_Cartty, 1994 Horlrogeneltyl
Incongruent 0.8870 0.1090 00616 00224 Of values was supported according to an overall mean value,
taken across conditions and groups, of 0.985. Similar support
Color-only 0.6479 0.0929 0.0487 0.0244 . . . .
was obtained according to computations of the proportion
Word-only 0.7109 0.0785 0.0544 0.0235 . A N
of variance accounted for by the bins in each group's bins
sz Congruent 0.6545 0.0987 00734 00519  participant layout (cf.Schmitt, 199% Note that a 2 test on
Incongruent 08914 0.1277 00749 00331 the bin-by-participant frequencies was contraindicated by
Color-only 06947 01231 00665 00312 Sparseness of some individuals' cell frequenciBslucchi,
Word-only 06975 01121 00563 00313 1993; Tollenaar and Mooijaart, 2003 Altogether, these
preliminary analyses indicated that group centroids were
HC, healthy controls; MDD, Major Depressive Disorder; SZ, schizophné. not unrepresentative of data con gurations for the separate

avariances: inter-trial latencies. participants

With performance data tenably emanating from a single
population per group, questions remain regarding relativeData Properties Narrowing Model Selection
homogeneity of inter-participant performance within each Given the uniform temporal properties of responding, attention
group. This possibility was initially examined according tois turned to the stochastic cognitive modeling of performanc
coe cients of variation (cof v). Results generally did not indicate and its accounting for di erences across groups. With a tenable
any over-dispersion that would signal systematic individuastochastic model in hand, cognitive-process dynamics argegoi
di erences in model operation (see, e.Batchelder and Riefer, for projection onto those of neuro-connectivity monitored
2007). For example, the of v calculated on the inter-participant during task trials.
standard deviation, pooled across conditions and groups$gled/ Examination of the pattern of latencies ifable 2 discloses
by the grand mean was 0.1518. This value was signi cantlynarked similarities and di erences in values across groug$ an
lower than that of a provisional benchmark of 0.297 forconditions. Mean latencies for the color-only and congruent
mixture-model status of response latencie((feld et al., 2030 conditions were highly similar, for both the HC and MDD groups

McKay's approximate (246) D 12.7966p ! 1.0). A further (2-tailedps 0.455). In the case of the Sz group, those for
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the color-only and word-only conditions were nearly ideric Also evident in Table2 is a more pronounced color-

(2-tailedp D 0.981). only—incongruent latency dierence for the MDD group
Also apparent was the similarity in di erences between(0.24s) than for the HC or Sz groups (0.18s). The test

the color-only ( congruent) and incongruent condition means on the second-order di erencenfeanioronly—congruent amalgam

for the HC group, and that between the color-only \ord- Mearncongruen)MDD (meanoioronly—congruent amalgam

only) and incongruent means for the Sz group. When themeanncongruenlHc: t(Huynh-Feldt corrected db 124) D 2.486,p D

HC color-only and congruent means were amalgamated, an@l.0143dz D 0.507, signaled a possible disproportionate MDD

the Sz color-only and word-only means were amalgamateaognitive workload-capacity reduction. Across-channelldco

the group dierence in the contrast for the incongruent word) impedance may have occurred in the MDD processing

condition (i.e., the 2nd-order dierence) was only 0.00633system operative during their incongruent trials. The MDD

t(Huynh-Feldtepsiloncorrected dD 124y D 0.24011p D 0.798, 2- group's performance data is also evaluated, expressly for this

tailed. Therefore, although these groups diered signi dgnt possibility, below.

from each other in their latency values (e.g., 2-taje® 0.039 )

and 0.012 for the incongruent and color-only conditions)dan Candidate Model Structures

di erences between the incongruent and other conditions ever Mean Diagnostics

highly signi cant throughout (2-tailedo D 0.003), the e ects Focusing initially on the Sz and HC groups, the preliminary

on latency of HC-Sz group status, and higher (incongruenginalysis on latency data, above, was mean diagnostic ofleligib

condition)- vs. lower-encoding load (color only congruentyc;  models. Candidate model structures and parameter changes

color only word only sy, were highly additive. Such additivity were required to generate additive e ects on mean latencies

shrinks considerably the set of eligible model structurad a of elevation in encoding load—transition from color-onlynca

parameter changes across groups. its congruent or word-only equivalent, to the incongruent
The equivalent latency of color-only and word-only condition—and Sz diagnostic status. This additivity cepends

conditions was unique to the Sz group. Note that this resulto the associated near-zero second-order di erence (0.8063

was not observed in the earlier session on fMRS, where 40 trigidove.

had been performed under each Stroop conditiday(lor et al., A model generating mean additivity with increased encoding
2019. The present equivalence therefore was speci ¢ to the Sgad and Sz clinical diagnosis is the Erlang distribution,
group in the second session of task performance. above. With meank9v, kO being the number of constituent

Also unique to the Sz group was a seeming reduction iprocessing operations (subprocesses),\athetir rate of dispatch
latency under the congruent condition, relative to the gelo (subprocess-level capacity), elevatiork9mcross encoding load
only ( word-only) condition. A more pronounced congruent- and Sz diagnosis produces the requisite mean additivity.
condition facilitation e ect for Sz participants has been Other structures (reviewed irNeufeld et al., 20)0also
previously indicated in the literature on their Stroop perfmnce produce the requisite con guration of latency means. One
(e.g.,Perlstein et al., 1998In SFT terms, “target-redundancy such structure is the Independent Parallel Moderately Limited
gain” under the congruent condition may have specially bée¢  Capacity structure (IPMLCTownsend and Ashby, 1953vhose
the Sz group. Stochastic mechanisms endowing redundan&(T) is
gain include “statistical advantage,” occurring to an ipeedent

i . X 1
parallel-channel architecture (see egownsend et al., 2007; E(T)pmcD
Khodadadi and Townsend, 20}t %ransition to a highly e cient DLk iC1)(p
capacity-workload architecture, (notably a co-active palal

channel structure, e.glownsend et al., 200;7or a structure  Another, is a parallel structure with unlimited capacity cugj
with cross-channel facilitation (e.glphnson et al., 201@heir  completion of the rst subprocess, followed by a decline and then
Equation A.1.1, Box Il); or possibly transition to a Gestatbdel partial recovery—known as the First-Stage Unlimited Capacity
structure (Townsend and Ashby, 193Ghapter 135nodgrass and  parallel model (FSUCRyeufeld et al., 20%0originating with

Pio 1
b1y

Townsend, 1980 Townsend, 198y For this modelE(T) is
Certain inter-condition dierences in latency means
were in keeping with such possibilities. Speci cally, unlike X g0 1
the HC group, with little evidence of redundancy gain, the E(Trsuce D ] W
Sz group displayed signi cantly lower latencies under the Kk ic1) 2i 1.k 1cy

congruent condition than under their color-onlyword-

only conditions (2-tailedp D 0.037). The second-order These expectations emanate from density functib(t3 that
dierence (Meanoioronly—word-only amaigam  MEaRongruenlsz  are instances of the General Gamma distributioncGill and

(Meangoronly ~ MeaRongruentHc, however, fell short  Ginhon, 196% The density function of the General Gamma
of signicance, t124y D 1.3413,p D 0.0911, one-tailed. {jstribution is

This marginal evidence from mean latencies for Sz-specic

congruency facilitation nevertheless is formally probed NS
(below), in terms of estimated dierences in the presence f(D)ceneral gammal Cixoge '
of redundancy-gain mechanisms. iD1
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where were not opposite to the sample values' second-order di erence
for encoding-condition and diagnostic groups.

Cxo D Q— The empirical variances' relative instability presents a

ipwjep 1 g challenge to models in which variances gure into parameter

estimation and tests of empirical t. On balance, the Erlang
andg is the exponential—distribution rate parameter for tile  distribution was selected as the structure to be tested for

stage of processingD 1.2, .. k% For the IPMLC modelg is empirical t given the random departure of sample variances
from model linearity onk® and considering its straightforward
G DK ic1 v X e 1 composition. Although this selection was spawned by the Sz and
IPLMC K jp1j’ HC groups' performance data, in the interests of parsimony, it

was also tested against data of the MDD group.
and for the FSUC modet; is
Hazard-Function Considerations
6. D K ic1 k¥ Note that the Erlang distribution's hazard functioh(t) D
FSUCT 26 %)(ko ic1) f(t)/qt), f(t) being the density function an&t) the survivor
function, increases monotonically over Here, the density
Each of the above candidates is considered further in thé nefunction is that stated in Section Mathematically Modeled
section. Cognitive Deviation in Sz, and the survivor function is

Inter-Trial Variance Considerations

j R 1yl 0
Like latency means, inter-trial variances in principle can St)ertang D 1 ﬁe vip Lt/ vt M

contribute to the selection of eligible model structures dheir iD KO ) iDo I 0(k9

parameter changes across experimental factors. For example,

inter-trial variance of the Erlang distribution i&Iv2, which, here 0 Kvt is the incomplete gamma function

again, increases linearly with an increas&inThe variance of Fi1 O 1o Xdx Empirical estimates oh(t), however, have

the FSUCP modelis b\gen non-monotonic, rst increasing, then decreasing over
Xy 1 (Bloxom, 1984, 1985; Luce, 1986

Var(T)rsuce D iDL[KO icC 1)( NE Note that latency aggregates, such as those emphasized in the
3 k° icy current work, nevertheless can be functionshft), with values
1(4k® 1) of these functions themselves being similar for monotonid a
D 37 Kz non-monotonic shapes. For exampit), a function that bears

directly on the binning of proportions of empirical latencies
which to all intents and purposes is also linearldnThat for the according to intervals of, can be expressed for any continuous
IPMLC model is distribution as

X ko 1 St/ De SHht¥d®

VarMieme D) —w e P .
[ o1 i )]
Simulation ofjt)'s from monotonic and non-monotonit(t)'s—

which accelerates dif. the latter created via probability mixtureB#rlow and Proschan,
A diculty with the diagnostic signi cance of inter-trial 1975—shows that their trajectories acrosscan essentially
variances, and those of higher-order moments, is the inktabf ~ converge.
their empirical estimates [e.gRatcli, 1979 consider the model- Observe, as well, that timth momentE(T") is equal to
predicted variances of empirical means vs. those of intei-tri z,
variances of Equation (1), above]. n n o1
To illustrate, using the mean and inter-participant standard ET Dn 0 SOLNIE
deviation averaged across all groups and conditions,ctloé
v for the mean latency (0.1585) was almost ¥4 that of thénferences fromS(t) and E(T") generated by monotonib(t)'s,
variances (0.5935). Likewise, taken as a representatisegate as opposed to certain non-monotonic extensions, therefore, ar
for population values the mean and inter-trial variance of i@  arguably not imperiled given acceptable model t at this leviel o
group under the incongruent condition, theof v for the sample  analysis.
mean latencies (0.081479) once again was roughly % thatof th
variances (0.32444). Parameter Estimation and Tests of
With these quali cations in mind, sample variances somewhaEmpIrlcal Fit
decelerated opposite to theoretical variances of the IPML®esults of parameter estimation and tests of empirical t were
model when supposing a progressive increase’inith greater  similar for the Sz and HC groups whether considered separately
encoding load and Sz group membership. The linear increases alongside the MDD group. For brevity, therefore, we report
in variances of the Erlang and FSUCP structures at minimunthose for all three groups taken together.
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Parameter estimation commenced with moment-matching
solutions for the subprocess-rate parameteseparately at each
combination of group and encoding-load condition (e.gvans
et al., 200 For all three groups, higher encoding-load was

represented by the incongruent condition; again, the caloly 0.8000

and congruent conditions were amalgamated as low-encoding

load for the HC and MDD groups, and likewise the color-only - M Empirical
and word-only conditions for the Sz group. These estimates of M Model
were then simply averaged, with the resulting value provisiign 04000

xed for all groups. Subprocess numbk?fwas estimated using

1.2000

1.0000

Latency (s)
[ =]
[e2)
8
o

. . . . 0.2000
the mean and inter-trial variance, for each group and enngdi
load. The estimates were then, in turn, averaged at eaclpgrou 05,0600
encoding-load combination, and xed at those combinations Szlow Szhigh HClow HChigh MDD-low MDD-high
The parametew was subsequently re-estimated at each of thege B . - .
combinations, with its overall mean in turn being xed forlal FIGURE 1 | Empirical Iatenqes anq model predictions, af:ross H - igh and
. . . . Low Encoding Loads and diagnostic groups. Sz, Schizophrenia
gro”_ps- As estimates essentla”y CO“‘_"?rged atthis pOIWt’Wbee participants; HC, Healthy Controls; MDD, Major DepressivBisorder
retained for SUbsequent tests of emplrlcal t. participants. Low Encoding Load: Mean of color-only and cogruent Stroop
Parameter estimates were 12.0698\foiThe estimate ok° conditions, for MDD and HC groups; Mean of color-only and
for the HC group was 7. This value was incremented for all word-only condiFi(_)ns for Sz group. High Encoding Load: Incogru_ent
three groups under the incongruent condition by an estimated color-word copdmon for all groups. Error bars.a.re stand# deviations (pooled
constanth D 3. The added subprocess-number for the Sz grc)upfor low-encoding-load conditions) across participants wthin groups and
: . Encoding Load.
wasg D 2, and that for the MDD group wag’ D 1. Estimated
subprocesses thus ranged fréfiD 7 tok°C hC gD 12.

Using Equation (1), %, was 6.26457p D  0.5092.
Similarly, with Equation (2), (2174) was 179.038 D 0.3740. 0.1200

Probability values of Equation (2), computed separately at
each combination of group and encoding load, ranged from

0.1789 (HC, incongruent) to 0.5482 (MDD incongruent), with 0.0800

a mean of 0.3700. Plots of empirical latencies and inte

trial variances, as set against their model predictions, are g o 8 Empincat
presented inFigures1 2. These results are called upon| = Model
when integrating the dynamics of Stroop-performance with =~ %%

those of the fMRI hemodynamic response function (hrf),

0.1000

Variance (s?)
o
[=]
3
o

bel 0.0200
elow.

0.0000

Formal Analysis of Possible Sz Word-Color Szlow szhigh HClow HChigh MDD-low MDD-high
Congruency Facilitation

The possible Sz-speci c performance facilitation under the FIGURE 2 | Empirical inter-trial variances in latencies andt ~ heir model
. . . predictions, across High and Low Encoding Loads and diagnos tic

Congruent word-color - condition was examined using groups. Sz, Schizophrenia participants; HC, Healthy Controls; MDIMajor

combination of parametric and distribution-general (SFT) Depressive Disorder participants. High and Low Encoding Lads, and error

strategies. Mechanisms of stochastic-model structured thabars, are as those for mean latenciesRigure 1).

are potentially responsible for congruency facilitation are

those of redundancy gain, occurring when multiple targets

are co-p.resent on a.given trial. Both the word and color Cafnodel); transition to a highly e cient, super workload-capagi
be considered candidate stimulus features to the extent th%tructure (notably represented by co-active, or crosswobh
reporting either one is an eligible response, as is the case f{gjjitative parallel structures); and transition to a Gésta

their solo appearance. In this way, the congruent conditiony,,qe| structure. Each of these possibilities now is taken up
potentially qualies as a double target relative to the word-j, tm.

only and color-only conditiond Candidate mechanisms of
redundancy gain include the following: statistical adwey# - .
accompanying the operation of an independent (regular) |oalralIeStat'S’t'Cal Advantage, Super-Capacity, and Related

model, with unlimited processing-channel capacity (UCIPMOd_eI, Structures . L

. - Statistical advantage occurs in a redundant-target caodlit
Note that the pre;ent word—pnly and color—pnly (?OndlthﬂS wer.e' notcdy when two independent target-processing channels sum their
single-targets. Their formats di ered from that in their congruesondition (e.g., workload capacity together toward attaining a sinale su dien
color “x™s, vs. color word), which inadvertently may have introddcdisplay N p ,y, 9 9 5 9

features that became incidental distractors with a switch mmiat (Little et al, ~ COMPpletion. Statistical advantage can be quanti ed as the slim

2015. the individual channels' integrated hazard functions

Frontiers in Psychology | www.frontiersin.org 10 September 2016 | Volume 7 | Article 1295


http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Taylor et al. Mathematical Cognitive Neuroscience of Schizophrenia

VA VA
th(t%to c th(t%t\% color-only and word-only single-target presentations would
0 color = ord simultaneously be operative during redundant-target #ial
D In(St)color In(S))word: Because their latencies were nearly identical, color-@myl

R word-only values again were amalgamated for parameter
in view of the equalitS.t/ D e oht%d® This sum is also €Stimation. These estimates were now derived speci cadiy fr

expressed as, “ti@apacity Indefor color, added to th€apacity the Sz data. The value ufwas 10.00076, and that kff+ g was
Indexfor word,” denotedCleoiorC Clwora The Capacity Indesor 7, the Sz-isolated values each being correspondingly lovaer th

the double target condition, in turn, is denot@lcojor word: their counterparts in the 3-group analysis. These parameter
Capacity properties of the processing system can be asses¥@lfies were assigned to each of the simultaneous processes.
according to the SFT's Capacity—OR-Coe cient The predicted mean for the congruent word-color
condition was
CIcolor,word .
CorT CleolorC Clword’ (Townsend and Nozawa, 1995 E(T)stroop congruerttsimuitaneous Poissof?
K'CgCs 1,,1,KCg 1 s, 0
Statistical advantage, a property of the UCIP model structisre, X Wcg 1 ( s )(3) 3 KKCgCy
identi ed as aCorT value of 1.0. In line with the expressions, 2 5, > 3)

above, this value indicates that channel processing-capecit

una ected when channels are added to the processing systefxpressed here iBr(color-channel rst-completiQnE(T |color-

Values of CorT exceeding 1.0 imply system super-capacitychannel rst-completion C Pr(word-channel rst-completign

and those less than 1.0 signify limited capacity. Super-cgpaciE(T|word-channel rst-completignEquation (3) shows that the

occurs when channel-level processing speed actually insreaserms of the left- and right-hand side of this summation are

with additional channels, or when a highly e cient system assumed to be identical. By similar reasoning, the predicted

architecture is operative. In contrast, limited capacity wsc variance was

when channel-level speed diminishes with additional chésine

As a special case, capacity is said to be “xed” if single-  Var (T)stroop congrueritsimultaneous Poisson

target values are spread across target-processing chamnels i KoC s

a redundant-target condition. Th€orT of a xed, limited- D 2X “Cg 1K°CgCs 1) 1 ’ 1

channel system is 0.5. sbo S 2 2
As a possible agent of congruency facilitation, super-capacit ((k0 CgCy c ((ko CgC 5))2)

can take place with highly e cient processing structures. het /2 2v

case of a co-active parallel structure applied to redundagtia; KKCgCs 1,KCqqs,o

the signals (aligned, e.g., with subprocess completions)aif ea Kea 1 ( s ) 3 3 (KCgCy
independent processing channel are pooled with those of the (2 Y )% (4)
other channel—as tributaries to a common conduit—with the sDO

trial being nalized when the required complement is reached. . " . ) )
A cross-channel facilitative super-capacity system, on thero In Equation (4), each conditional expectationBf is weighted
hand, terminates when completions of one or the other targetPy the probability of the condition (color rst or word rst), ad
processing channel reaches a criterial level. The charméissi summed; subtraction of the squared value of the predictedmea
case are not independent; for instance, either or both chisnneYi€lds the predicted variance.
can share their completed elements (e.g., subprocesses) withThis model seriously under-predicted observations. The
the other, boosting the recipients progress toward the rsitgii predicted mean was 0.553327, vs. the observed 0.664508gand t
amount. predicted variance was 0.03383, vs. the observed 0.0793r47. F
We rst test for Sz congruency facilitation through a Equation (1), the obtained(zz) was 17.939, and for Equation (2),
parametric UCIP structure, specically a simultaneousthe (220) was 49.79Ip! 0 in each case. Considering the failure
Erlang system. Other facilitation mechanisms then are rie of predictions even at the level of statistical advantageseiud a
considered, followed by the application of distribution-geal  super-capacity variation can be dismissed out of hand.
assessments of system capacity. The latter incgtel, and
related indexes known as the Race-Model Inequaktyl() and ~ Gestalt Parallel Model

Grice Inequality GI; see, e.gEidels et al., 20)0 In a Gestalt parallel model, redundant targets are merged into
a single unit. An Erlang structure again was applied, idliC
Unlimited-Capacity, Independent Parallel Process g D 7. A unique Gestalt-rate valug was estimated from the

The simultaneous Poisson process can be used as a parame8iccolor-word—congruent data itself by allowing the colod an
expression of an unlimited-capacity, independent parallelvord targets to be combined into a single unit. As expected,
architecture (e.g., Townsend, 1984 cf. clinical-science this model's predictions closely t the empirical data. They
implementations ofCarter and Neufeld, 1999Its distribution  nevertheless did not t better than the predictions that were
analytically provides mean latencies and inter-trial vacies constructed using parameter values estimated and imported fr
of redundant-target trials. It was conjectured that chalsnef the Sz group's color-only (word only) data. The estimated value
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of vg was 9.96925, almost identical to the imported value OFABLE 4 | Race-Model Inequality, Grice Inequality, and the

10.00076. Capacity-OR-Coef cient for schizophrenia and healthy cont rol groups in
The t was similarly acceptable in each case. For exampld'® color-word congruent condition.

Equation (2)'s Gestalt-model(zl) was 0.5633p D 0.4599, (s) 0.4 0.8 12 16

and that for the color-only ( word only) imported parameter

values was (22) D 0.52956p D 0.7673. A tendered Gestalt SZ RMI 0.023678 0.684039 0.959520 0.976500

model therefore did not improve predictions of the congruent- Gl 0.016722 0.018302 0.013037 0.000090

condition observations over those of the Erlang distribati CorT 0810699 0.574320 0.466000 0.531270

using the Sz group's color-only (vord-only) parameter values. . 0.006310 0.697062 1029344 0.993692
The tests of t for the Erlang distribution importing the . 0'003254 (’)003155 (')003155 o.oooooo

color-only ( word-only) parameter values, using Equations ’ ' ' '

CorT 0.975500 0.606450 0.545700 0.552700

(1) and (2), were augmented by binning response frequencies
according to latency intervals (described in Section Withi RMI, Race-Model Inequality; GI, Grice Inequality; §xT, Capacity-OR-Coef cient; SZ,
Group Performance Homogeneity, above), and computingchizophrenia; HC, healthy controls.
Pearson 2 and multinomialG? (  2) values.

Resultsz generalized to these fozrmats of empirical testinge color-only condition, arguably was transferred to théoco
Pearson ¢, D 1.9339p D 0.7479G(;) = 1.9303p D 0.7485.  yord congruent condition. Considering the structure GbgT,
Likewise, importing the parameter estimates of the Sz group agvalue exceeding 0.5 would be expected for this group. Unlike

obtained in the analysis on all three groug® C gD 9,v D the Sz group, targets were not strictly redundant, in @&;or>

12.0699), Pearsor‘a) D 3.4009p D 0.4391, ands(24) =3.5413, (CJ,,,qwas observed for each bin.

pD 0.4716. o For the Sz group, color or word single-channel processing,
The imported parameter values' validity was also probegs expressed in their color-only word-only condition

through parameter-sensitivity analysis. Departure fronmeates  data, again is supported. The values 6f and CogT

led to marked elevation in the present statistics. For exampleogether also indicate the possibility that system capacity

with v D 10.00076 (aS estimated from the Sz grOUp'S COlOI’-On'WaS divided between the color and word channels in

[ word-only] data), ancC graised from 7 to 10, Pearsorf,  the congruent condition. This possibility is empirically

became 9.09, ar(ﬁ(24) rose to 9.356. equivalent to single-channel processing, given rst-coniplet
termination, and the requisite complement of subprocess
Distribution-General Indexes completions.

The Sz performance data was further assessed for possible
congruent-condition facilitation according to distribieh- Formal Analysis of Possible

general measures of system capacity. Three indexes W‘B‘?sproportionate MDD Word-Color
computed from the binned latency frequencies, described@bo Incongruency Impairment

The race-model inequality I~ . . . .
(RMI) is stated as follows: The possibility of c_il_sproportlonate MDD |mpa|r_ment under the
incongruent condition also was examined with a more ne-
grained analysis. Estimates ©f were computed separately for
the MDD and HC groups under each bin for the color-only

. . . ) . ( congruent) and incongruent conditiongéble 5.
where S_(t) is the_ emp|r|cally-est|mated survivor functlon_ at Also presented inTable5 are capacity ratios {enger
Inequal[ty V|0I§1t|ons (negative values) indicate supggamaty. ¢ Townsend, 2000 Computations addressed inter-
TheGl, inturnis condition ratios,  ClincongruredClcoloronly congruent ~ OF
CRncongruecholoronIy congruent for each group. Inter-group
MIN[St)color S word  St)congruent  O- ratios, Clmpp/Clic (CRvbb=Hc), Were computed separately for
the color-only ( congruent), and the color-word incongruent
Violations indicate highly limited capacity. Values for g conditions.
indexes, along witlCorT, are presented for the Sz and HC groups  The meanCRcongruentcoloronly  congruenfOr the MDD group
in Table 4 was 0.5358, highly similar to that of the HC group's 0.5486,
Changes over intervals bfesemble those reported Ijdels  contraindicating a more pronounced MDD incongruity
et al. (2010)Values oRMI increased, and those 6bRrT tended impairment. The mean CRyppsic for the color-only
to decrease. In all, capacity dynamics of trial completion weré congruent) condition was 0.8536, and that for the incongntue
roughly similar across these groups. There was no evidence adndition was 0.7719. Overall, the con guration 6f and CR
super-capacity for either group. values were not out of keeping with an Erlang structure, above
The index,CorT nevertheless was lower than 1.0 throughoutthat has a single value @f an incremented subprocess number
The mean for the Sz group was 0.596, and that for the HC grougttending higher encoding load, shared by both groups; and an
was 0.670. Taken together, 8¢ and CorT values indicate that incremented subprocess number with MDD diagnostic status,
for the HC group, single-channel processing, as expressed undeccurring to both encoding loads.

S(t)congruent Sxt)color SIt)word C10 O
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TABLE 5 | Capacity Indexes for Color-Only ( congruent) and Incongruent processing. This combination, in turn, guides our selection
Conditions ( Clcolor -only  congruent : Clincongruent ) and Capacity Ratios of MRI-signal analysis—specically Psychophysiological
(CR) for the Major Depressive Disorder (MDD) and the Healthy C  ontrol Interaction Analysis I{riston et al., 1997SPM8 h'['[p'//WWW
(HC) groups. . . v T :
l.ion.ucl.ac.uk/spm). Dierences across encoding load and

t(s) 0.4 0.8 1.2 1.6 diagnostic groups in time-series covariance are addressed
between a theoretically-specied “seed voxel” and other
MDD Cleolor-only  congruent  0.0953  1.6063  3.5501 52569 (gearched) voxels residing within an a-priori determinecibr
Clincongruent 00221 05056 22420 50750  region. This form of MRI-signal treatment is considered
advantageous in the present context, for reasons stated/belo
HC Cleolor-only  congruent 01134 1.8173  4.0540  6.4509

When implementing the Erlang distribution (Sections

C; 0.0494 08570 24817 4.3536 . . T .
ncongruent Mathematically Modeled Cognitive Deviation in Sz; Candalat
MDD CR _mcoguen _, 02320 03147 06310 0.9654 Model Structures; Parameter Estimation and Tests of Empirica
color-onlycongruent Fit), the modeled probability of continued processing oves
He CR_ monguen | 04356 04712 06122 06749 it§ survi\(or function, §t). Model values oﬁt) for the three
calor-only”congrusrit diagnostic groups, under the lower and higher encoding load
Color-only CR o) 08399 08839 08757 o0gue conditions, are presented ifrigures 3A,B Superposed onto
congruent HC theseS(t) trajectories is a modeled hrf [i.e., htf], along with its
time derivative [d(hrff))/dt]. The latter are the 0—-2 s segments
Incongruent  CR o, 04285 05900 0.9034 11657  extracted from the protracted hrf and its derivative, preseht

in Figure 3C The juxtaposition of hrfi(), d(hrf(t))/dt, and St)
contours indicate methods of choice for MRI data analysis & th

Performance Accuracy present context. . o '
Tests on group dierences in performance accuracy were Note rst that that th(_e t|me_ derivative of hrf] increases
negative throughout (Section Data Overview). A moreearher t_han the hrf() signal itself. Note as well that the
pronounced accuracy reduction under incongruent condition time-series covariance between a seed and searched voxel

among Sz participants (Sz impairment), however, has beéﬁ:shlt_) exploit_s this increased t_emporal resolution. Consider
obtained in selected studies (e.§erlstein et al., 1998 Such the time derivatives of hrf-estimated seed- and searched-

accuracy di erences, where found, are interpretable withia t VOxel activation, d(hri)s)/dt, and, d(hrf¢),)/dt. The quotient

present theoretical formulation of additional subproces3gss  [d(hrf(t)n)/dty/[d(hrf(t)s)/dt] D d(hrf(t)n)/d(hri(t)s) expresses

account is presented in Appendix A.1. Performance Accuracy. thé momentary change atof the searched-voxel hrf to that of
Where signi cant accuracy dierences have not beenthe se_ed-V(_)er hrf. To the degree that the_|r non-lineartietes

obtained, as in the present case, some investigators Beigh to t align WI.'[h each other, thg linear covariance petweenthrf(

etal., 200yhave opted for so-called Process-Dissociation analysfg!d Nrf(t)s increases, and vice versa. Change in hrf contours

of correct response proportions at various timesllowing trial ~ €/evate more quickly than the contours themselves, prongotin

onset (indsay and Jacoby, 1994Using this analysis, group the reIatweI_y garly hrf-covariance estimation of seed-cesdt

di erences signifying Sz de cit purportedly have been revealed/©*€l association\eufeld, 201p More formally,

with respect to probabilities of color and word completions by a zZ. Z.

time t. It is questionable whether this analysis is coherent with ¢ yan L . d hrf.t/y
the present developments, and indeed with analytical valifity [ 0o ] o d(hrf(t)s)
the Process-Dissociation measurement model altogetladerm Z+ d hri.t/

up in Appendix A.2. Evaluation of Process-Dissociation Asely D[ f.t/dt] g W]tz[oﬂ—]
these issues contraindicate the use of this analysis incalini 0 (hri(t)s)

cognitive science (or elsewhere).
? ( ) and Csnit D W{E [d(hrf(t)p) / d(hrf(t)s)]t 2 [o;1}; hereE{ }is

. . the expectation of temporal change in the searched voxel to tha
Integration of Modeled Functional, and in the seed voxel over a trial-wise measurement pefid®2 s),

Hemodynamic Response Function andw is an increasing function.

Dynamics Bringing forward the estimation of neuro-connectivity, in
We precede our presentation and discussion of our fMRprinciple, increases measurement sensitivity to neuro-dingu
ndings with an exposition of our model-based measurementassociated with targeted processing by stochasticallyrifevo
strategy, emanating from the above developments. Cognitivéhe intersection of high intra-trial process likelihoo&t)
task performance dynamics, and those of the hrf (8eeby, and estimated voxel co-activation. This asset has been of
201), proceeds as follows. We rst construct a model-informeddemonstrable value in the context of rapid-processing paradig
representation of the dynamical trajectory of Stroop-itemin clinical cognitive neuroscience (e.@@pksman et al., 2005;
processing for each combination of encoding load and diagioos Neufeld et al., 2090 It squarely is coherent with the goal of
group. Considered alongside are dynamical aspects of the hdelecting cognitive processesr seas the events of express
as set against the model-estimated trajectories of Strmop-i interestin event-related fMRI.
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Functional MRI Findings the distribution of clusters for group di erences under theone
As described in Section Connectivity Estimation and Stiaié challenging high encoding load condition. Also presented are
Criteria, we conducted a search for Stroop-activated regionsecond-order contrasts, addressing patterns of betweeunpgr
common to all groups and encoding conditions in the secondchanges in encoding-load di erences. Details of these rlatte
step of our functional connectivity analysis. Large clisstef  contrasts are presented in Table S2 of the online supplement.
signi cantly activated voxels were found mainly in the paaie
lobes (bilaterally), in the dorsal ACC (bilaterally) and the DSCUSSION
motor cortex (mostly left sided). Detailed cluster-wissuiks are
presented irTable 6 Stroop Modeling

In the third step of the analysis, we recruited regions présgén A parsimonious account of Stroop-task performance comprises
in Table 6 to conduct our functional connectivity analysis. the operation of a single process (color-processing channel).
Again, our focus is on connectivity and di erential connedty ~ This process is expressed as a parametric Erlang distribution
associated with our Sz and control groups and task encodinigaving a single rate parameter, but whose subprocess parameter
load, specically for the seed region located in the dorsals incremented under word-color incongruent conditionsdan
ACC (Broadmann area 32). This area is of particular interesvith the occurrence of clinical diagnostic status. Cognitive
in the cognitive neuroscience of Sz, including that of Sptroo workload capacity, operationalized as the rate of subprocess
performance {aylor et al., 201 Figure 4 presents a glass brain transaction, is preserved with Sz, and MDD. Its deployment
representation of the distribution of connectivity clustdor each e ciency, however, is disorder-a ected. This account aggegth
group and encoding condition, along with directional enaagt  previous formal modeling of Sz cognition (e.gleufeld et al.,
load di erences within groups. Cluster details are presented i 2010. The present ndings indicate a tenable extension of this
Table S1 of the online supplemerigure 5 similarly presents parametric combination to MDD (th@-values for separate MDD

i’\:d(hﬂ(‘)i/u

/
AL

/
7/~ dinrtte)/ox

FIGURE 3 | (A) Modeled process survivor functionsS(t) for diagnostic groups (abbreviations are as ifrigures 1, 2), under low Stroop-item encoding conditions. hrt)
"1 1 "2 1
R 1H0() 220(n2)
aD03nD4n,D711Dl,D2andCD (')50 [ 1dt (Friston et al., 1998; Glover, 1999. (B) As in (A), except S(t) are for higher encoding load(C) Modeled hrft),
and its time derivative d(hrff)/ct, fromt D O to t D 50 s, whose extracted 0-2 s segments are inserted int¢A,B); hrft) and d(hrf{))/dt are scaled by a constant D22),
for visualization. The time derivative i(C) is scaled byc D 4.05, for visualization.

t t
e e 2], where

is the hemodynamic response function (of time), modeled as the difference in two gamma-distribution denigy functions: %[

TABLE 6 | Local Maxima of statistically signi cant clusters r esulting from Stroop task activation (all groups and stimulus encoding loads combined).
MNI Coord. x,y,z R/L Lobe Gyrus Brodmann area k t-value (voxel-level)
10, 16, 38 R Limbic Cingulate gyrus 32 532 6.40
4,2,56 L Frontal Medial frontal 6 532 9.65
40, 2,36 L Frontal Precentral gyrus 6 622 7.66
44,0, 28 R Frontal Precentral gyrus 6 111 5.71
36, 18, 30 L Frontal Middle frontal 9 12 5.24
32, 6,52 R Frontal Middle frontal 6 11 5.15
44, 38,52 L Parietal Inferior parietal lobule 40 4357 11.35
30, 64,40 L Parietal Precuneus 19 4357 9.70
34, 58,44 R Parietal Inferior parietal lobule 40 791 8.65
34,20,4 R Sub lobar Insula 13 194 6.73
32,16, 8 L Sub lobar Insula 13 39 5.37

All entries represent an exhaustive list of clusters with p-valugsaching FWE-corrected statistical signi cance p< 0.001.
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FIGURE 4 | Glass-Brain Representation of fMRI Data Within-Gr  oup tests Results ( k D 10, p < 0.001).

2s provided by Equation (2) were 0.49 and 0.55, for lowehomogeneity diers from performance on other paradigms,
(color-only  congruent) and higher (incongruent) encoding where mixture models have been constructed to accommodate
loads, respectively). The ordering on the subprocess parawofete apparent systematic individual di erences in parameter values
the HC, MDD, and Sz groups is in keeping with previous ndings(e.g., Neufeld et al., 2002, 20)J.0 Requirements of such
of their positions in encoding-intensive cognitive perfomea paradigms arguably have gone beyond the current item-featur
(e.g.Highgate-Maynard and Neufeld, 1986; George and Neufelddenti cation, instead comprising more involved item encadi
1987. in the service of memory search. The more basic Stroop-item

Stroop performance across participants, within groupsencoding evidently was less permissive of variability in peter

was ascertained to be relatively homogeneous. The parall@lues across individuals, within groups.
participant performance pro les allowed for their aggregation  Potentially important innovations to the Stroop task have
and within-group xed-parameter status of subsequent maugli been introduced byEidels et al. (2014)n their developments,
(Neufeld and Gardner, 1990; Neufeld, 20p7@hhe present word reading is ensured by requiring statement of an item's
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FIGURE 5 | Glass-Brain Representation of fMRI Data Between-G  roup tests Results ( k D 10, p < 0.001).

ink color if and only if the carrier word itself is the name of Qe considered summarily to aggrega), becausee.T/ D
a color (e.g., combination of “yellow” printed in green, buitn ;7 St)dt, and there was no signi cant second-order HC-
“mellow” printed in green). The procedure is designed to regluc Sz di erence in mean latencies involving the congruent, and
individual di erences in word impingement on processing, andcolor-only (color-onlys;  word-onlys;) conditions. Again, the
potentially to increase incongruent-condition interfe@n Inthe  apparent equivalence of the congruent- and color-only (color-
present case, performance nevertheless did not systerhaticadnlys, word-onlys;) condition performance may change with
dier across participants within groups or conditions. The the paradigmatic variation dtidels et al. (2014)
incongruity-interference e ect also was consistent thrbagt. The modeling results did not support Sz-speci c, congruent-
Using Eidels et al. (2014¢nhanced methodology, however, thecondition facilitation. The essential equivalence of calaty
latter may become more pronounced. The present modelingnd word-only processing, however, was Sz specic. The
interpretation moreover should withstand such paradigmatiomechanism(s) of such unique equivalence has yet to be
variation; clinical groups should be characterized spetlycy ~ understood. It is possible that these lower-encoding coodgi
elevation in encoding subprocesses. were mutually a ected by default-network continuandglhm
Turning to the color-word congruent condition, for each et al.,, 2007; Ongur et al., 2010; Williamson and Allman,
group, processing could be understood as being the same 2812). Meanwhile, the result nevertheless suggests that neuro-
that occurring in the color-only (color-onk, word-onlys;)  connectivity for this condition amalgam may be di erent from
condition. The result parsimoniously supports the operatiomof that of the color-only—congruent amalgam, associated with t
self-terminating color-target process in the congruentdition = HC and MDD groups.
(cf. Wenger et al., 2000 Implied is a speci c version of the As stated at the outset, the Stroop task has been widely used in
Gl, namely MIN[S(t)coloronly: St)wordronly]l ~ St)congruentD 0. clinical-science studies, among various clinical groups. &tam
Values ofGl approximating O are evident iffable 4 for both  analytic reviews of cognitive deviation in ADHD, for example,
the Sz and HC groups. Recall, as well, that mean latency candisproportionate susceptibility to word-feature interfiece
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has been notedHoonstra et al., 2005; Lansbergen et al., 2007numbers of co-activated clusters are present. The majority of
Also observed has been greater across-study heterogenieitythe MDD activity is located in posterior regions, particularly o
abnormalities, which, contra our ndings, may be an extemsi the left side of the brain, whereas the Sz group demonstrates
of within-group heterogeneity. mostly medial activity, throughout the cingulate and intbet

In their SFT analysis of the Stroop task among non-clinicathalamus. An increase in the co-activation in the MDD and Sz
participants Eidels et al. (201@)sed an incongruent-trial format groups is consistent with the notion of increased subprocesse
for their designated single-target condition. Again, tfiismat constituent operations and less optimal deployment of proogssi
contrasts that of the current study, where color-only and @sor resources. The more encoding intensive incongruent caoomlit
only trials represented the single-target condition. Alsther  elucidates the further elevation of encoding subprocessesept
than naming the presented cold@fidels et al.'s (201@grticipants  in the diseased state at the neuro-connectivity level ofysim
indicated the presence-absence of either a target ink-color These observations are consistent with previous ndings ofenor
target color name. For example, the color red, and word “redti use over-connectivity in the ACC of people with Sz, using
each might be targets. A single-target incongruent conditi word- uency, and memory-search taskBd¢ksman et al., 2005;
could be the word “blue” written in red ink, or the word “red” Boksman, 2006; Neufeld et al., 2010
written in blue ink. The word “red” written in red ink would It is interesting to note that healthy controls show two a&ea
constitute a double-target condition. Using such combioas of ~ of statistically greater ACC connectivity when comparing th
single and double targets, the SFT analysisidéls et al. (2010) high stimulus encoding load to the low stimulus encodingdoa
supported the operation of an independent-channels unlimitedSuch di erences between high and low encoding loads persist
capacity (i.e., UCIP) processing architecture. in the MDD group and involve a more posterior region of

Our paradigm's incongruent condition correspondsialels the brain. Also of note is the absence of statistically reggdte
et al.'s (2010)ink-color single-target condition. Allowing this dierences between ACC connectivity in the high and low
condition also to stand as a surrogate for the word singlencoding conditions in patients with Sz.
target condition, we examined our performance data for the Group comparisons under high encoding and second-order
presence of a UCIP architecture. Treating our incongruentli erences, comprising changes in high-minus-low encoding-
condition this way, results for our HC participants agreedhwit load contrasts across groups, are presentédgnre 5. Although
those found withEidels et al.'s (201Gon-clinical sample. Like impairments in brain circuitry appear to be present in both
theirs, ourCorT values were close to the UCIP-prescribed 1.@he Sz and the MDD groups, the spatial distribution patterns
(averaging 0.9631 for latency frequencies binned overvate do appear to be di erent when looking at the within-condition
appearing inTables4, 5. We also tested empirical t of group comparisons (upper panel Bfgure 5). Speci cally, there
predictions from a simultaneous Poisson process (as describés more frontal and prefrontal ACC connectivity in the Sz
in Section Unlimited-Capacity, Independent Parallel Projessgroup compared to the MDD group, and increased but di use
using Equations (1) and (2), as well as multinom@d's and  connectivity with posterior regions of the brain in the MDD
Pearson 2's applied to congruent-condition binned frequencies.group compared to the Sz group.
Results again were uniformly supportive for the HC group (@.g., The second-order di erences of encoding-load conditions
for Pearson 2 was 0.5687). Results for the Sz and MDD groupsand groups (lower panel dfigure 5) are considered in light of
on the other hand, were non-supportive (e.g., §4sr Pearson the other results presented Figures 4 5. First, the second-order

2 D 0.0001). Treating our incongruent trials as conveying ali erence (High-Low Encoding Load) - (High-Low Encoding

single target, then, an independent-channels unlimited ciipa Load}c occurs amidst no statistical ascendancy of high vs.
architecture is seen to be viable for our HC group. Such malow encoding di erences among the Sz participanisg(re 4,
or may not hold with the use of a bona de incongruent-format lower right frame). By its structure, the second-order diegice
single-target word condition, rather than its currentinogruent-  nevertheless can be positive if the HC group has locations of

format single-target color surrogate. ACC co-activation that are elevated under low encodingtieta
o to high encoding. Such locations may be selectively attexua
MRI Findings by a network of connectivity recruited speci cally to the hig

We consider rst the functional connectivity dierences encoding condition. In this case, the network evidently also

associated with the low and high encoding conditions, farrea includes high-encoding speci c sites, as seen in the reverse

of the HC, MDD, and Sz groups, presentedkigure 4. In the  second order di erence (High-Low Encoding Load) (High-

low-encoding condition, the HC group demonstrated promiien Low Encoding Loady,

connectivity of the ACC seed region to the posterior cingellat  This pattern is absent from the MDD control group.

with some connectivity in medial frontal areas. The MDD andFirst, Figure 5s (High-Low Encoding Loagdjpp  (High-Low

Sz groups showed more distributed and smaller clusters of ACEncoding Load)c comparison indicates no perseveration of

connectivity in the low encoding condition. low-encoding ACC co-activation with the transition to high
In the high encoding condition, the healthy controls encoding relative to the HC group. Second, there is once again

demonstrate prominent connectivity in bilateral parietab&s, evidence of HC-unique recruitment of sites according to the

with signi cant clusters of temporal lobe activity. This path  reverse second-order di erence.

is in contrast to the functional connectivity observed ineth Results from the second-order contrasts involving the Sz

MDD and Sz groups, where the activity is scattered and largeand MDD groups resemble those of the Sz and HC groups,
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as follows. Certain regions of ACC co-activation under lowdistribution. Computation of Shannon-Weaver entropy
encoding evidently give way to a di erent set of regions undemwas carried out using the probability values for the ve
high encoding for the MDD group, but perseverate in the Sain intervals described above. Shannon-Weaver bits of
group. Altogether, there is “multiple-dissociation” evidenof a uncertainty for the HC, MDD, and Sz groups, under the
reduced separation between low- and high-encoding networkew encoding load, were 1.365, 1.467, and 1.455. Those
among the Sz group, relative to both the HC and MDD controlunder the high encoding-load condition were 1.499, 1.586,
groups. and 1.640. In this way, the more entropic patterns of
Note that, in general, participant motion can raise ACC connectivity, seen inFigures4 5, were co-extensive
di culties with functional connectivity analyses as any with quantitatively greater entropy of modeled cognitive
departure from the orientation at D O (very rst image performance.
acquisition) could introduce an artifact in the time-coes
of signal-intensity at each voxel. Although post-processingiGENERAL DISCUSSION
methods are available and do help reduce the artifact, it
has previously been demonstrated that subject motioA mandate of clinical cognitive modeling is to broker symptom
is still a signicant issue Fower et al., 20)2 It may be signi cance to deviations in functional neuro-circuitrymaong
expected that between the psychiatric conditions and thelinical groups. To that end, a quantitative account of potaint
healthy controls there may be a tendency for decreasesiymptom signi cance of elevation in encoding subprocesses,
(or increased) subject motion. For this reason, the averageotably for thought-content disorder (delusions and thenoati
translational (X, Y, Z) and rotational (pitch, yaw, roll) meaes hallucinations), has been developed. Detailed elsewhenef¢ld,
throughout the fMRI acquisition of each individual were 2007a; Neufeld et al., 201Ghe crux of the development is
compared among groups. No signicant dierences werethat such encoding elongation disproportionately jeopardizes
observed [Pillai-Bartlett-V approximatd=», 709 D 0.867, the input to working memory of cues that signal the objective
p D 0.643], suggesting that there was no systematic variation signi cance of other successfully encoded material. Witho
movement that would be expected to in uence the connectivitybeing anked by contextualizing information, the survign

analysis. material is subject to false, if internally coherent, igfeces
. (cf. Yates, 1966; Maher, 1938The present developments
Model-Guided MRI Inferences extend formally modeled symptom-signi cant encoding de cit

The presenting picture of Sz neuro-connectivity, paralletim®  to perhaps the most widely used selective-attention task in
of parameterized reduction in cognitive encoding e ciendg, cognitive science, and have ferreted out associated furati
one of apparent dis-inhibition of ACC co-activated regions,neuro-circuitry via high- eld MRI. Findings for Sz moreoverar
especially under the higher cognitive encoding demands. Thgaparable from those of both healthy and clinical controls, are
less concentrated pattern of co-activation resembles pusvio founded on a common formal-model platform. Results add to the
ndings, including speci c locations of increased spreadfatlly  cognitive neuro-science arsenal on Sz, including recedings

in medial and frontal and parietal positions (e.goksman etal., on fMRS of glutamatergic functioning of the ACCdylor et al.,
2005; Boksman, 2006; Neufeld et al., 2010 2015.

Part and parcel of the more di use co-activation is reduced The mental architecture indicated by the selected Erlang
attenuation under higher encoding demands, of regions cogjstribution of trial latencies is the standard serial (seqtial)
activated with the ACC under lower encoding demandsmodel of subprocess completion, or a mimicking parallel
Altogether, the comparative neuro-circuitry of the Sz group(concurrent processing) counterpart. The latter include a@dx
appears expressly isomorphic with the identi ed quantitativecapacity parallel model, with reallocation of the processing
properties of cognitive performance. Less evidentin thisgisu  capacity released by (stochastically) completed subpracésse
the strategic deployment of ACC neuro-connectivity, indh@l  those still in progressTownsend and Ashby, 1983as well as
selective adaptation of networks specically to encountereg rst-stage unlimited capacity parallel model (FSUCP, above;
encoding conditions. Townsend, 198/ Cognitive-behavioral model selection in turn

A consequence of lower encoding e ciency, and itShasled to estimation of its functional neuro-circuitrylustrated
associated neuro-circuitry, is an increase in work-outpot f here is the pre-establishing of a prevailing mental architest
completing a given encoding task. The number of discretesvenyhich avoids di culties of inferring its structure from thevery

(subprocesses) completed by titnfor an Erlang distribution is  neuro-circuitry being charted Neufeld, 2007 cf. Poldrack,
vt (e.g.,Townsend and Ashby, 19Y.8The across-trial expected 201).

value is Identifying  encoding  elongation, specically  with
Z, incremented subprocesses, stands to have certain implisatio
E (number completgg,,q D . f.t/vtdt D vET). for clinical intervention as follows. The speed of subprocess

transaction,v, tenably is more aligned with network neuro-
From this perspective, elevat&(T) implies additional outlay of dynamics than is the Erlang shape paramete?, which
cognitive work done in Sz to achieve a normal encoding result defensibly relates more to e ciency of their implementation
The less channeled neuro-circuitry observed in Sz sugtiests (seeCarter and Neufeld, 20QTor neuro-connectionist- model
possibility of more entropy in their modeled encoding-latencyanalogs ofr andk9. As such, an increase k? may signal more
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ultimate tractability of encoding de cit to therapeutic aection data analysis; manuscript preparation. PW: research
than reduction inv. design; oversight of participant recruitment; manuscript
Furthermore, to intervention, ne-tuned analyses of intra- preparation. MD: neuroimaging signal processing; analysis of
trial encoding dynamics have been undertakenTaylor et al. neuroimaging summary statistics. RN: mathematical modeling
(in press) The additional subprocesses are shown to take the&nd interpretation of cognitive-behavioral data; co-pripar
main toll during earlier time windows of processing trialdiygve  responsibility for manuscript preparation.
the likelihood of successful encoding by Sz participants lags
behind that of controls. Interventions depending on infortitn ~ ACKNOWLEDGMENTS
intake thus might exploit the closing of the gap in control-Sz
encoding success as the processing opportunity is extended. This work was supported by a New Investigator Fellowship
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APPENDIX whereF(t) is a stochastic-process distribution function.

A1l Perf A The PD stated probability of a correct response in a color-
o _er ormance Accuracy i . word incongruent condition, at a designated time from trial

Additivity of performance latency does not m_1p|y additivityf O commencement, is

performance accuracy. Let correct responding occur by time

t whenever the necessary processing for an informed answer p,

has taken place, with its probability de ned by the distritwrii

function F(t). In the absence of such information, 1 F(t), a

correct response may happen through guessing, with probabili

g The probability of an accurate response by tintleus becomes

Ft)C (@ Ft)gD Ft)(X g) C g and the probability of an

error is

(correc)stroopincongruentep ~ Pr(colod(1  Pword))
(A.2.3)

t . . S .
%estated in terms of stochastic-process distribution andisarv
[St)D 1 F(t)] functions, Equation (A.2.3) becomes

F(t)colortword (A.2.4)

1L FUT 9 9 (AL1) Equation (A.2.3), hence Equation (A.2.4), putatively previd

for the necessity of only color completion by timewhereby

X\gt'?(t? being a constant, Equation (A.1.1) obviously is Iinearresponding is said exclusively to be controlled by the color-

: ) . naming process.

For an Erlang_ko structure, H(t), n turn, is nonlinear onk® Coherent with a race-model structure implied by Equation
(Neufeld and Williamson, 1996Speci cally, (A.2.1), dominance of the color-naming process requiresyonl
0 that the color process be completed before the word process [i.e
M (A.1.2) color-feature rst-passage time; Equation (5)kifiodadadi and

0(k9 Townsend, 2015cf. (Eidels, 201)3. Remaining with stochastic-

. . . . process notation, its race-model probability is
Section Hazard-Function Considerations. Its second-prde

di erence,4 ﬁo; F(t), is seen to be negative in regionsk8aindv t

representative of the present parameter estimates €.@, 9, Pr(Teor 1) D S f(19coioS(tYwordt” (A.2.5)

v D 11), and notably in the vicinity of the current trial deaddis 0

(e.9.1 D 1.95s). Incrementation in subprocesses therefore impliegnere the integrand is the density function for color rst-
non-additive (potentially, disproportionately greater) errates  completion. Note that in contrast to the density function

F.t/ D1

alongside additive latencies. that appears in Equation (A.2.5), the density function
. . s resulting from Equation (A.2.4), obtained as its time

A.2. Evaluation of Process-Dissociation derivaﬁse is q 29

Analysis

In the Process-Dissociation model (PD), the probability of a f(t)colorSt)word T (Q)wordF()color-

correct response (i.e., indicating the presented color) itradp
color-word congruent condition, at a designated time fronak  Equation (A.2.3) therefore is mis-speci ed. Arranging emptic

commencement, is de ned as observations according to the PD measurement model results
in the following consequences for estimationk{f),,org and of
Pr correcicongruent  Pr color C Pr word F(t)color-

Pr word Pr(colo) (A.2.1) Unlike the distribution function Equation (A.2.5) and that
of the Erlang structure (text Sections Mean Diagnostics tiou

Equation (A.2.1) aligns with an independent race model for 41azard-Function Considerations), each of which monotofijca
correct response in an OR experimental paradigm (encodin§jicéase ont, the expression Equation (A.2.4) rst increases

of either the color or the word produces a correct response?nd then recedes back t0 0 &f)wora decreases to 0. As
the contribution of guessing set aside; see, @gunsend and with continuous stochastic distribution functions gendyathe
Wenger, 200% T empiricalPr(Teor  t) itself is monotone increasing (e.gindsay

In considering this de nition further, we de ne a random 2&nd Jacoby's, 199Rigure 2). _ _
variableTr as the time at which the participant makes a correct The m'S‘SPec' ca.1t|onl n Eq.uf';mon (A.2.3) ramies to o.ther
response, wher&cor is set to in nity if the participant does not EXPressions in which it participates. Included are estimates

make a correct resporfseThen, using notation of a dynamical ©f F(word and F(t)eolor By the structures of PD Equations
stochastic process, for a designated nite time of trial peesgrion,  (A-2-1) and (A.2.3) F()worg becomes Equations (A.2.1) and
t, Equation (A.2.1) can be written as (A.2.3), est|matgd as the corresp(_)pdlng di erence in empirica
congruent- and incongruent-condition values. A result bfst
subtraction is areductionin PD-based estimation oF(t)word
Pt.Teor /D F(t)color € F(hwora  F(tcolo (Dwora acrosg (as seen inindsay and Jacoby's, 19%igure 3). Again,
(A-22)  this direction of change is contrary to an inevitable stostia
4We thank Donald Bamber for suggesting this de nition and relatedation. distribution increase for any continuous distribution futian
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F(t). More speci cally, with Equation (A.2.1) modelim@r(Teor  empiricalPr(Teor  t)incongruent The PD expression f(t)yorg as
t)congruen@nd Equation (A.2.3) modelinBr(Teor  t), positive  Equations (A.2.1) and (A.2.3), obviously is a decreasingtfan
values of the PD-estimateB(t),org, (€vident inLindsay and of Equation (A.2.3). The same combination is su cient to
Jacoby's, 199igure 3), require only that empiric&r(Tcor generate a reduction in estimaté)coor. The PD equations are

t)congruent> Pr(Tcor t)incongruen{ as |ndeed |S seen |n thell’ Comblned to eStimatE(t)coloraS

Figure 2 For PD-estimated=(t)org then to actuallydecrease

over time, the empiricaPr(Tcor  t)incongruent MUSt increase

with t more than does the empirical Pior  t)congruent 2gain 1 [Pr(Teor t)congruent PT(Teor t)incongruenl

g

as is seen irFigure 2 The implausible decrease in estimated 1

F(t)worg ONCE More presents itself as a product of a mis-speci ed D7 Pr(Tcor eongruent

measurement model. “Pr(Teor Dincongruent
Turning to higher estimated=(t)yorg and lower estimated

F(t)color @among Sz participant3@rch et al., 2004such a result which is seen to be an increasing function Bf(Tcor

is compatible with model mis-speci cation combined with lowe t)incongruent

1

Pr(Tcor  t)incongruent

C1
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