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One objective of this study was to provide readers with a clear and unified understanding

of parametric statistical and kernel methods, used for genomic prediction, and to

compare some of these in the context of rice breeding for quantitative traits. Furthermore,

another objective was to provide a simple and user-friendly R package, named

KRMM, which allows users to perform RKHS regression with several kernels. After

introducing the concept of regularized empirical risk minimization, the connections

between well-known parametric and kernel methods such as Ridge regression [i.e.,

genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space

(RKHS) regression were reviewed. Ridge regression was then reformulated so as to show

and emphasize the advantage of the kernel “trick” concept, exploited by kernel methods

in the context of epistatic genetic architectures, over parametric frameworks used by

conventional methods. Some parametric and kernel methods; least absolute shrinkage

and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and

RKHS regression were thereupon compared for their genomic predictive ability in the

context of rice breeding using three real data sets. Among the comparedmethods, RKHS

regression and SVR were often the most accurate methods for prediction followed by

GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker

effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA

kernel, in a reasonable computation time has been developed. Moreover, a modified

version of this function, which allows users to tune kernels for RKHS regression, has

also been developed and parallelized for HPC Linux clusters. The corresponding KRMM

package and all scripts have been made publicly available.
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1. INTRODUCTION

Since the seminal contribution of Meuwissen et al. (2001), genomic selection (GS) has become
a popular strategy for genetic improvement of livestock species and plants. Moreover numerous
methods from statistics and machine learning have been proposed for genomic prediction since,
due to the high modeling complexity associated to the large amount of markers available. For
instance, modeling the effects of thousands interacting genes (i.e., epistasis) associated to complex
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FIGURE 3 | Boxplots of RPA distributions associated to NR, DR, and RS for data set 2.
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FIGURE 4 | Boxplots of RPA distributions associated to PH, CD, and FE for data set 3.
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FIGURE 5 | Boxplots of RPA distributions associated to NS, SY, and NP for data set 3.
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predictive performance, than conventional parametric methods,
for traits potentially havingmoderate to complex epistatic genetic
architectures. For example, the large RPA mean differences for
SY, between the studied parametric and kernel methods, is
probably due to an epistatic genetic architecture associated to
this trait as pointed out by Liu et al. (2006). The same reasoning
can be applied to AR for which epistatic mechanisms might
potentially be involved (Norton et al., 2010). In this study, SVR
and RKHS regression had similar predictive abilities. However,
one advantage of RKHS regression over SVR lies in the fewer
number of parameters to be estimated, which can be automated
quite easily. Thus, RKHS regression can be performedmore easily
than SVR by low experienced users. Indeed, as pointed out by
Cherkassky and Ma (2004), SVR application studies are usually
performed by “practitioners,” who have a good understanding of
the SVMmethodology, since the main issue in having good SVM
models lies in the proper setting of the meta-parameters.

4.2. Comparison and Connections Between
Kernel Methods and Other Methods in
Frequentist and Bayesian Frameworks
In comparison with Howard et al. (2014), we did not compare the
studied kernel methods to neural networks (NN). Nevertheless,
these authors showed that NN did not perform better than these
methods in their simulation study. As pointed out by Howard
et al. (2014), it is well-known that NN can be prone to over-
fitting which reduces predictive performance. Moreover, NN are
plagued with the problem of local minima in comparison to
support vector machines which are not (Smola and Schlkopf,
1998). Yet, connections between NN with a single layer of
hidden units (i.e., neurons) and kernel machines exist (Cho
and Saul, 2009). In our study we reviewed the equivalence
between well-known regularized, mixed and Bayesian linear
models. As a matter of fact, for parametric models where one can
specify likelihoods, inferences from frequentist (i.e., maximum
likelihood based approaches) and Bayesian procedures will be
practically the same if n (i.e., number of accessions) becomes
sufficiently large for a fixed p. This is a consequence of the so-
called Bernstein-von Mises theorem (Ghosal et al., 1995; Ghosal,
1997). Moreover, we showed in this study that many parametric
methods can be framed as kernel methods, with simple kernels,
due to their equivalent primal and dual formulations. For
instance, this was shown for Ridge regression, Bayesian Ridge
regression, RR-BLUP and GBLUP which are mathematically
equivalent methods for prediction.

Framing parametric methods as kernel machines with simple
kernels has important implications in the sense that many kernel
methods can be specified, and solved conveniently, in existing
classical frequentist (e.g., embedding kernels in mixed models)
and Bayesian frameworks. This was first pointed out by Gianola

et al. (2006) and several following works (De los Campos et al.,
2010; Endelman, 2011; Morota et al., 2013; Pérez and de los
Campos, 2014) developed kernel methods in these frameworks.
We also developed a simple and user-friendly R function within
the mixed model framework, named Kernel_Ridge_MM.R,
which allows users to perform RR-BLUP of marker effects,

GBLUP and RKHS regression, with a Gaussian, Laplacian,
polynomial or ANOVA kernel, in a reasonable computation time.
In our study we used only the Gaussian kernel which performed
well for RKHS regression. However, other kernels such as the
polynomial or ANOVA kernel can be used. For instance, the
ANOVA kernel was found to perform well in multidimensional
regression problems (Hofmann et al., 2008). A modified version
of this function named Tune_kernel_Ridge_MM.R, which
allows users to tune the rate of decay parameter for RKHS
regression based on K-folds cross validation, has also been
developed for Windows, Linux and parallelized for HPC Linux
clusters. Finally, an R package named KRMM, associated to
these functions, has also been developed. The KRMM package
and all scripts are publicly available at https://sourceforge.net/u/
ljacquin/profile/. As conclusion, we recommend the use of kernel
methods for genomic prediction, and selection, since the genetic
architectures associated to quantitative traits are rarely known
and can be very complex and complicated to model. Therefore,
it seems more advisable to use data-driven prediction models,
which can account for multiple orders of interaction, to assess
the genetic merits of individuals.

AUTHOR CONTRIBUTIONS

LJ wrote the manuscript, developed all scripts and the KRMM
package. LJ performed the analyses. T-VC and NA read and
approved the manuscript.

FUNDING

This work was funded by Agropolis Foundation Grant no

1201-006.

ACKNOWLEDGMENTS

The authors thank Brigitte Courtois and Louis-Marie Raboin for
providing data set 2 and 3.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fgene.
2016.00145

This file contains the proofs of lemmas in the main text.

REFERENCES

Al-Anazi, A., and Gates, I. (2012). Support vector regression to predict porosity

and permeability: effect of sample size. Comput. Geosci. 39, 64–76. doi:

10.1016/j.cageo.2011.06.011

Basak, D., Pal, S., and Patranabis, D. C. (2007). Support vector regression. Neural

Inform. Process. Lett. Rev. 11, 203–224.

Bishop, C. M., and Tipping, M. E. (2003). Bayesian regression and

classification. Nato Sci. Ser. Sub Ser. III Comput. Syst. Sci. 190,

267–288.

Frontiers in Genetics | www.frontiersin.org 14 August 2016 | Volume 7 | Article 145

https://sourceforge.net/u/ljacquin/profile/
https://sourceforge.net/u/ljacquin/profile/
http://journal.frontiersin.org/article/10.3389/fgene.2016.00145
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Jacquin et al. Comprehensible View of Prediction Methods

Cherkassky, V., and Ma, Y. (2004). Practical selection of svm parameters and noise

estimation for SVM regression. Neural Netw. 17, 113–126. doi: 10.1016/S0893-

6080(03)00169-2

Cho, Y., and Saul, L. K. (2009). “Kernel methods for deep learning,” in Advances in

Neural Information Processing Systems (San Diego, CA), 342–350.

Cornuéjols, A., and Miclet, L. (2011). Apprentissage Artificiel: Concepts et

Algorithmes. Paris: Editions Eyrolles.

Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction to Support Vector

Machines and Other Kernel-Based Learning Methods. Cambridge: Cambridge

University Press.

Czanner, G., Sarma, S. V., Ba, D., Eden, U. T., Wu, W., Eskandar, E., et al. (2015).

Measuring the signal-to-noise ratio of a neuron. Proc. Natl. Acad. Sci. U.S.A.

112, 7141–7146. doi: 10.1073/pnas.1505545112

Dalalyan, A. S., Hebiri, M., and Lederer, J. (2014). On the prediction performance

of the lasso. arXiv preprint arXiv:1402.1700.

De los Campos, G., Gianola, D., Rosa, G. J., Weigel, K. A., and Crossa, J.

(2010). Semi-parametric genomic-enabled prediction of genetic values using

reproducing kernel hilbert spaces methods. Genet. Res. 92, 295–308. doi:

10.1017/S0016672310000285

De los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, H. D.,

and Calus, M. P. (2013a). Whole-genome regression and prediction

methods applied to plant and animal breeding. Genetics 193, 327–345. doi:

10.1534/genetics.112.143313

De los Campos, G., Vazquez, A. I., Fernando, R., Klimentidis, Y. C., and

Sorensen, D. (2013b). Prediction of complex human traits using the

genomic best linear unbiased predictor. PLoS Genet. 9:e1003608. doi:

10.1371/journal.pgen.1003608

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39,

1–38.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression.

Ann. Stat. 32, 407–451. doi: 10.1214/009053604000000067

Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection

with r package rrblup. Plant Genome 4, 250–255. doi: 10.3835/plantgenome2

011.08.0024

Flint, J., and Mackay, T. F. (2009). Genetic architecture of quantitative traits in

mice, flies, and humans. Genome Res. 19, 723–733. doi: 10.1101/gr.086660.108

Foulley, J.-L. (2002). Algorithme em: théorie et application au modèle mixte. J. la

Société Française Statistique 143, 57–109.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The Elements of Statistical

Learning, Vol. 1. Springer Series in Statistics. Berlin: Springer.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for

generalized linear models via coordinate descent. J. Stat. Softw. 33:1. doi:

10.18637/jss.v033.i01

Ghosal, S. (1997). “A review of consistency and convergence of posterior

distribution,” in Varanashi Symposium in Bayesian Inference (Varanasi: Banaras

Hindu University).

Ghosal, S., Ghosh, J. K., and Samanta, T. (1995). On convergence of posterior

distributions. Ann. Stat. 23, 2145–2152. doi: 10.1214/aos/1034713651

Gianola, D., Fernando, R. L., and Stella, A. (2006). Genomic-assisted prediction

of genetic value with semiparametric procedures. Genetics 173, 1761–1776. doi:

10.1534/genetics.105.049510

Gianola, D., and van Kaam, J. B. (2008). Reproducing kernel hilbert spaces

regression methods for genomic assisted prediction of quantitative traits.

Genetics 178, 2289–2303. doi: 10.1534/genetics.107.084285

Gianola, D., Weigel, K. A., Krämer, N., Stella, A., and Schön, C.-C. (2014).

Enhancing genome-enabled prediction by bagging genomic blup. PLoS ONE

9:e91693. doi: 10.1371/journal.pone.0091693

Gordon, G., and Tibshirani, R. (2012). Accelerated first-order methods.

Optimization 10:725.

Gretton, A. (2013). Introduction to rkhs, and some simple kernel algorithms. Adv.

Top. Mach. Learn. Lecture Conducted from University College London.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: biased

estimation for nonorthogonal problems. Technometrics 12, 55–67. doi:

10.1080/00401706.1970.10488634

Hofmann, T., Schölkopf, B., and Smola, A. J. (2008). Kernel methods in machine

learning. Ann. Stat. 36, 1171–1220. doi: 10.1214/009053607000000677

Howard, R., Carriquiry, A. L., and Beavis, W. D. (2014). Parametric

and nonparametric statistical methods for genomic selection of traits

with additive and epistatic genetic architectures. G3 4, 1027–1046. doi:

10.1534/g3.114.010298

Huang, W., Richards, S., Carbone, M. A., Zhu, D., Anholt, R. R., Ayroles,

J. F., et al. (2012). Epistasis dominates the genetic architecture of drosophila

quantitative traits. Proc. Natl. Acad. Sci. U.S.A. 109, 15553–15559. doi:

10.1073/pnas.1213423109

Jacquin, L., Elsen, J.-M., and Gilbert, H. (2014). Using haplotypes for the prediction

of allelic identity to fine-map QTL: characterization and properties. Genet.

Select Evol. 46:45. doi: 10.1186/1297-9686-46-45

Janson, L., Barber, R. F., and Candès, E. (2015). Eigenprism: inference for high-

dimensional signal-to-noise ratios. arXiv preprint arXiv:1505.02097.

Jiang, Y., and Reif, J. C. (2015). Modeling epistasis in genomic selection. Genetics

201, 759–768. doi: 10.1534/genetics.115.177907

Karatzoglou, A., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab-

an S4 package for kernel methods in R. J. Stat. Softw. 11, 1–20. doi:

10.18637/jss.v011.i09

Kimeldorf, G., and Wahba, G. (1971). Some results on tchebycheffian spline

functions. J. Math. Anal. Appl. 33, 82–95. doi: 10.1016/0022-247X(71)90

184-3

Konstantinov, K., and Hayes, B. (2010). “Comparison of blup and reproducing

kernel hilbert spaces methods for genomic prediction of breeding values in

australian holstein friesian cattle,” in Proceedings of the 9th World Congress

on Genetics Applied to Livestock Production, Vol. 224, (Leipzig: CD-ROM

Communication).

Lindley, D. V., and Smith, A. F. M. (1972). Bayes estimates for the linear model. J.

R. Stat. Soc. Ser. B (Methodol.) 34, 1–41.

Liu, G.-F., Yang, J., and Zhu, J. (2006). Mapping QTL for biomass yield and

its components in rice (oryza sativa L.). Acta Genet. Sin. 33, 607–616. doi:

10.1016/S0379-4172(06)60090-5

Meuwissen, T. H., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total

genetic value using genome-wide dense marker maps.Genetics 157, 1819–1829.

Micchelli, C. A., Xu, Y., and Zhang, H. (2006). Universal kernels. J. Mach. Learn.

Res. 7, 2651–2667.

Moore, J. H., and Williams, S. M. (2009). Epistasis and its implications for

personal genetics. Am. J. Hum. Genet. 85, 309–320. doi: 10.1016/j.ajhg.2009.

08.006

Morota, G., and Gianola, D. (2014). Kernel-based whole-genome prediction of

complex traits: a review. Front. Genet. 5:363. doi: 10.3389/fgene.2014.00363

Morota, G., Koyama, M., Rosa, G. J. M., Weigel, K. A., and Gianola, D. (2013).

Predicting complex traits using a diffusion kernel on genetic markers with an

application to dairy cattle and wheat data. Genet. Sel. Evol. 45:17. doi: 10.1186/

1297-9686-45-17

Naim, I., and Gildea, D. (2012). Convergence of the em algorithm for gaussian

mixtures with unbalanced mixing coefficients. arXiv preprint arXiv:1206.6427.

Norton, G. J., Deacon, C. M., Xiong, L., Huang, S., Meharg, A. A., and Price, A. H.

(2010). Genetic mapping of the rice ionome in leaves and grain: identification

of qtls for 17 elements including arsenic, cadmium, iron and selenium. Plant

Soil 329, 139–153. doi: 10.1007/s11104-009-0141-8

Onogi, A., Ideta, O., Inoshita, Y., Ebana, K., Yoshioka, T., Yamasaki, M., et

al. (2015). Exploring the areas of applicability of whole-genome prediction

methods for asian rice (oryza sativa L.). Theor. Appl. Genet. 128, 41–53. doi:

10.1007/s00122-014-2411-y

Pérez, P., and de los Campos, G. (2014). Genome-wide regression and prediction

with the BGLR statistical package.Genetics 198, 483–495. doi: 10.1534/genetics.

114.164442

Pérez-Rodríguez, P., Gianola, D., González-Camacho, J. M., Crossa, J., Manès, Y.,

and Dreisigacker, S. (2012). Comparison between linear and non-parametric

regression models for genome-enabled prediction in wheat. G3 2, 1595–1605.

doi: 10.1534/g3.112.003665

Robinson, G. K. (1991). That BLUP is a good thing: the estimation of random

effects. Stat. Sci. 6, 15–32. doi: 10.1214/ss/1177011926

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression.

Number 12. Cambridge: Cambridge University Press.

Saunders, C., Gammerman, A., and Vovk, V. (1998). “Ridge regression learning

algorithm in dual variables,” in (ICML-1998) Proceedings of the 15th

Frontiers in Genetics | www.frontiersin.org 15 August 2016 | Volume 7 | Article 145

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Jacquin et al. Comprehensible View of Prediction Methods

International Conference on Machine Learning (San Francisco, CA: Morgan

Kaufmann), 515–521.

Schaeffer, L. (2010). Linear models in animal breeding. Course at the centre for

genetic improvement of livestock. Univ. Guelph 97–98. Available online at:

http://www.aps.uoguelph.ca/~lrs/ABModels/DATA/EuropeNotes.pdf

Smola, A., and Schlkopf, B. (1998). A tutorial on support vector

regression. Neuro COL T2 Technical Report Series NC2-TR-

1998-030.

Sun, X., Ma, P., and Mumm, R. H. (2012). Nonparametric method for

genomics-based prediction of performance of quantitative traits involving

epistasis in plant breeding. PLoS ONE 7:e50604. doi: 10.1371/journal.pone.

0050604

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat.

Soc. Ser. B (Methodol.) 58, 267–288.

Tibshirani, R. J. (2013). The lasso problem and uniqueness. Electron. J. Stat. 7,

1456–1490. doi: 10.1214/13-EJS815

Vapnik, V. N. (1998). Statistical Learning Theory. New York, NY: John Wiley &

Sons.

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic

net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 301–320. doi: 10.1111/j.1467-

9868.2005.00503.x

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Jacquin, Cao and Ahmadi. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 16 August 2016 | Volume 7 | Article 145

http://www.aps.uoguelph.ca/~lrs/ABModels/DATA/EuropeNotes.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive

