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State of the art scene ow estimation techniques are based onprojections of the 3D
motion on image using luminance—sampled at the frame rate ohe cameras—as the
principal source of information. We introduce in this papea pure time based approach
to estimate the ow from 3D point clouds primarily output by reuromorphic event-based
stereo camera rigs, or by any existing 3D depth sensor even if does not provide nor
use luminance. This method formulates the scene ow problemby applying a local
piecewise regularization of the scene ow. The formulatioprovides a unifying framework
to estimate scene ow from synchronous and asynchronous 3D pint clouds. It relies on
the properties of 4D space time using a decomposition into & subspaces. This method
naturally exploits the properties of the neuromorphic asyhronous event based vision
sensors that allows continuous time 3D point clouds reconsuction. The approach can
also handle the motion of deformable object. Experiments ugsg different 3D sensors
are presented.

Keywords: neuromorphic vision, event-based sensing, scene
from structure

ow, 3D point clouds, motion estimation, motion

1. INTRODUCTION

1.1. Scene Flow

The motion of 3D structures is an important information to eatt from a scene to build geometric
and dynamic descriptions of its content. Such informatiorliso essential to a large set of vision
applications such as: virtual reality synthesis, scene sggtien and autonomous navigation.
Scene ows are vector elds that map points of a 3D structure Heit instantaneous velocity
vectors. Because of this close relationship, estimatingdkae ow usually implies to estimating
the structure and vice-versa.

The Structure From Motion (SFM) is one of the classical computsion problems that have
been largely studied during the past few decades by the machsion community {laybank,
1993. However, SFM's high vulnerability to images' noise anddmera calibration errors raised
questions regarding its applicability in real-world scepnar{lomasi and Zhang, 1995Currently,
with the increasing demand for realistic and high de niti@D content, many ready-to-use sensors
are now able to provide dense 3D points clouds in real-timel{ss: laser range- nders, structured
light vision sensors,...). These devices allow to decoly@estructure reconstruction from the
motion estimation and to focus the e ort on motion extracti@nd its characterization.

To achieve dense scene ow estimation, state-of-the-atingues estimate depth maps and
compute optical ows for each camera separately. In a secomgg $skeey combine both to estimate
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the 3D ow. This approach parametrizes the motion problem(Khoshelham and Elberink, 20),2ime-of- ight range-imaging

on the image plane, i.e., in 2D and is the most commonlysensors Klansard et al., 20)2 laser range nder and even
found in the existing literature\(edula et al., 1999; Zhang et al., conventional camera based systems that are also able to provid
2001; Isard and MacCormick, 2006; Wedel et al., 0A12D  robust 3D reconstructions with a reasonable accuracy using
parametrization is however more prone to discontinuitiescgin optimized implementations. It is however important to notice
a smooth 3D signal may be projected into a discontinuous 2@hat beyond the heavy computational and energy requirement,
signal due to occlusions. all these techniques rarely exceed frame rates beyond 90 Hz.

In Basha et al. (2013)the depth map and the optical  We will then show that the use of timed 4D spaces (3D space
ow are solved simultaneously rather than in a sequentialC time) allow to derive more e cient techniques than state
manner, as authors argue, for a better coupling between $patiaf art techniques. The method assumes locally non-defotenab
and temporal information. InHad eld and Bowden (2014) spatiotemporal surfaces swept by 3D moving structures. We
and Park et al. (2012)the motion ow is extracted and show that under such hypothesis, the velocity estimation is
re ned directly from the 3D points clouds by using particle reduced to a one dimensional search over the set of
Itering or tensor voting techniques. Optical ows are only real numbers, and the dense estimation is directly achieved
estimated for comparison purposes or for initial scene owusing local spatiotemporal planes. An additional advantage is
estimation. its ability to determine velocities collinear to moving edg

A second requirement for obtaining dense ow estimation isassuming it is possible to identify local 3D structures across
to introduce some form of regularization. For that purposegon the trajectory. This work can be seen as a generalization of
recurrent hypothesis is to assume local rigid body motion andhe previous work on the event-based estimation of 2D visual
therefore induce local constant velocity, i.e., points onom-n  motion ow (Benosman et al., 20140 higher dimensional
deformable surface will have the same velocity. Regulaizat spaces.
is often performed by minimizing an energy function with
variational formulations Zhang et al., 2001; Min and Sohn, 1.2. Asynchronous Event-Based Vision
2006; Huguet and Devernay, 200Energy minimization has Biological retinas do not encode visual scenes as colfeatio
proven to be a successful technique for both 2D and 3Dtatic frames, but rather as a continuous stream of asynmaius
ow parametrization. It is however computationally greedy andspikes. Neuromorphic vision sensors replicate partially this
it makes it dicult to achieve real-time estimation without mechanism by encoding visual information with high temporal
embedding a dedicated powerful computational unit (e.g.resolution asynchronous streams of events. Since the pimgeer
GPU). Scene ow can also be computed from local descriptorarork of Mahowald (1992that built the rst retina on silicon,
of reconstructed surfaces such as surfel that encodes tkeveral major improvements have been made for what is now
local geometry and the re ectance information of the shapesefered to as the “neuromorphic silicon retinas.” One of the
(Carceroni and Kutulakos, 20n2Motion is then estimated in  most important achievements is the Dynamic Vision Sensor
an integrative manner by matching descriptors over timeegalv  (DVS) (Lichtsteiner et al., 2003a 128 128 pixel resolution
authors adopted the same idea of addressing the scene ow as@nsor which encodes light intensity changes into a stream
problem of characterization and tracking 3D surfaces oveeti of asynchronous events. Each pixel responds independently to
Varanasi et al. (200§roposes to describe and track the surfacesontrast changes producing ON and OFF events (respectively
by sparse features matching and extend this to a dense e&timatto increase or decrease in light intensity) at microsecond
using smoothing operations based on the Laplacian di usionresolution.

Patch based techniques have also been usétbppham et al. Posch et al. designed the Asynchronous Time-based
(2010)and Cagniart et al. (20100 split complex surfaces into Imaging Sensor (ATIS)Rosch et al., 20)1a 302 240

simpler ones. Their matching and relative pose estimation fopixel resolution sensor which measures absolute luminance
each patch allows to estimate the scene ow densely. information when a contrast change event occurs. The sensor

This paper introduces a new solution to estimate scene owprovides a 143 dB dynamic range gray-level information
using properties of 4D (3D space-+time) spaces without thasynchronously encoded as the temporal dierence of two
need to use luminance. We will show that the use of the time@xposure measurement events. Its typical temporal accuracy
allows to go beyond the conventional framework that relies o is around 1 s. The reader can refer toelbrick et al. (2010)
the combined use of luminance and depth informatidrefbst for a complete review of the existing neuromorphic visual
et al., 201 The paper is initially intended to operate on sensors.
high temporal resolution 3D depth information output from
a binocular neuromorphic event-based camera stereo rig. A MATERIALS AND METHODS
introduced in Rogister et al. (20123nd Carneiro et al. (2013)
event-based cameras allow to estimate depth and produce 1. Scene Flow Parametrization
point clouds at unprecedented accuracyl(kHz in real-time) We de ne a 3D event as a 4-components vecigy(z,t)". It can
at very low computational and energy cost using conventionabe increased to 5 components if the luminance information is
processing hardware. We will show that the method can be usealailable. Let us consider a smooth edyehich can be assumed
evenin the case of lower temporal resolution and it can be aghplieplanar within a small enough spatial neighborhood. If the eélo
to any 3D data such as the ones output from: RGB-D camerasf Cis constant, then as time increases, the edge generatesda rul
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surfaceS in the direction of the velocity. The surface can be hypothesis, we get three surfaces with implicit equationshef t

algebraically de ned by the equation: form:
00 1 0 11
s:R® RC! R @@BiA @ AA
: : Si(i,j,t) D S i Ct@Qy DO, 3
x,y,z,t) 7! S(pCtv)DO @ (.10 k d 1J @)

wherep 2 C. Figure 1shows an illustration of such ruled surface. where {,j) is any pair of elements ifi(x,y), (y,2), (z,x)g and k
The velocity vector is according to Equation (1) the directr indexes thek" element of this list e.g., K D 1, (,j) D (x,y).
of the ruled surface swept by the edge, hence the estimation oflhis means we are working with they andt components o

is equivalent to determining the surface's directrix. Irdéibn to These surfaces are also ruled surfaces of respective iiesctr
Equation (1), if the surface is smooth (i.e., of clakat least), we  (Vx, Wy, 1)T, (W, Vz, 1) and (v, v, 1) and their generatrices are
get a second equation satis ed tay the restrictions ofCto (X,Y,T), (Y,Z,T) and (Z,X,T). For the
same reason, given Equation (2), we can establish forgattte
(r S)TV D 0, (2) equatlon:
0 1
. . . . Vi
because the directrix is contained in the tangent plang; (r 50T GyA D @Vi c @Vj c@ o @)
(Sommerville, 1934r S refers to the gradient o§. Only the 1 @ @ @

direction of v can be deduced from the two scalar equations
sincev has 3 components. Its norm can be set arbitrarily to, = . . .

. . - . As illustr Figur we now have thr metri
1. To determine the exact amplitude, additional constrasuts s lllustrated by Figure2, we no ave three geometric

. . . . : constraints, which can be rearranged into a matrix form:
required. A possible way to estimate amplitudes is to apply

a shape registration technique, since the velocity vectdnds 0 S Sie 0 1 0 & _@1
vector joining the two consecutive positions of the shape when @ (1)" Sl'y S, AvD @@IZ@A 5)
it moves. We then propose to estimate the velocity in a two steps S S’y SZZ @2: @ '
operation: | o {z 3Z} >
M

1. alocal tting of a smooth surface to the 3D points clouds is
operated to derive as much equations similar to (1) and (2) 8jith the convention thatScy (respectivelyy,z) is the partial

possible, _ _ _ derivative with respect ta (respectivelyy,z). To determinev,
2. vis then estimated from the equations established in step 1 yq igeal case would be to havkinvertible i.e., itis full ranked.
adding a shape registration algorithm. There is no obvious way to tell from the general expressidv of

To get enough equations to estimate we propose to study . )
three surfaces derived frof LetSy, S, and S be respectively 2-2- Plane Approximation _ .
the surfaces built from Equation (1) in each coordinate feam Solving Equation (5) fov cannot be done without knowing the

(X,Y,T),(Y,Z,T),and & X, T). Because of the constant velocity @halytic equations 0§y, so we propose to apply a local plane
tting to establish the matrixM. The choice of a plane instead

of a more complex surface is motivated by the tting simplicity
and its computational cost even though planes give rise to4ank
matricesM, as it will be shown further.

Let5 1, 52, and5 3 be the planes that are tted locally to
the surfaces;, Sz, andSg respectively. They then can be locally
expressed using the plane's implicit equation as:

0.
i

1
Sk(i,j,t)D 51" %{§ DO, (6)
1

where5 T D (ag, by, o, di), forl k3.
If we derive Equation (6) with respect to each of the spatial
and temporal components and for ea®, then Equation (5)

FIGURE 1 | The non-deformable surface hypothesis allows to assu me becomes

the velocity v is locally constant.  The surfaceS swept by the edge Cin the 0 1 0 1

direction v is a ruled surface whose tangent plane p at p allows to recovering a; by O C1

v if suf cient geometric constraints can be derived. The vecton is the @0 a bZA vD @CZA . (7)
normalto p. b3 0 ag C
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projected curveCy for1 u 3 s also moving at constant speedvy D (v, v}, 1T in
and is sweeping a ruled surface as t increases.

FIGURE 2 | (A) A 3D edge C moving at constant velocityv is projected as 2D curves in each of the three plane<q, X, Y), ©, Y, Z) and ©, Z, X). (B) Each of the

Cu(p,t) = Cyu(p,0) + tv,,

Cu(p,0)

the coordinate frames i{T) ({, j) being any element in the sef(x,y), {/, 2), & x)9

2.3. Rank of M

Under the local plane hypothesis we previously made, it i
possible to determine the rank bf. For that purpose, we assume
the hypothesis that the edgeis a straight line segment de ned
by a pointpg, a direction vectou, and parametrized by a real

p2C) pDpoC u, (8)
and the equation o8 is changed into:
S(p,v,t) D S(poC uCtv)DO. 9)

Figure 3 depicts the case wher@ is a line and the resulting
ruled surfaceS, obtained by sweeping lines in the direction of
v is a plane. The vectouy, uj, 0)" is by construction parallel to
5, then:
01
Ui
ny @A D 0,
0

(10)

wheren, D (ay, by, a)" is the normal to5 . The three similar
equations for the three possilitdead to:
Mu D 0. (1)
This showsu as an element of the kernel dfl. u is not
the null vector becaus€ is not reduced to a point, thu$/
is non-invertible and the rank oM is not larger than 2.
The rank de ciency ofM means we only have two linearly
independent scalar equations from Equation (7), howeverame ¢

still express two of the velocity components as functions ef th
last one, e.gvx:

Po +ou +tv

FIGURE 3 | The local tting of a plane to the point cloud allows
approximating the plane tangent to the surface swept by an edge as it
moves. If the velocity is constant, the so built surface is called retl surface
and the velocity vectorv is its directrix. To estimatev, it is, up to approximation
errors, equivalent to working on the tangent plane.

0 0 1 O 01
whereMq D @d%g%m D @oA.
0 0

This last equation shows thatis collinear tou if M is rank 2,
hence we deduce from Equation (7) thdt D (¢, &, ).

Remark 1. M'srank can only be reduced to one if there is nalspat
translation. The swept structures in the subspaces deyn@d b
are vertical lines. Such a case is a particular case whieteset
when no ruled surface is generated. It does not concerusggic
undergoing rotations since points not on the rotation aXisawve

a non null tangential velocity.

Remark 2. Expressingas a one parameter vector fails if and
only if the rank of M is less than 2 i.e., if edges do not generat
planes. However, some plane con gurations require larggrte
achieve the closed formwsuch as the case where the plane is
perpendicular to one of the spatial frame axes. For exante, w
the X-axis is normal to the plane, Equation (12) is not valitias

0 1 0 1 o0 1
Vy 1 0
vD B2Ecalipy B BRkca2A, (12)
b Cc3 bs aQ
% £ 182
q r
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and g are equal to zero. This problem can be solved by expressirggcloud is not deforming when it moves fropy to py. If the
v either as a function ofyvor v,. In that case, we can see thatevents' brightness is also preserved during this motion thers
Vx D cs=bz and v is a function of y. The problem of nding also minimal.

v is again reduced to the search for the correct value of orse of it We de ne the 3D events clouf{p;,t;) as:

component.

2.4. Velocity Estimation P ) D 2 RYjjgy i 1s.f G 1y (14)
As shown in the previous section, from Equation (12), the andt; > tig
assumption of local constant velocity motion of straight eslg

allows to establish a simple linear relation between thec#910 This set contains all 3D points spatiotemporally closeta.e.,
vector and the surface swept by the edge points. Estimatingbints within a neighborhood op; of radius1 s in space and
the velocity becomes equivalent to identifying the cornedl  |ength 1 in time. The energy cost associated to each sampled
valuevy. This is a registration problem for which we need tOVe|ocity vector for a given poinpg is computed according to
initiate the point cloud within a spatio-temporal neighborhto  Algorithm 2.

as a given structure. We then translate it according to wsatp E. is the sum of the smallest luminance di erence between
parametrized byy. A matching operation is then performed for a|| pairs of 6i,qj) and Es is the mean value of the smallest
several sampled values\gf the correctvy is the one producing distances of each; to eachq;. It is also called the mean closest
the smallest matching error at the time and location given byhoint between both points clouds and is a dissimilarity measure
the velocity vector (se€igure 4). The procedure to estimate often used for example in the Iterative Closest Point (ICP)

the velocity via the shape registration is explained in défgil problem Bes| and McKay, 1992The correctv is given by the
Algorithm 1: the search fow is now a minimization problem

of a error cost functiong, which is built as explained in the
next section.

Algorithm 1| 3D ow algorithm

Require: Stream of 3D events obtained from third-party
2.5. Error Cost Function device/algortihm

A local point cloud centered on the evemty(t1)T, is temporally _
consistent in the sense that any of its element will be captured1:
at closely the same time. If in addition, the luminaricef the
events is available, then the cloud local rigidity also essthat

L is consistent independently of time. We can therefore staaé t
when the point cloud that moves fropy att; to p2 atts, the local
geometric structure and the luminance should be preserves. W
can formalize the structure matching operation as a miniri@a

of the energyE problem and stated as follows:

EDECECER, (13) : Initialize a large enough interv& D [Ry, R] of lengthl
whereEsg, Er, andE_ are respectively the geometric, the temporal ~ such that® 2 R Set rD 1.
and the luminance energieEr and Es are minimal as long as  &: while E > thresholdand n < max-iterationdo
7: Divide Rinto r intervalsRy of size% and de ne the
setfvigsuch thaty is the center oRy.

for each3D event p,t) do
Determine the spatio-temporal neighborhood of 3D
event close tog t).
:  Fit 3 planes 51 D (aybg,c,d)",5, D
(a2, b0, 0,d2)7,53 D (a3,bs3,c3,d3)T using a least-square
technique to minimize the three scalars:

j(vapy:tx 1)5 lj ij(pX1p21t1 1)5 2j xj(pw pz,t- 1)5 3j

u+r 8: for eachvy do
T~ V=Vu+r o: ComputeEy according to Algorithm 2,
- - 10: if B¢ is minimalthen
. g t 11: UpdateE  E,
e P2 2) 12: Updatel I(r 1),
! %I'é?* U 13: UpdateR  [R¢ 5,R«C 5].
14: Computev:
a1vCa bsvCc3 T
vD w, b oA
o, |
; 15: Updaten nC1.
e 2 s _ ’p
(p; 111 16: end if
’ 17: end for
FIGURE 4 | The velocity is to be determined locally along a line 18: end while
spanned by u and passing by p  C r. This is achieved by matching local 19: Returnv
structure de ned by a set of 3D points (gray cubes in the gure). 20: end for
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Algorithm 2 | Energy cost computation matching iterations is always performedis usually set to 5,
Require: , the seSpo), Vx. however it can be larger. Estimation accuracy increasés it
at the cost of longer processing time.

1. Apply Equation 12 with the givew to build vectorv.
2: De ne §po) C v, the translated local structur8(po) by  2.6. Optimal Spatiotemporal Neighborhood
v. Dene Ypo C v) the set of points that occur in the The correct estimation of the velocity is conditioned by the

neighborhood ofpp C vatt; C dt. spatiotemporal neighborhood, de ned as the spatiotemporal
3: With the convention thap; 2 Spo) Cv, andg; 2 poCV),  volume ofdimensions(x 1y 1, 1¢),inwhichthe 3D point
we compute the energy functidg(v) with: cloud has moved from timéto t C dt. A large neighborhood
will allow to nd the correct match, but at the cost of processing
E<D 1 X ‘ 15 a large set of data, on the contrary, a too small one will nloval
SY rrc'ﬂn” i Gl (15) to match the local structures. The spatiotemporal neighborho
‘b1 must also be resized automatically and dynamically in ataoce
to the 3D points' velocity. In our implementation, we deal with
X ) the problem by adjusting a linear function on the neighborldoo
ED- . 1ng|=nlli tjj. (16) sizee.gskD (1x,1y,15,1¢)" is alinear combination of the m

previous valuesg 1, ..., m:
wheret; is the time at whictgj occured.

4: Finally, if luminance is available: %D  as i (19)
iD1
B D . nainjL(pi) L(o)i- A7) where the coe cientsa; are estimated with a standard linear
D1 prediction coding schemeDurbin, 1959. The value ofm is
5. ReturnE. usually set to 5 according to experimental results while thtéain

value 59 is deduced from the coarse estimation of the initial
velocity i.e., the mean translation between the rst twonfies.
Thus, we haveg D (vodt, dt) ", assumingy is the initial estimate
of the velocity.
@ D argminE. (18) The asy.nchrono.us 3D ow extractipn from pointg clouds
W2R can be achieve by implementing Algorithms 1, 2 and improved
if necessary with the optimal neighborhood estimation. This
More elaborate registration techniques to track deforméadie proposed approach does not require clusters of 3D points
surfaces may be used for this matching operation. We capaptured at the same as one uses to have with frame-based
mention the most notable oneSfarck and Hilton (2007Ahmed  reconstructions, yet it can still be applied if the inputs are feam
et al. (2008)andZeng et al. (2010Qthat are not using any shapes pased.
prior. Accurate registrations are achieved by combined use o
several surface features, followed by a coarse to ne schengl RESULTS
These techniques are however not suitable in their actuah fo

for processing textureless and event-based inputs. The rst set of experiments are performed on synthetic scenes,
To minimizeEwith respect tox, we also applied a dichotomic \here both 3D structures and motion (velocity and trajegdor
search strategy to sample possible values @nd match local  are known. These results measure the theoretical performanc
3D structure accordingly. LeR D [Ry,R] be a real interval  (without noise or reconstruction errors) of our method thrgh
that is set large enough at the beginning of the search to mak@mparison between estimated velocity vectors and the known
sure it containg®. FixingRlarge enough is only necessary whenmgtion.
no recent past estimations of the velocity have been catmiilat  The second set of experiments are performed on natural
at p;, otherwise the length oR is de ned from the previous scenes, with the purpose of showing the performance of
estimation ofvx. To determine preciseiQ, Ris subdivided intd  the event-based tting method when dealing with real
equal length intervals and the centers of all intervals gie®t gata. The algorithm is applied to two sources of 3D data: a
of possible values for,. The error cost function is computed \icrosoft Kinect (an RGBD sensor that outputs frames of 3D
for eachvy and the interval producing the smalleBtis used to  points aligned with RGB information) and an asynchronous

updateR. o o event-based 3D reconstruction system as introduced in
This operation is iterated untiE is below a preset threshold carneiro et al. (2013)

and after a minimum number of iterations. This threshold

is de ned experimentally with the purpose of optimizing the 3.1. Simulated Scenes

structure matching process by limiting the search to an aatgpt Four simulated scenes are synthetizeBiggre 5 a smooth
matching error. This threshold can be related to the pointuclo translation of a wire cube at constant amplitudeigure 6) a 3D
density and if it is set to zero, then the maximum number ofcar model undergoing a straight translation at 10 m per se¢ond

valuevy which minimizes the energy functiof:

Frontiers in Neuroscience | www.frontiersin.org 6 February 2017 | Volume 10 | Article 596


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

leng et al.

Event-Based 3D Motion Flow

FIGURE 5 | (Top) Scene ow of a cube with the color coding time, as the
cube moves from right to left.(Center and Bottom) Angular and endpoint
errors of the estimated velocity eld. The patches of planes @& underlined to
show the locally constant velocity assumption. For visiliy purpose, the
velocity is only shown for two edges. All axes are expressed ilength unit
except for the angle color scale.

conventionally used to validate optical ow, the angular efro
which is the angle dened by the estimated normalized
velocity vector @ and the ground-truth v. The angle is
given by the inverse cosine of the scalar product of 2
vectors:

arccos Qv Qjvj . (20)

This measure has been introducedrieet and Jepson (1990
assess the accuracy of the ow direction. However, the amgul
error can be biased by large velocity vectors for which the
di erences in amplitude can be signi cant and in the same
time, the angular errors are small. In that sense the angular
error is favoring the large motion over the smaller ones. To
compensate for that bias, a second performance measure, the
endpoint error, introduced bytte and Nagel (1994$ conjointly
used. This endpoint error is the norm of the di erence between
the estimated velocity and the real one:

v Q. (21)

Both estimated angular error and endpoint error are represént
with a color scaled representatiorFigures 5-15). For the
moving cube, the maximal error occurs at the beginning
of the motion and is due to the tting spatio-temporal
neighborhood, chosen as the best compromise for the entire
motion.

The results on synthetic data, summarizedTable 1, show
the ability of the method to estimate densely and smoothly
the velocity eld. The rotating sphere is a challenging beeaus
the 3D points composing the surface are not spatially uniform.
The non uniform acceleration on the sphere also implies non
uniform tangential velocity of 3D points on which we t
the local planes. This explains why the velocity estimation
is slightly less accurate for rotations. For translationsibe
and car), the velocity is estimated with higher accuracyesin
the direction has a mean angular error of Or@d (with a
peak value of 0./ad) and a mean endpoint error of 0.8%,
with a peak value of 1.2% when normalized by the ground-
truth objects sizes (respectively the cube edge length, the
sphere diameter, and the length of the car). For rotations, th
accuracy has the same order of magnitude: around @d5
and 2.2% for respectively the angular and the endpoint
error.

3.2. Natural Scenes

The second set of results is obtained from real scenes shawin
moving person in the scene. The 3D point clouds are provided
by a Kinect sensor that also measures the RGB intensity. The
Kinect provides depth information for every detected pixeleTh
background pixels representing the room's walls are removed

(Figure 7) the same 3D car model describing a circular motion;via depth segmentation. In these sequences, the person is a

(Figure 8) a pure rotation of a sphere at constant angular speednice example of a deformable target with limbs moving at
For each scene, the velocity ow is computed usingdi erent non-constant velocities. However, the local comgta

the geometric structure information alone (only the 3D speed hypothesis holds. It is sucient to allow a smooth

points' positions and timestamps are given in the simulation)estimation of the scene ow. Scene ows estimations arergase

The energy cost function in Algorithm 2 is reduced to two sets of results. The rst one uses only geometric constisain

Es. The ow performance is measured by two quantitieswhen the scene luminance is not available for the structure
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FIGURE 6 | (Top) Constant velocity translation with the color coding time, saithe car moves in a straight line from left to right at 1n=s. The estimated velocity is
shown on the right. (Bottom) Angular and endpoint errors of the estimated velocity eld vih the 3D ow technique.

FIGURE 7 | (Top) Circular motion with no tangential acceleration: the car$rajectory is outlined via the velocity estimation(Bottom) Angular and endpoint errors of

the estimated velocity eld.

registration operation. The second set uses the additiondl. A reference speed is established using the person's head to

information brought by the luminance in addition to the compute speed across frames. The head's position atttisie
annotated manually to build a reference motion scene. Tis i

geometry.
The ow estimation for each sequence is assessed in two then used as ground-truth to evaluate the event-baseddttin
ways: method.
8 February 2017 | Volume 10 | Article 596
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without using luminance information. These gures show the
performance of the algorithm in the presence of a deformable
object. The limbs, in particular, the legs and the ngertipsigih
are subject to the largest velocity changes show clear phases
of acceleration: when the legs reach the end of the step, the
speed is close to zero (1st and 3rd images), it reaches a maxima
value when the legs are in the middle of the step (5th image).
The velocity changes are also visible in the color coded motio
directions: the silhouettes are not all green as the handisgsw
The oor, as itis scanned by the Kinect sensor, was also prodesse
by the algorithm. The estimated speeds are largely coherémt wi
what it is expected: they are close to zero, thus negligible with
respect to the moving person. The measured velocity variation
(in amplitude and direction) from the oor are mainly due
to several sources of noise coming from the sensor itself, the
lighting change induced by the motion, etc. The background
wall has been removed using depth information before the scene
ow estimation is applied. This eliminates any non relevant
events/pixel changes due to shadows.

In this experiment, the person walks across the scene, in front
of the cameras at a constant speed o=k This reference speed
is measured by manually segmenting the head's point cloud for
each frame. The speed is also extracted for the head from the
estimated 3D ow with Algorithm 1. The top row ofFigure 11
shows both speed curves, plot together. Square markers raeprese
the reference speed, circle markers show the speed estimated
without luminance information while the diamond markers
represent the result achieved with the luminance (througé th

FIGURE 8| S f tati here. (T Ti | ded . . . .
| Scene ow of a rotating sphere. (Top) _ Time color code term B, in Equation 13). The speed estimated from the geometric

representation of the sphere and the velocity eld are represnted on the top

. l .
row. Angular and endpoint errors of the estimated velocity & are shown for con_stralnt has a mean value of 098 _and the On_e using
two points of view. Error are shown in absolute values: the aipoint errors are luminance is around 1m.s 1. The relative mean dierence
not exceeding 0.1 length unit in the dark blue regions and isigher as we are between the two estimations is around 17%. This shows théat bot

close to the poles because of the high density of samples for hich the tting

: estimates are coherent.
parameters are no optimal enough.

The small uctuations of the estimated speed are not
surprising as the trajectory of the head is not a straight

2. 1fS(t) designates an arbitrary point cloud in the scene at time translation: body weight transfer happens at each step and
thenS(t) Cvdt is the morphing ofS(t) by the translation vector it modies subsequently the head velocity in amplitude and

vdt. direction. Finally, the color coded ow directions are cosisint.
Letp; 2 St) andg; 2 St) C vdt such that: Results show that the ow is pointing at 180.e., from right to
left for most of the body except for the person's hands. Floor's
gi D argminjjq (p; C vdt)jj. (22) directions however have a random distribution. We can explain
g29t)Cvdt this result by two causes: noise in the acquired data as the oo

is a matt surface di using randomly the neon lighting and the

We de ne the morphing error as the mean error of each pairshape registration procedure in the algorithm which is unlijke
(Pi, Gi): to register correctly structures on a uniform surface.

1 X

N e aii. (23)  3.2.2. Second Sequence
i In the second sequencé&i@ure 10, a more complex motion
This morphing error, normalized by the mean ground-truth i$ tested, showing a person jumping. The velocity amplitude
velocity amplitude (provided by tracking limbs from the changes several times throughout the sequence: it inseasee
Kinect output for the 3 sequences), is used as the secof§ginning and reaches a maximum, then decreases to 0 when the

performance measurement for the rest of the paper. person is at the top of its trajectory. The amplitude then irases
again during the fall until he reaches the ground. This segee
3.2.1. First Sequence of speed change is shown at the bottom row F§ure 11

In the rst sequence, shown ifigure 9, a person walks in front Similarly to the walking sequence, both reference speed surve
of the cameras at a constant pace. The velocities' amplitudeand estimation are shown together. However, in this expenitne
and the directions are shown separately for both estimations is more di cult to assess the accuracy of the estimationcs
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FIGURE 9 | Sequence of a person walking at constant speed acro  ss the scene. The amplitude of each 3D point is color-coded and shows thathe
event-based plane tting technique is able to estimate non gid object velocity without and with luminance. A color sca is also used for the ow directions. One can
see the person going from the right to the left as con rmed by tle color (green in the color scale i.e., an angle of 189. Again, we can observe that directions can be
accurately estimated by using only time and geometry. The adition of luminance provides slight improvements.

the reference speed itself is built with a low accuracy. Bhikie  morphed point cloud, matches correct C dt), the point cloud
to the di culty to manually segment the head's 3D point since att C dt.
the speed changes too quickly.

The jumping sequence is an ideal example of a non-rigid bod‘y3 .
moving at a totally unconstrained speed. The arms, in paricul 3-3- 3D Point Clouds from Event-Based
show the largest velocity changes since the person swings thd/ision Sensors
to gather momentum from the rst half of the jump and he folds This subsection provides the 3D scene ow using event-based
them back once the body begins to fall. In this sequence one ca@ameras (DVS) as describeddmarneiro et al. (2013 Computed
also observe the velocity estimated for the oor which isiaga 3D data have a high resolution of & The input to the scene
mostly equal to zero, except at the right under the jumping pointow estimation are asynchronous 3D point clouds of a hand
because of the moving shadow of the person. The velocities acksing and opening in front of the stereo rig, while the second
pointing mainly up (i.e., angle of 99during the ascending phase sequence is a moving face captured by the same stereo rig. The
and pointing down when he is falling (i.e., angle 080 ). hand speed is of the order of one meter per second while the

For both walking and jumping sequences, a higher accuradace moved slower (several cm per second). The rst seqsence’
is achieved in estimating the velocity when luminance isduse results are shown irFigures 12 13. The events generated by
as shown inTable 2for ve frames taken from the sequences.the hand's contours are su cient to estimate 3D ow estimatt.
The mean morphing error is below 3% for the walking sequenc&he direction and amplitude are consistent with the motion. The
and slightly higher than 2% for the jumping one when luminancemean morphing error, ( 8.7%), is at the same order of magnitude
information is used. The estimation performance is slighdlyer  than the previous experiments.
when the luminance is removed. In these cases, the morphing The second 3D scene ow estimation from the event-
errors increase respectively to 5 and 7%. Two main obsen&tiobased cameras are shown without providing morphing error
should be retained from these results: rst, morphed pointele  for readability reason. The second sequence shows a face
still consist of well de ned objects. This shows the computednoving in front of the event-based cameras. The color-
motion is consistent for the full scene as morphing objectesdo coded ow are shown inFigure 14 with row (a) color-
produce incoherent shapes. Secondly, the estimated scenis owcoding the ow's directions while (b), shows the motion
shown being consistent with the real motion sirfge) C vdt, the  amplitudes.
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FIGURE 10 | Sequence of a jumping person. This is a complex motion which comprises several rapid chargs of the velocity in direction and amplitude. The
amplitude plot of the velocity for each 3D points is color-cded. Parts of the body can be segmented according to the veloity e.g., the arms, the legs and rest of the
body which have distinctive amplitude. The color coded ow diections (expressed in degree) are well estimated as we cares for the whole body, the direction is
pointing up (i.e., angle close to 90) and pointing to the bottom when the person is falling (i.eangle around 90 ).
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FIGURE 11 | Mean velocity computed for the head in the walking (t op)
and the jumping (bottom) sequences. The circle curves are estimations
achieved by time and geometric information. The diamond cwes are results
one gets when luminance is used for the structure registrain. Finally, the
square curve represents the velocity of the manually segméed head's

3D points.

3.4. Comparison to the Particle Filter

Scene Flow Estimation

This third set of results obtained with the event-based plane
tting technique (without luminance information) is compad

to the method published irHad eld and Bowden (2014)This
paper models a set of moving 3D points using a particle Iter that
supports multiple motion hypotheses to estimate the 3D scene
ow from the 3D points provided by a Kinect.

The sequence and its estimated scene ow presented
in Had eld and Bowden (2014were kindly provided by the
authors and are shown as output without additional processing
Figure 15 shows samples of this sequence along with the
estimated 3D scene ow: the velocity amplitude and direction
are shown in two separate color-coded representations for the
two methods. One can notice that the event-based plane tting
method produces smoother results that are consistant with the
scene content, especially the velocity is expected to be rabatm
the foot when the kick is accomplished.

We provide the morphing error inTable3 It shows
the error computed for 5 frames taken at some arbitrary
regular time interval, using both method. This is consistant
with the previous analysis showing that the event-based
plane tting methods performance is higher than the
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FIGURE 12 | A sequence of a moving hand acquired using a stereo-  rig composed of event-based silicon retinas (DVS) as sets of e vent f(p, t)g No
luminance information is available from these sensors. [#\,B) color-coded plots of the estimated amplitude and directionof the velocity for each reconstructed 3D
points. In contrast with the previous resultsare shown, thegorrespond to the locations of dense 3D points. The motion isa smooth translation from left to right as
shown by the direction plots pointing toward 45 .

TABLE 1 | Average motion estimation errors for the synthetic sce nes.
012 . . . . . . T
Cube Car cst. Car circular Rotating
0.1 translation translation motion sphere
s i
‘@ Angular error (rad) 0.04 0.03 0.15 0.15
\g0.0B, i Endpoint error (%) 0.8 15 2.2 2
i
0.06f . ) )
TABLE 2 | Morphing error for several sets of ve randomly select ed times
! ! ! . ! . ! in the sequences.
01 015 02 025 03 035 04 045
Time (s) Morphing error (ratio)
FIGURE 13 | Morphing error for the event-based 3D point clouds ofa Frame Walking Jumping
waving hand calculated for a set of randomly selected times. The Mean ) ] ) )
error is around 8.4, this is consistant with previous estimations if no intensi Without L With L Without L With L
information is used or available.
1 0.0542 0.0214 0.0250 0.0131
2 0.0695 0.0277 0.0635 0.0270
state-of-the-art frame-based technique. Unsurprisinglhe t 3 0.0786 0.0221 0.0698 0.0414
overall estimation accuracy for both methods is lower tham 0.0863 0.0424 0.0510 0.0128
the previous experiments mainly because the Kinects irigbili 5 0.0433 0.0278 0.0481 0.0143
to accurately capture fast motions that give rise to blurry
images. Mean 0.0664 0.0283 0.0515 0.0217

Errors are measured with and without luminance information. In the tsase, the mean
4 DlSCUSSlON error are around 6.6 and 5.2% respectively. These ratios are improved to 2.8 and 2.2%
) when luminance is added i.e., errors are reduced by a factor close to 2.

This paper introduced a new technique of dense 3D scene ow
estimation. This is so far, the rst 3D scene ow algorithm the dense scene ow is estimated and re ned from the dense
developed for asynchronous sensing using event-based aameioptical ow which is its projection on the image planes in an
The event-based formulation of the ow applies the rule ofiterative feedback loop scheme. The scene ow computation is
“one event equals one computation” that allows an incremlentaherefore a complex problem which is an optimization problem
update of the 3D scene ow in an almost continuous mannerunder several con icting constraints.
This formulation allows also a straightforward extensiam t  The proposed technique is based on the local constant motion
frame-based representation as long as time is used as the mahthe 3D point clouds and on their locally non deformable
computation feature. geometry. These hypotheses, when satis ed, tell us that @eiob
The motion inference and 3D reconstruction from multiple moving through space, locally generates ruled surfaces from
cameras are usually coupled tasks in frame-based computehich the velocity vectors can be extracted. The solution we
vision. They are solved by stereovision mechanisms whigbroposed is simple as it constraints the 3D velocity estimation t
require highly accurate calibration operation. Conventitly, a search for a parametrization value over the set of real nusnbe
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FIGURE 14 | Sequence of a moving face 3D point clouds computed usi ng event-based cameras. (A) Shows the color coded ow's amplitude while (B) is its
color coded directions in a fronto parallel plane. The compted ow outlines the actual motion of the face that rotates fran right to left: temples motion is pointing to
30 (blue) while the glasses motion is almost horizontal and puating to the right (dark red). The global motion is close to beonstant over the samples shown by the
gure. The amplitude is expressed in cm/s.

Amplitude
(plane
fitting)

Amplitude
(particle
filter)

90
180 0

Direction
(plane
fitting)

Direction
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FIGURE 15 | Sequence of a person performing a kick. ~ The amplitude of each 3D point is color-coded and shows respetively the ow amplitude estimation using
the event-based plane tting and the particle Iter method pragposed in Had eld and Bowden (2014). The ow direction estimation from the event-based plane tthg
and the particle Iter methods are shown in the 2 last lines.
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TABLE 3 | Event-based plane tting technique compared to part icle

Itering technique.

operation. We can sketch an idea about the complexity of that
matching operation according to Algorithm 1:

Morphing error (ratio) There are 2 nested loops (line 6 and 8 in the algorithm), if we

assume that the while loop is satis ediniterations and that

F PI i icl : ;
rame ane wng Scene particle we haven values ofj to test in the for loop, then the algorithm
. . 2
1 0.0124 0.0265 is at least ir0(n<). o ,
2 0.0382 0.0461 In the case of a stream nkvents, the complexity is i@(z.n<).
3 0.0496 0.0505 From that perspective, the complete scene ow algorithm®
4 0.0344 0.0378 complexity is at least itD(z.n%). We can reasonably state that
5 0.0436 0.0480 this is still less complex compared to conventional scene ow
estimation techniques based on particular Iter or variat#b
Mean 0.0356 0.0418

approaches.

Errors are normalized by the mean velocity of the left leg.
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