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We studied the capability of a Hybrid functional neuroimagg technique to quantify

human mental workload (MWL). We have used electroencephalogphy (EEG) and
functional near-infrared spectroscopy (fNIRS) as imagingnodalities with 17 healthy
subjects performing the lettern-back task, a standard experimental paradigm related
to working memory (WM). The level of MWL was parametrically chged by variation

of n from 0 to 3. Nineteen EEG channels were covering the whole-tasl and 19

fNIRS channels were located on the forehead to cover the mosiominant brain region

involved in WM. Grand block averaging of recorded signals realed speci ¢ behaviors

of oxygenated-hemoglobin level during changes in the leveff MWL. A machine learning
approach has been utilized for detection of the level of MWL. W extracted different

features from EEG, fNIRS, and EEGINIRS signals as the biomarkers of MWL and fed
them to a linear support vector machine (SVM) as train and tésets. These features
were selected based on their sensitivity to the changes in thlevel of MWL according to
the literature. We introduced a new category of features whin fNIRS and EE@fNIRS

systems. In addition, the performance level of each featureategory was systematically
assessed. We also assessed the effect of number of featuresral window size in

classi cation performance. SVM classi er used in order to dscriminate between different
combinations of cognitive states from binary- and multi-@ss states. In addition to

the cross-validated performance level of the classi er othr metrics such as sensitivity,
speci city, and predictive values were calculated for a comrehensive assessment of
the classi cation system. The Hybrid (EEG{NIRS) system had an accuracy that was
signi cantly higher than that of either EEG or fNIRS. Our rests suggest that EEGCfNIRS

features combined with a classi er are capable of robustly tcriminating among various
levels of MWL. Results suggest that EEGfNIRS should be preferred to only EEG
or fNIRS, in developing passive BCls and other applicationsshich need to monitor

users' MWL.

Keywords: functional near-infrared spectroscopy (fNIRS), el ectroencephalography (EEG), human mental
workload, cognitive state monitoring, n-back, multi-modal brain recording, machine learning

INTRODUCTION

Mental workload (MWL) a ects people who are interacting with compstand other devices.
The use of technology in everyday life may impose high cognilemands as users navigate
complex interfaces. Mental overload may compromise users' padioce and sometimes safety,
by increasing error rates and engendering fatigue, dedlinmotivation, higher reaction times
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(Xie and Salvendy, 2000; Young and Stanton, pCard neglect to obtain. Performance based information, in addition, dae
of critical information, known as cognitive tunneling’lomas misleading since multiple degrees of MWL may accompany the
and Wickens, 2001; Dixon et al., 2013; Dehais et al.,)2Taking same level of performance/(rko et al., 201)) Physiological
into account the users' cognitive characteristics andtitions measures, on the other hand, do not require overt behavior,
are thus critical in improving the design of human-machinecan be arranged to have little or no interference with task
interfaces (BMI) and for operating them e ciently by instally  execution, and can supply information continuously without
adaptive features that can respond to changes in the M#bger  signi cant delay. Progresses in miniaturization and wireles
et al., 2000; Parasuraman and Wilson, 2008; Gagnon et &P).20 technology have amplied these advantages of physiological
MWL has been de ned as the proportion of the human measuresahayadhas etal., 2012
operator's mental capabilities that is occupied during the Most studies of MWL based on brain function have utilized
performance of a given tasB¢ et al., 1994. According to the electroencephalography (EEG), following a large number of
prevalent Multiple Resources theoryigvon and Gopher, 1979; studies using EEG for developing BMIVpIpaw and Wolpaw,
Wickens, 200y, performing di erent tasks requires a subject 2019). Functional near-infrared spectroscopy (fNIRS) as a newer
to tap into a set of separate resources, which are limited imodality have shown promising capabilities in BMI applications
capacity and distributable among tasksofrey and Wickens, for discrimination of di erent motor tasks laseer and Hong,
2003. In general, these resources can be categorized amofi§1ly or decoding subjects' binary decisionslaseer et al.,
four dimensions: processing stage (perception or cognitio?019. The relationship between MWL and central nervous
vs. response), perceptual modality (visual vs. auditoryyabis system activity is well-establishe®i¢Bride and Schmorrow,
channel (focal vs. ambient), and processing code (verbal v8005. BMIs that do not attempt to directly control a device
spatial; Wickens, 2002; Horrey and Wickens, 20)0Based on but modulate its user interface based on real-time user status
the Multiple Resources theory, equal resource demands betweare referred as passive BMISgteau et al., 20)5In such
two tasks that both recruit one level of a given dimensiomapplications, of paramount importance. Recently multi-modal
will interfere with each other more than two tasks that reicru techniques utilizing concurrent EEG and fNIRS have gained
separate levels on the dimensiaftiCkens, 200R, and may create popularity due to their relatively richer information content
bottlenecks and consequent decrements in performancel&imi (Hirsh eld et al., 2009; Liu Y. et al., 2013; Liu T. et al., 2iK&es
conclusions have been reached in the areas of aviaBom@ey et al., 2014b; Aghajani and Omurtag, 2016; Buccino et &l6§;20
and Hale, 2012; Causse and Matton, 2014; Durantin et al4)201 Omurtag et al., 2017 Available evidence indicates that brain
education Palmer and Kobus, 2007; Spuler et al., 30&ahd  activity measures of MWL are more informative than ocular or
a variety of clinical situationsQarswell et al., 2005; Stefanidisperipheral physiology measuresdqgervorst et al., 20)4
et al., 2007; Prabhu et al., 2010; Yurko et al., 2010; By@is; 2 Concurrent EEG and fNIRS, which we refer to as EESIRS,
Guru et al., 2016 In the case of driving while having a phone is promising as a practical technique that is more accurata tha
conversation, in addition to the interference of resour¢be the individual modalities alone. fNIRS provides informatithrat
“engagement phenomenon” also controls the outcome of multiis complementary to EEG, by measuring the changes in cerebral
tasking scenario. This happens when one of the tasks attractsislood ow (CBF) and related hemoglobin concentrations
much attention that the advantage of separate resource ddmaihrough near-infrared light source/detectors on the scdlp.
would be eliminated $trayer and Johnston, 2001; Strayer ands comparable to EEG in portability. fNIRS does not have
Drews, 200). electromyographic (EMG) and blink artifacts and its signal
MWL is a construct that arises from the interaction of the closely correlates with the blood oxygen level dependent. (B0
properties of a task, the environment in which it is performed,signal from functional magnetic resonance imaging (fMRI;
and the characteristics of the human operator performingStrangman et al., 2002; Huppert et al., 20Qghich is a gold-
it (Longo, 201k Task properties include the diculty and standard for measuring cerebral hemodynamics. In addition
monotony of the task and the types of resources that it engagethe advantages of pooling di erent types of signals, EEFERS
The environment may contain various degrees of distractind 0 ers new types of features, ultimately based on neurovascula
noise. The subject characteristics involve training angeettse  coupling (NVC), the cascade of processes by which neural
as well as changing levels of fatigue, motivation, andarigié. activity modulates local blood ow and oxygenation, and NVC
Thus, the MWL can be systematically adjusted by tuning a fubseelated features are not resolvable by a uni-modal sigmaiithee
of these variables while controlling for the rest. to only neural activity (e.g., EEG) or only hemodynamics
Methods of determining MWL fall into three broad (e.g., BOLD).
categories: (1) Self-reporting and subjective ratings gisin  Working memory (WM) is a brain system that provides
standard questionnaires such as the NASA-TLXaif and transient holding and processing of the information necegéar
Staveland, 1998 (2) Behavioral measures, such as primary-complex cognitive task8@addeley, 2003It has been investigated
and secondary-task performance; and (3) Measures based orprevious functional neuroimaging studies, which idertdl the
the physiology of the user, including heart rate variabjlity prefrontal cortex (PFC) as the most relevant area of activati
oculomotor activity, pupillometry, electromyography, galia (Cohen et al.,, 1997; Smith and Jonides, 1997; Hoshi et al.,
skin response, and brain activityKigo et al., 2005; Wickens, 2003; Owen et al., 20P5MWL detection using WM load as
2008; Sahayadhas et al., 2013elf-reporting and behavioral an experimental paradigm has been studied using EE&l@a
based information tends to be delayed, sporadic, and inteusi et al., 2007; Dornhege et al., 2007; Grimes et al., 2008n@rou
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et al., 201}, fNIRS (Hoshi et al., 2003; Izzetoglu et al., 2003METHODS
Ayaz et al., 2012; Durantin et al., 2014; Her et al., 14 .
/ P14 subjects

and concurrent EEG and fNIRSH(rsh eld et al., 2009; Co ey .
et al., 201p We have previously shown that aspects of NnyvcSeventeen healthy volunteers (16 males, 1 female) with a
mean age of 26.2 and standard deviation of 7.7 years from

are characterizable by EEXE&NIRS, by taking advantage of the "™ . ; q | = g
synergistic interaction between the modalitigs(es et al., 20)6 ~ JNiversity of Houston students or employees participate

The potential of EEGfNIRS for active BCls has recently beenin the exp(_ariment. The experimental procedures  involving
investigated azli et al., 2012; Liu Y. et al., 2013; Tomita et al.r,“”'nan subjects_described in this paper were approved by
2014: Buccino et al., 20)L6In this study, we built on this the Institutional Review Board of the University of Houston.

work to explore the unique properties of EBENIRS for MWL The participants gave written informed consent prior to the
detection experiments and were compensated for their e ort by being given

The n-back task was introduced bigirchner (1958) n- a gift card from a major retailer. During the performance of

back is a continues-performance task for measurement of WI\H1e verbain-back task, targe'F letters should be detected by the
capacity, which has been used frequently in the eld of cogaiti operator by means of pressing Space button_ on th_e keyboard.
neuroscience. GevinsGevins et al., 1997, 1998; Smith andPll subjects were right-handed and used their dominant hand

Gevins, 2009aand Smith Gmith and Gevins, 2005ishowed for pe.rfor.ming the experiment. This WiII.reduce the varialyili
during high task-load conditions EEG theta activity incsea of brain signals based on the motor function through all &dbs.

in the frontal midline and alpha activity attenuates durintget None of the subjects had ever taken part inrahack study, thus

performance of ann-back task. In addition, fNIRS revealed no training e ects were expected.
WM load while performingn-back task activates PFQ\(az
et al., 2012; Sato et al., 2013; Fishburn et al., 2014; Heal.et Experimental Design
2014; Mandrick et al., 201RbThen-back task engages WM and One of the most common WM paradigm for MWL assessment
becomes more demanding as the valuendficreases. We have is then-back task, which was rstintroduced bgirchner (1958)
therefore used the-back task as our experimental paradigm with In the lettern-back task, participants observe a sequence of single
n ranging from O to 3, allowing us to tune the task di culty. letters separated by a certain amount of time each; for edier le
Our study maintained all other conditions constantby empiy  they decide whether it is a target, i.e., identical to thenitbat
only healthy adult volunteers with no previous experiencenwit appearech items back in the sequence. The valuenag kept
this task, all performing under the same laboratory condito constant during a segment of the experiment referred to as a
with no distractions or additional activities. Our experimtal  session. As increases the di culty of the task becomes higher.
design is consistent with numerous BMI studies that take WMn the literature usually 0-back task has been used as a dontro
load as a proxy for MWLEerka et al., 2007; Grimes et al., 2008state Figure lillustrates how letten-back task works when is
Coeyetal., 2012; Her etal., 20)4 0, 1, 2, or 3. Depending am, subject should nd the target letter
The aim of this study was, rst, to introduce and validate and interact with the user-interface.
a state of the art EEGINIRS set up in a single headpiece. In each experiment, we had a total number of 40 sessions.
Since PFC is the main region of interest in WM load detectioriThese sessions were presented in pseudorandom order, 10
(Owen et al., 2005 our design had the advantage of frontal sessions per. Each session started with an instruction block that
lobe coverage by fNIRS. We had whole-head coverage by EE&displayed for 5s on the screen and informed the subject about
We used the term whole-head to refer to the fact that wewhich type of then-back tasks was about to start (instruction
placed EEG electrodes at all (except frontopolar) standar@@0-block). Then 22 randomly selected letters (out of 10 carntgida
sites bilaterally covering the frontal, central, temporakig@l, pool of letters) appeared in sequence on the screen (task block)
and occipital areas. Having fNIRS optodes on the forehead ndEach letter stayed on the screen for 500 ms and the subject had
only improved the quality of acquired signal but also reduced.,500 ms to press the space button in case that the letter was
the preparation time. The second aim of this study was ta target according to the type of session. At the end of each
develop EEGfNIRS measures that discriminate among levelsession there was a 25s resting block. During this block the
of MWL and show that they are promising for the practical subject remained relaxed and xated at a cross on the screen t
and accurate quanti cation of MWL in real-world settings. We let the brain activation return to its baseline and get redaoly
developed such measures by extracting EEG, fNIRS, and Hybtide nextn-back sessionHer et al., 2019. Figure 2 shows one
(EECCTNIRS) based features from the full set of signals. Mossample session. Total recording time was 50 min. The program
discriminating features were selected and fed into suppartore  for implementation of this task was written using Presentatio
machines (SVM) to perform binary or multi-class classi cation software (Neurobehavioral Systems, Inc.). All the inforomti
The handful of EEGfNIRS studies currently availabl€g ey  about the appearance time of each letter, session type, ssibject
et al., 2012; Putze et al.,, 2014; Buccino et al., 2bave response time, and also whether the presented letter waset targ
not systematically quanti ed the performance of subsets of ar not was recorded by this software and stored as a text fe fo
Hybrid system and its features contribute to the accuracy ofater processing. The objective performance of the subjatigw
classi cation. Therefore, the third aim of this study was toeach session was computed from this information. Subjects wh
rigorously compare the performance of uni-modal and Hybridhad too low accuracy<(90% in the 0- or< 80% in the 1-back)
systems. were deemed insu ciently focused on the task. Performance
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0-back,
Target =“X"

FIGURE 1 | Schematic illustration of the letten-back task for n e{0, 1, 2, 3}.

Instruction Task € {o, 1, 2, 3}-back Rest
Sequence of letters Relax without
Which n-back on the monitor. movement and
is about to start [~»{ Press space button [~»| fixate at the
when there is a cross on the
“target” monitor
5 sec 44 sec 25 sec

&
<

FIGURE 2 | Experimental design for the letten-back task. Each session includes the Instruction, task, andest blocks.

level was measured by computing the accuracy de ned as thehich plays a signi cant role in WM Kitzgibbon et al., 2003
fraction of correct responses. We considered a missed tagget Seven sources and seven detectors were located on theddrehe

an incorrect response. resulting in 19 optical channels, each consisting of a source—
detector (S-D) pair separated by a distance of 3 cm. The 19
Data Acquisition and Preprocessing optical channels used in this study are showrFigure 3c The

A quantitative meta-analysis has found the cortical regitimat ~S—D placement starts from the left hemisphere and ends on the
were activated robustly during letter-back task (Broadman right hemisphere. S4 and D4 are located at the center of faigshe
Areas 6, 7, 8, 9, 10, 32, 40, 45, 46, 47, and supplementary movwgnere D4 is located at the AFz location and channel 10 is éatat
area;Owen et al., 2005 We used this information together at the Fpz location according to the standard internation@1
with the results of previous EEG studies to choose the optimurd0 system Kigures 3b,3. We used our triplet-holdersKeles
locations for our 19 EEG electrodes (F7, F8, F3, F4, Fz, ER], Fet al., 2014pon the forehead to keep each EEG electrode in
T3, T4, C3, C4, Cpl, Cp2, P3, P4, Pz, Poz, 01, 02). We used Rpg middle of an S-D pair and x the distances between the
as the ground and Cz as the reference electrode. In thetlilera sensors. fNIRS signals were acquired at 8.93 Hz via NIRScout
several dierent reference electrode positioning is indécht extended (NIRx Medical Technologies, New York) device, which
which have their own set of strengths and weaknesses. Amomfis synchronized with the EEG data by means of common event
them, linked ears and vertex (Cz) are the most common. Ciriggers Figure 39. NIRScout is a dual wavelength continuous
reference is advantageous when it is located in the middiergm wave system. The EEG signal was band-pass Itered (0.5-80 Hz)
active electrodes, however, for close points, it may resydbor ~ and a 60 Hz notch lter was used to reduce the power line noise.
resolution (Teplan, 200p. Based on the previous studies, central The spatial Laplacian transformis generally e ective in muscle
brain region in not majorly involved during the performancéa  artifact removal from EEG signaF{{zgibbon et al., 20)3We

WM task compared to the frontal and parietal lobes and choosingubtracted the mean EEG voltage of the neighbor electrodes f

Cz as the reference may be more appropriate rather than argach EEG signakigure 4 shows the con guration of neighbor
other electrode in the 10—-20 system. microEEG (a portablizdev electrodes for 19 EEG channels. Each detectorin NIRScoiglev
made by Bio-Signal Group Inc., Brooklyn, New York) was usediecords the signal from each separate source in two dierent
to sample EEG at 250 HEigure 39. Electrode impedances were wavelengths (760 and 850 nm). Oxy- and deoxyhemoglobin
kept below 10 k . A 128-channel electrode cap with Ag/AgCl concentration changes (HbO and HbR) were computed using the
electrodes (EasyCap, Germany) was used to physically atabilmodi ed Beer-Lambert law $assaroli and Fantini, 200dsing

the sensors and provide uniform scalp coverage. We located tistandard values for the chromophore extinction coe cientsda
fNIRS optodes on the subject's forehead to fully cover the PFd] erential path-length factor Keles et al., 20)6fNIRS might be
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FIGURE 3 | (a) EEGCINIRS recording setup. Subject interaction with the computg synchronization of EEG and fNIRS signal, recording of EEGd fNIRS signals,
and data transmission to the acquisition platform(b) Coronal view of the subject showing the close view of the plaament fNIRS optodes and EEG electrodes(c)

Topographical view of fNIRS sources (Sblack) and detectors (B, red) and EEG electrodes (green). Each pair of source and dattor separated by 3 cm creates a
channel (CH). We used the signals from F7, Fpz, and F8.

contaminated with the movement, heart rate, and Mayer wavén most of the cases there is an overlap between adjacent epoch
artifacts. In order to reduce these artifacts while retagnthe (half size of epoch's length). This overlap was considereddaro
maximum possible amount of information, a band pass Iter ofto capture the unique temporal response for each individual, as
0.01-0.5 Hz was applied to fNIRS signals. After the preprocessitigere could be inter-subject variability in the time regeitfor the
step, two subjects were excluded from the rest of analysisalue hemodynamic response to peak, and/or in the number of peaks
the poor quality of the signal and excessive noise. The predess(Power et al., 20)2In addition, during the classi cation phase,
signals were inspected visually for the presence of muscle aad imbalance in the number of features within each class biase
motion, eye movements, and other artifacts. The recordthgs the training procedure in favor of the class with a higher numbe
were contaminated in excess of 10% by artifact were exclasledof training features le and Garcia, 2009In our experiment
awhole Keles et al., 20)6In addition, one subject was excluded design we have 40 rest blocks and 10 blocks from ealchck
since he was not su ciently focused in the experiment accogdi  task type. From each task block, 16, 8, 4, and 2 features were
to 0-back low accuracy cut-o Figure 5 shows a segment of extracted when we changed the size of the window from 5 to
preprocessed data for one of the subjects. The gure indidates 25s, respectively. From each rest block 5, 4, 2, and 1 featares w
temporal variations in the fNIRS signals and the EEG frequencgxtracted when we changed the size of the window from 5to0 25,
bands, which are utilized in feature extraction. First aeda@nd respectively.
rows are HbO and HbR of fNIRS channel 17, respectively. Third
row is the EEG time-frequency map for channel O2. Feature Extraction

After preprocessing, each task block ({0, 1, 2, 3}-back) and/e extracted from each window three main categories of featu
rest block was divided into 5, 10, 20, or 25s epochs in order tfor all 19 EEG electrodes and 19 fNIRS channels: EEG (uni-
assess the e ect of window size on classi cation restitgure 6  modal), fNIRS (uni-modal), and EBEGNIRS (multi-modal or
shows four di erent epoch type with window size from 5 to 25 s.Hybrid).
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fNIRS features were based on HbO and HbR amplitude
(HbO/R Amp.), slope of HbO and HbR (HbO/R slope), standard
deviation of HbO and HbR (HbO/R Std.), skewness of HbO and
HbR (HbO/R Skew.), and kurtosis of HbO and HbR (HbO/R
Kurt.). The statistics of HbO and HbR are commonly used as
features in fNIRS studies of MWL and BMIsigseer and Hong,
2015; Naseer et al., 2016a,0ur inspection of the fNIRS data
revealed patterns of correlation between HbO and HbR thaewer
time and area dependent. Hence, we also included the zero-
lagged correlation between HbO and HbR (HbO-HbR Corr.) as
an additional feature. Hybrid features were based on EEG and
fNIRS features in addition to speci cally Hybrid quantitielsatt
depend simultaneously on both systems.

We chose to focus on a straightforward quantity, which can
be easily calculated within the time windows of interesg: zlero-
lagged correlation between the Hb (HbO or HbR) amplitude and
the EEG frequency band power (in eight separate bands dedcribe

FIGURE 4 | Topographic view of EEG electrodes showing neighborhood above). These neurovascular features based on HbO and HbR

pattern for Laplacian spatial Itering. Inward arrows to eacmode indicate the were denoted NVO (oxygenated neurovascular coupling) and

corresponding neighbors used for spatial ltering. NVR (deoxygenated neurovascular coupling), respectivaty. T
calculate NVO/R for the left hemisphere, the correlation testw
each fNIRS channel (CH1 to CH9) and each frequency band

EEG-based features were computed from the frequenayf F7 EEG channel was calculated (band-passed lter within
band power (PSD), phase locking value (PLV), phase-amplitudbe specic frequency range). For the right hemisphere, the
coupling (PAC), and the asymmetry of frequency band powecorrelation between each fNIRS channel (CH11-CH19) and each
between right and left hemispheres (Asym_PSD). Initialhe t frequency band of F8 EEG channel was calculated. For the fNIRS
spectrogram was calculated using short-time Fourier tramsf channel 10, which is located at the center we used the avefage o
method with windows of 1s and half window size overlappingF7 and F8 channels to nd NVO and NVR. This resulted in 152
and frequency resolution of 1 Hz. The power was calculated ifl9 8) NVO and 152 NVR features from each window. Each
eight frequency bands each with a width of 4Hz in the rangeset of features extracted from one subject's data were ifiegh
0 to 32Hz. The ranges are referred to by their conventionadnd scaled in order to have a mean value of zero and standard
labels: delta (0-4 Hz), theta (4-8), alpha (8-12), followed bgleviation of one.
ve intervals ranging from low beta (12—16) to high beta (28—

32). We also used the labels f1, f2,..., f8 for these frequen€lassi cation and Validation

bands. EEG frequency band power for each epoch was extractedllowing feature extraction, we implemented SVM classiaat

by integration of the corresponding power over each frequencgnd k-fold cross-validation withk D 10. SVM is a non-
band. We imposed the 32Hz cuto since higher frequencieparametric supervised classi cation method, which already
in scalp EEG are generally not considered informative abouthowed promising results in the medical diagnostics, optical
cortical activity Goncharova et al., 2003; Muthukumaraswamy character recognition, electric load forecasting, anceotlelds.
2013. PLV is a measure of phase synchrony between tw8VM can be a useful tool in the case of non-regularity in theada
distinct neuronal populations, which is computed between twdor example when the data are not regularly distributed or have
selected EEG electrodes as an estimate the inter-areareypgch an unknown distribution Quria and Moro, 200R Linear SVM
(Vinck et al., 201)L PLV was estimated between electrode pairgonstructs an optimal hyperplane creating a decision surface
that were selected to assess three di erent types of synchronyaximizing the margin of separation between the closest data
intra-hemispheric (F3-P3, F4-P4, Fcl-Cpl, Fc2-Cp2, Fz-Poz)pints belonging to dierent classesA@hajani et al., 2013
symmetric inter-hemispheric (F7-F8, F3-F4, Fcl-Fc2, C31B4 The observations were randomly partitioned inkogroups of

T4, Cpl-Cp2, P3-P4, 01-02), and asymmetric inter-hemispheriapproximately the same size. One group was selected as the
(F3-P4, F4-P3, Fcl-Cp2, Fc2-Cpl). PLV was computed faesting and the rest as the training data. Principal component
four band of interest ([3-5], [9-11], [19-21], [39—41]HBAC analysis (PCA) was applied to the training set. We applied PCA
measures coupling between the phase of a low frequency (heseparately on each feature subgroup (11 subgroups, with the
[4-7], [9-13] Hz) oscillations and the amplitude of a high subgroups divided further by frequency bands as described in
frequency ([15-35], [30—60] Hz) oscillatioRédwan et al., 20)6  our feature extraction methods). For example, the EEG alpha
It provides an estimate of local, multi-frequency organiaat frequency band power (8-12Hz) consisted of the time series
of neuronal activity Dvorak and Fenton, 20)4We chose 8 from 19 EEG channels. After PCA, these signals yielded 19
EEG channel pairs between right and left hemispheres (F8-F@rincipal components (PC) and their associated time serielseas t
F4-F3, Fc2-Fcl, T4-T3, C4-C3, Cp2-Cpl, P4-P3, and O2-01) foew set of features. A similar PCA was applied to each feature
Asym_PSD feature. subgroup. The resulting PCs contained a set of weights (for
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FIGURE 5 | Sample preprocessed EEEfNIRS data for one of the subjects. Vertical dashes separateifferentn-back task and rest blocks. (a) Concentration
changes of oxy-hemoglobin (red curve) and deoxy-hemoglohi(blue) for channel 17(b) EEG Time-frequency map of the channel O2.

FIGURE 6 | Four different epoch styles based on length of windows. Theaisk and rest blocks are divided into(A) 5, (B) 10, (C) 20, and (D) 25 s windows (w).

the EEG channels), which could be interpreted as an activatioexample contained a vector of feature values in a given window
map. PCA therefore allowed us to interpret the topographicand its label that denoted one of the two classes of interdst. T
distribution of activation associated with every featuRCA  SVM constructed an optimal hyper-plane creating a decision
also yielded an eigenvalue corresponding to the varianckatf t surface maximizing the margin of separation between the stose
feature. The eigenvalues typically decrease sharply, theofumdata points belonging to di erent classesdhajani et al., 2093

the rst few accounting for almost all of the total energy bkt In this study there were 10 possible pairs of binary classiarai

19 PCs. However, the most energetic PCs are not necessaglyrresponding to our ve distinct classes. In order to inveate
the most informative, as shown in Resulf@ble 1). In order to  the ability to discriminate WM loading against a baseline vave
estimate the features' discriminating ability, we usedRearson chosen the pairs {1-back v rest}, {2-back v rest}, {3-baclst},re
correlation coe cient method (lwangi et al., 2014 A reference  {1-back v 0-back}, {2-back v 0-back}, and {3-back v 0-bank} a
time series was constructed by labeling each window by endist performed binary classi cations on them. We also investidate
integer that represented the rest or the task di culty levgd ( the ability to discriminate between degrees of MWL by using
(rest), 1 (0-back), 2 (1-back), 3 (2-back), 4 (3-back)}). Wged a multi-class scheme. For this purpose we utilized the error-
RZ, the square of the Pearson correlation between the timeorrecting output code multiclass model (ECOC), which employ
series and the reference signal, to rank the set of featlifes. a set of binary classi ers. We adopted an all-pairs ECOC model
testing data were projected into the PC space that was obtainéal train a binary classi er on the pairs of classes in the tragni
from the training data and the testing features were rankediata and, for each new instance in the testing data, assigned
by using the same method. In part of our analysis, we havthe label that minimizes the aggregate Hamming loss from the
chosen to reduce the number of features of the systems (EE@edictions of all binary classi erdjetterich and Bakiri, 1995
fNIRS, and Hybrid) by truncating all systems at the same xedn comparison to its alternatives, this approach has been shown
size, eliminating the lowest ranked features. The labebiding enhance accuracy while maintaining a low run-time complexit
examples were fed into a binary linear SVM. Each trainingFutrnkranz, 200 We investigated four groups of multi-class
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TABLE 1 | The top R2 ranked features for three representative subjects for theibary rest v 3-back classi cation.

Subject 1 Subject 2 Subject 3
Rank R2 Descr. Freq. (Hz) PC or Chan. R2 Descr. Freq. (Hz) PC or Chan. R2 Descr. Freq. (Hz) PC or Chan.
Pair Pair Pair

1 0.37 PSD 4-8 PC3 0.26 PSD 8-12 PC1 0.19 NVR 28-32 PC2

2 0.30 PSD 12-16 PC5 0.23 PSD 4-8 PC1 0.18 NVR 12-16 PC2

3 0.26 PSD 8-12 PC1 0.21 PSD 0-4 PC1 0.18 NVR 24-28 PC2

4 0.18 PLV 3-5 01-02 0.18 PSD 12-16 PC1 0.18 NVR 20-24 PC2

5 0.17 NVR 20-24 PC4 0.16 HbO - PC4 0.18 NVR 16-20 PC2

6 0.16 NVR 8-12 PC4 0.13 COR - PC2 0.18 HbR - PC2

7 0.16 NVR 16-20 PC4 0.13 HbR - PC1 0.17 NVR 4-8 PC2

8 0.16 NVR 12-16 PC4 0.12 NVR 24-28 PC1 0.16 PLV 9-11 Fz-Poz
9 0.16 NVR 24-28 PC4 0.11 NVR 12-16 PC1 0.15 PSD 12-16 PC3
10 0.15 NVR 28-32 PC4 0.11 NVR 16-20 PC1 0.14 PSD 8-12 PC4

Columns indicate the feature description (Descr.), corresponding freguncy range if applicable, and PC index in order of descending energy (or thénannel pair for PLV). The HbO-HbR
corr. has been abbreviated as COR.

sets that contained narrow gradations of MWL: {3-back v 2
back v 1-back}, {3-backv 2-back v 1-back v 0-back}, {3-back|v
2-back v 1-back v rest}, and {3-back v 2-back v 1-back v O-back
rest}. The accuracy was computed as the fraction of labelsein t
testing data that were correctly identi ed by the SVM. Figall
the cross-validation was repeat&diimes with each group of
observations being used exactly once as the testing dat@. Th
overall accuracy was calculated as the mean of the repetition
In addition to overall accuracy, confusion matrices yield g
very detailed overview of a classi er's performance. Usuétie
confusion matrix is further summarized by some proportions
extracted from the confusion matrix. The main metrics arg (a
sensitivity of class A (Sen$. which describes how well the
classi er recognize observations of class A, (b) speci aftglass

A (Spec) which describes how well the classi er recognizes tha
an observation does not belong to class A, (c) positive priegict
value of class A (PPAJ tells us given the prediction is class
A, what is the probability that the observation truly belortgs
class A?, (d) negative predictive value of class A (W”S FIGURE 7 | Behavioral performance of the subjects during task conditins of
us given a prediction does not belong to class A, what is theincreasing difculty,'shlowing response accur'acy (red)l andes'ponse t.im?.

L (black). Error bars indicate the standard deviation of intesubject variability.
probqblllty that the sample truly does not bglong tq class A Asterisks indicate statistical signi cance derived from awo-way ANOVA
(Beleites et al., 20)3We pooled all thé& confusion matrices of | comparison of each two response accuracy (red) or responsdie (black) (
thek-fold cross validation to calculate SexisSpea, PPVa, and < 0.05, **p < 0.001, ***p < 0.0001).

NPVa. For all the calculations described in this paper we used
Matlab v.8.6.0.267246 (R2015b) (The MathWorks, Inc., Matic
Massachusetts, United States).

—

Furthermore, the time it took subjects to produce a correct
response increased (and eventually more than doubled) agk t
RESULTS di culty ( Figure 7).

We next examined the HbO and HbR patterns during changes
We initially investigated the relationship between the jeals’ in mental load.Figures 8 (a—e)shows the grand block average
performance and task diculty, in order to insure that it of HbO (red) and HbR (blue) amplitude. The shaded area
was consistent with expectatiorisigure 7 shows the accuracy shows the standard deviation of the inter-subject varigbili
and response time of all subjects with error bars showing thén this paper, the term grand block averaging denotes the
standard deviation of inter-subject variability. The grishows average over the blocks of the same class and over all channels
that the fraction of accurate responses decreased withasarg and subjects. Following neural activation, local blood awd
task diculty. There was little or no accuracy decrement volume typically increase on a time scale of seconds andgat th
between 0- and 1-back tasks, as expecfedifles et al., 1997 beginning of the task, there is a localized rise in oxygemnait
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FIGURE 8 | Grand block average of normalized HbO (red) and HbR (blue) dog (a) 0-back, (b) 1-back, (c) 2-back, (d) 3-back, (e) rest. The thick curves show the
average over all channels and subjects. The shaded area irwdites the standard deviation of inter-subject variabilityGrand block average of HbO(f) and HbR (g) for
rest (dashed curves) and task (solid). Increasing thickness solid curves corresponds to increasing task dif culty fron 0- to 3-back. AU means arbitrary units.

PFC Huppert et al., 2005 which creates the positive peak of to make the comparison easier. And we just show the rst 25 s of
HbO. After a few seconds due to the metabolic consumption ofhe n-back task block (out of the full 44 s). The shaded areas for
oxygen the oxyhemoglobin concentration decreases leatding standard deviation are omitted for claritfFigure 8f shows that

a negative HbO amplitude. During the rest state which comethe peak amplitude of HbO is positive for task performance and
after the task block, the oxyhemoglobin concentrationtsté  negative for rest. In addition, it decreases with increg$iad for
increase and HbO returns to baseline. Toward the end of rest > 0. The area under curve clearly discriminates between rest
window there is an apparent task anticipating rise in HbO. Theand task since it is negative during rest and positive for dlkot
range of changes of HbO is obviously higher than those of HbR-back tasks. By contrast, the peaks of the amplitude of grand
during the task periods. From 0- to 2-back the positive pealblock average of HbRe{gure 89 that occur after the 10 s have a
of HbO increases and then decreases from 2- to 3-back. Hb@ositive correlation with the level of mental load. These grats
and HbR have the opposite sign and are hence negatively shate not observed in the case of the 0-back task since it itetkla
time correlated in the rest state. However, this appears togha to perception only and is less involved with WM system. We also
during task in ways depending on the valuerofThe range of examined the time course of selected features that weraagtt
HbO changes increases withalthough they appear to slightly from the signals.

decrease as changes from 2 to 3. InHigures 8f, we show Figure 9 shows the PSD extracted from EEG, HbO/R Amp.
the grand block average of all tasks v rest state for one specifrom fNIRS, and NVO/R features from EEGNIRS change in
fNIRS channel (channel 10, which is located at Fpz, near thelation to the degree of WM load. We use the term session
center of the forehead). In this gure the curves correspaorgdi  to denote a task block and the following rest block. For each
to rest and task with all values ofhave been shown in one plot cognitive state, we then have 10 sessions per subject. |asieeot
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FIGURE 9 | Grand block average of normalized features from 5s windowga) PSD (delta, theta, alpha bands) of channel OZb) HbO/R Amp. for channel 10.(c)
NVO (delta, theta, alpha bands) for channel 1qQd) NVR features (delta, theta, alpha bands) for channel 10. SHad areas indicate the standard deviation of
inter-subject variability.

5 s windowing, for each feature, we have 21 values in eadbrsesssecond most energetic PC from the neurovascular featuredbas
(16 fromtask block and 5 from rest block). The curvefigure 9  on the correlation between HbR and the EEG frequency band
were computed by rst applying a simple triangular moving power in the high beta range (28—-32 Hz). The table illustrtias
average lter covering three samples at each step, and theli@ cu the types of features in the top ranked group may vary among
spline interpolation. The gure shows that the theta and alphasubjects and that high discriminating ability of a featueed not
bands of EEG are positive during 0- and 1-back, although theynply high energy in the sense of the PCA.
become negative for 2- and 3-back tasks. The positive peak of Figure 10 shows the classication accuracies of various
HbO increases from 0- to 2-back and has a slightly lower peak faubsystems as well as the Hybrid system for the 3-back v
3-back compared to 2-back. The gure also shows that the Hibrirest using 5s windows. The error bars represent the standard
features (such as NVO in the delta range) generally reserhble tdeviation of inter-subject variability. Within the EEG grp (gray
corresponding uni-modal features (such as HbO and PSD in thbars), the leftmost bar is the accuracy of a system based only
delta range) however they were dominated by neither, suigges the PSD features. On its immediate right is the accuracy ef th
that the Hybrid feature contained additional information. subsystem based only on PLV features, and similarly for RC a
Table 1 shows the top 10 highest ranked features (basedther feature types. The rightmost bar in the EEG group shows
on R?) for three subjects obtained during the 3-back v resthe accuracy of the full EEG system which includes all featur
training set. The features are characterized by the desmnipt types based on EEG signals. Clearly the PSD is the primary
(e.g., PSD, PLV, HbO, as described in Section Methods) and tleentributor to the discriminating ability of the EEG, howay
particular frequency band, where applicable. The frequenoyba the accuracy appears to be slightly enhanced by including the
is applicable only to the EEG and neurovascular features. Traher types of features. Among the fNIRS systems (red) the
table also indicates the order of the feature according t® thleftmostbar indicates that Hb amplitudes together with thie®+
magnitude of its eigenvalue [ordered from the most energ) HbR correlation is the primary contributor to the accuracy of
to the least (19)]. Since PCA was not used in the case of PLifetection. Unlike the EEG system, the other feature types such
the channel label is given instead of the PC order. For examplas slope and higher order statistics signi cantly enhance the
the highest ranked feature for subject one was the third mosiccuracy of the fNIRS system. The overall accuracy of the fNIRS
energetic PC from the EEG frequency band power in the thetaystem is lower than the overall accuracy of the EEG systhen. T
range (4-8 Hz). For subject 3, the highest ranked featureteas accuracy based only on the neurovascular features is itedica
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by the leftmost bar in the Hybrid group (green). The middle the question of to what extent these systems' accuracies wer
bar in the Hybrid group represents the pooling of all featuresn uenced by the number of features they contained, ratheart
from the EEG and fNIRS systems. Finally the inclusion of thdy the information content per feature. In order to examine
neurovascular features in the Hybrid system (rightmostegre this topic, we computed the systems' accuracies after they had
bar) appears to slightly enhance the accuracy. been truncated to contain the same number of features. This

Figure 10 compared the accuracies of various systems witlvas done by selecting the top ranking group after the feature
each system containing the full set of features that beldngehad been sorted in order of descending value&afThe goal
to it. The number of features in the full set was di erent for was to perform a comparison on an equal footing by truncating
each system, for example the EEG, fNIRS, and Hybrid systeraach system in the same way. The calculation was repeated
contained 360, 209, and 873 features, respectively. Thisaisgy r by varying the number of features from two to the available
maximum. Figure 11laindicates that the fNIRS system had the
lowest accuracy over the entire range of the number of festur
The EEG system performed better, while the Hybrid accuracy
was consistently superior to either system, similar to theltes
shown inFigure 1Q Figure 11bshows the cumulative sums &f
index v number of features for three systems which qualitdyi
agree withFigure 11a The calculations are for the 3-back v rest
using 5s windows and they qualitatively agree with the tssul
(not shown) of binary classi cations of other pairs of clasapd
window sizes. The shaded areas indicate the standard d®viat
of inter-subject variability.

Figure 10 provided the results for only one type of binary
classi cation (3-back v rest) and the variability over sdis as
a standard deviation. However, itis highly instructive i@mine
the result for each subject as well as for every binary andimult
class problem that was described previously in our Methods.
Tables 2, 3break down the accuracy of classi cation for each
subject (S1, S2,..., S14), system type (EEG, fNIRS, Hyhidl), a
the type of classication problem. The mean as well as the
minimum and maximum of the values for the subject population
FIGURE 10 | Accuracy of types of features in classifying rest v 3-back wh 5 s are provided as three separate columns on the left. The height
feature windows. The error bars indicate the standard devtion of inter-subject of the rightmost bars within the EEG (gray), fNIRS (red), and
variability. The union of neurovascular features is abbriated as NV. Features Hybrid (green) groups inFigure 10 correspond inTable 2 to
are gxtracted from different systems: EEG (gray bars), fNIR8d bars), and the accuracy percentages 83.5, 75.3, and 90.1 shown under the
Hybrid (green bars). column “Mean” and the row “3-back v rest.” In the columns for

FIGURE 11 | (a) Accuracy and (b) cumulative sum ofR? for EEG (black), fNIRS (red), and Hybrid (green) systems astmétion of system size. Mean and standard
deviation over subjects are indicated by the solid curves ahshaded areas, respectively. The classi cation task was retsv 3-back and feature window size was 5 s.
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TABLE 4 | Sensitivity (Sens.), speci city (Spec.), positive prediiste value (PPV), and negative predictive value (NPV) ar¢désin percentage (%) for all classi cation cases
(binary and multi-class) and all systems (EEG, fNIRS, Hybyid

Sens. Spec. PPV NPV

EEG fNIRS Hybrid EEG fNIRS Hybrid EEG fNIRS Hybrid EEG fNIRS  Hybri d

Rest v 1back Rest 94.5 94.5 96.7 63.3 56.7 79.6 721 68.6 82.6 2.0 91.1 96.1
lback  63.3 56.7 79.6 94.5 94.5 96.7 92.0 91.1 96.1 72.1 68.6 82.6

Rest v 2back Rest 94.0 95.2 95.8 71.8 56.7 82.5 76.9 68.7 84.6 ®@.3 92.2 95.1
2back  71.8 56.7 82.5 94.0 95.2 95.8 92.3 92.2 95.1 76.9 68.7 84.6

Rest v 3back Rest 94.4 94.2 96.6 727 56.7 83.3 775 68.5 85.2 .8 90.8 96.1
3back 727 56.7 83.3 94.4 94.2 96.6 92.8 90.8 96.1 775 68.5 85.2

Oback v 1back Oback  86.7 69.2 90.9 86.7 72.9 92.4 86.7 71.9 92.3 86.7 70.3 91.0
lback  86.7 72.9 92.4 86.7 69.2 90.9 86.7 70.3 91.0 86.7 71.9 92.3

Oback v 2back Oback  90.8 67.5 92.5 91.5 76.7 94.3 91.4 74.3 94.2 90.9 70.3 92.6
2back  91.5 76.7 94.3 90.8 67.5 92.5 90.9 70.3 92.6 91.4 74.3 94.2

Oback v 3back Oback  90.7 68.8 93.0 93.3 71.2 94.0 93.1 70.5 93.9 90.9 69.6 93.1
3back  93.3 71.2 94.0 90.7 68.8 93.0 90.9 69.6 93.1 93.1 70.5 93.9

1back v 2back v 3back lback  76.0 51.1 82,5 94.4 79.3 95.5 87.1 55.3 90.1 88.7 76.4 91.6
2back  83.8 60.4 89.6 87.7 78.3 90.9 77.3 58.1 83.1 91.6 79.8 94.6
3back 827 57.8 87.1 89.2 77.1 93.2 79.3 55.7 86.5 91.2 78.5 93.5

Oback v 1back v 2back v 3back Oback  76.4 45.0 81.4 94.6 85.4 96.0 82.6 50.7 87.1 92.3 82.3 93.9
lback  79.9 48.1 86.7 91.7 82.6 93.9 76.2 48.0 82.5 93.2 82.7 95.5
2back  81.0 53.4 87.0 92.3 81.5 94.2 77.9 49.1 83.4 93.6 84.0 95.6
3back  79.7 50.7 83.8 93.7 82.8 95.5 80.8 49.5 86.2 93.3 83.4 94.6

Rest v 1back v 2back v 3back Rest 81.4 79.6 86.4 95.4 91.5 97.3 &5 75.8 91.4 93.9 93.1 95.6
lback  79.3 51.6 86.6 93.9 85.1 95.6 81.3 53.5 86.8 93.2 84.0 95.5
2back  80.8 56.0 87.0 92.3 85.8 94.7 77.8 56.9 84.5 93.5 85.4 95.6
3back  80.8 54.7 86.4 92,5 84.9 94.6 78.3 54.7 84.2 93.5 84.9 95.4

Rest v Oback v 1back v 2back v 3back  Rest 78.6 77.9 84.5 95.3 934 97.5 80.8 74.8 89.3 94.7 94.4 96.2
Oback 79.4 47.3 85.4 94.2 87.5 95.9 77.5 48.7 84.0 94.8 86.9 96.3
1back 78.0 44.8 84.4 93.7 86.9 95.3 75.7 46.0 81.8 94.5 86.3 96.1
2back  75.9 49.9 84.3 94.4 87.7 96.1 77.3 50.4 84.6 94.0 87.5 96.1
3back  78.3 48.8 85.2 94.8 86.6 96.1 79.1 47.8 84.5 94.6 87.1 96.3

individual subjectsTable 2 shows the mean accuracy and theTable 3 by using as the two factors the type of system (EEG,
standard deviation from the trials in the 10-fold cross dalion.  fNIRS, Hybrid) and the subject. The analysis was repeated by
Table 2 suggests that the mean accuracy of classifying taskking the classi cation problems as, rst, the binary types i
against a baseline increases withas expected. The accuracyTable 2 and, second, the multi-class types Table 3 In all
of detecting 0-back w-back appears to be slightly greater thancases, the di erences of accuracy among the subjects were not
that of detecting rest w-back f > 0). For example, 87.2% for signi cant and there were no interactions between systepety
1-back v rest and 91.4% for 1-back v O-batkble 3shows the and subject, while the di erences in accuracy between thertdyb
results for multi-class classi cation. In this case, theweacy and the uni-modal system was signi cant wittpa< 0.001.
tends to decline slightly as more classes are included in the Table 4lists the sensitivity (Sens.), speci city (Spec.), positive
classi cation problem. In all subjects and classi cation plems, predictive value (PPV), and negative predictive value (NPY) fo
the Hybrid system has the greatest accuracy without exaeptioeach individual class within a classi cation case. For example
We investigated whether the observed superiority of the ktiybr for the case of {Rest v 3back}, each one of rest and 3-back
system was statistically signi cant. A two-way ANOVA wasclasses would have a Sens., Spec., PPV, and NPV, respectively.
performed on every classi cation problem (a row Tdble 2or  In addition, this table summarizes all these metrics for EEG
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fNIRS, and Hybrid systems in order to make it easier to compar@évolved such as encoding, storage, matching, and inloibitd
between their capabilities. dampen the oldest memory trace®(ides et al., 1997
The foregoing results corresponded to 5s windows but Temporal tagging, unused in the O- and 1-back, begins
qualitatively agreed with patterns we observed with otheto aect MWL substantially asn > 1. Another interesting
window sizes as well. We also assessed the e ect of windothlengoreliminary result was the observation that HbO showed
on classi cation accuracy for EEG, fNIRS, and Hybrid systemsan anticipatory increase near the end of the rest sessions
Figure 12shows the results of this assessment. We examined fo@figure 86). This is consistent with related fMRI ndings
di erent lengths for the windows (5, 10, 20, and 25 s). Chanfige o(Sakai and Passingham, 2)Ghd with the fact that the PFC
window length has the same e ect on all three types of systemis involved in planning future action. A negative correlatio
By increasing the length from 5 to 20 the accuracy increases abetween HbO and HbR has been seen in the literature. Based on
declines thereafter. (Figures 8A-H, the shaded area, which is the standard deviation
of normalized HbO and HbR variations within the block for all
of the subjects and all of the fNIRS channels, is relativegi hi
DISCUSSION AND CONCLUSION This shows the high level of inter-subjects variability ahdtt
might be the reason that we are not seeing such anti-cogélat
The functional activity of the human brain can be observethwi pattern between HbO and HbR irigure 8 Izzetoglu et al. (2004)
various imaging techniques including fMRI, fNIRS, and EEGshowed that the reason behind the drop of the peak of HbO
Each of these modalities has its advantages and disadesntagn Figure 8d is that when a participant reaches his maximum
The advantage of using Hybrid EEXENIRS system can be performance capacity or in another word starts to overloads
divided into two main categories: First, each of these mitidal cognitively, he loses his concentration on the task and as a
is measuring the changes in a specic brain physiology. EE@sult performance as well as the oxygenated hemoglobirggsan
results directly from the electrical activity of corticahda decline.
subcortical neurons with a sub-millisecond temporal resiolu Figure 5did not show any di erences between rest and task
On the other hand, fNIRS yields local measures of changes Biates that were obvious to visual inspection of the prepreckss
HbO and HbR concentration and is, therefore, an indicator ofEEG or fNIRS signals. Subject and block averaging of various
metabolic/hemodynamic changes associated with neurafigct  features shown inFigure 9 did, however, indicate that such
Second, the physics of measurement behind EEG and fNIRS asgstematic variations existed. Lower values of the EEG alpha
quite di erent. This property, for example, makes EEG signaband power in the 2- and 3-back task, and higher values of HbO
prone to blink and muscle artifacts, while this is not the cese in the beginning of the task period in the-back (increasing
fNIRS. Hence using a multimodal recording system we are able with n) relative to those in the rest state were examples of
assess brain behavior from di erent physiological perspestive such visible variations. To take advantage of such variation
addition to compensating for some weaknesses of one modalitye employed discrimination through linear SVM. In the case
by the other one. of non-linear SVM, the kernel can help with the non-linearly
Our results suggest that EEXBNIRS combined with a separable data and map it into a new feature space in which
classi er are capable of robustly discriminating among vas the dataset are separable with a linear SVM. In non-linear
levels of MWL. In our study, the Hybrid system had an accuracysVM in order to improve the accuracy choosing the optimum
higher than either EEG or fNIRS alone for every subjectkernel parameters, is necessary. This can reduce classier's
The pooling of EEG and fNIRS features and the inclusion ofjeneralization potential for new subjects when we don't want t
neurovascular features resulted in a synergistic enhaanem adjust the kernel's parameters. It will increase the prolitstuif
rather than in a diluting eect (which would have given over tting occurrence, since increasing the complexityeleof a
a performance intermediate between the two modalities). Irtlassi er gives it the exibility to match exactly to the treset. In
mission-critical contexts such as aviation or surgerynesmall  addition, the option of choosing a non-linear SVM depends on
improvements in MWL detection can translate into signi cant the exact application to make a trade-o between a slighthykig
gains in safety and e ciency. Our experiments were desigreed taccuracy rather than calculation speed. The same trade-o we
use WM load (adjusted through the valueroin the n-back task) face to choose the windows size. The results shovifigare 10,
as a correlate of MWL in general. Furthermore, EEG and fNIRSables 2, 3were highly promising for accurately discriminating
can be integrated without excessive cost, e ort, or intresiess among the rest and task states. Febles 2, 3show, the subject
for the user. The combination of all these consideratiorggasts averaged accuracy of the Hybrid system in binary discrirtidma
that EEGCTNIRS should be preferred to only EEG or fNIRS, inwas lowest (87.2%) for 1-back v rest and highest (96.6%) for 3-
developing passive BCls and other applications which need tmack v 0-back. The corresponding lowest and highest resuits f
monitor users' MWL. uni-modal systems were fNIRS (71.6%) and EEG (92.0%), both
Our preliminary analysis of the experimental data wador 3-back v rest. We calculated the overall average of acgur
consistent with expectations. For examplgure 7indicated that one time for all of the binary cases and one time for all of the
the fraction of accurate responses declined more steeply asmuli-class cases. We did this calculation for EEG, fNIRS, and
increased. This can be explained by noting that temporal taggi Hybrid systems separately. The results show that EEG, fNIRS,
is the cognitive process that imposes the greatest load imthe and Hybrid system, in the case of binary classi cation, hav®8
back task, as compared to the other processes which are al&$.8, and 90.9% overall accuracy, respectively. EEG, fNH&S, a
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FIGURE 12 | Accuracy of the rest v 3-back classi cation as a function of window size for EEG (gray), fNIRS (red), and Hybrid (green) ssmsis. Error bars indicate the
standard deviation of inter-subject variability.

Hybrid system, in the case of multi-class classi cationyéh@9.6, cumulative sum ofR2 v number of features for three systems
57.0, 86.2% overall accuracy, respectively. These nundrarsyc  which qualitatively agrees witRigure 113 suggesting thaR?

that the accuracy of each one of EEG, fNIRS, and Hybrid systemanking is an e ective method of feature selection. We have no
are higher for the binary cases. The multi-class accuradsee w used an explicit artifact rejection step in our analysis. ldger,
generally lower; however, note that the chance level acgdoa it is well known that PCA can segregate non-cerebral arfac
multi-class classi cation is less than binary classi cat{33% for  (typically of higher amplitude than contributions of cortical
3-back v 2-back v 1-back, 25% for 3-back v 2-back. v 1-bacitv reorigin) into distinct PCs. Our feature selection basedRSrthen

and also 3-back v 2-back. v 1-back v 0-back, and 20% for 3-baeksigns a lower rank to such PCs and they are excluded from a
v 2-back. v 1-back v 0-back v rest). truncated system.

Table 4reveals that, for all of the four extracted metrics from One of the main considerations in developing an online
the confusion matrix (sensitivity, speci city, PPV, NPV)yays system is computational speed. It is instructive to review the
Hybrid system has a higher value than EEG system and EE&@mputational loads of particular feature types in conjunctio
system has a higher value than fNIRS system. In the caseswath how e ectively they discriminate among rest and task
binary classi cation, for those that we are detecting betwtask states. For examplerigure 10 shows that PAC is the least
and rest, the sensitivity of detection of rest state is sigmitly ~ discriminating EEG feature. This may be important in designi
higher than the sensitivity of detection of task state. As ita compact and e cient detector, as PAC is also the most
complement, the speci city of detecting task state is higlant computationally time-consuming feature. By contrast, thesino
detecting the rest state. In the cases of binary classonafior e ective EEG feature (PSD) was also the fastest to compute. In
those that we are detecting between task and task, the sétysit our study, the central processing unit (CPU) time required for
of detecting the task with a higher di culty level is more tha computing PSD, PLV, PAC, and Asym_PSD were, respectively,
those with less level of di culty, although the di erence isoh 0.1, 14.3, 44.4, and 0.2 s. The CPU times required for other
very signi cant. The PPV and NPV are usually more importantfeatures were as follows: HbO/R Amp. and HbO-HbR Corr.
than sensitivity and speci city. Patients and doctors waat t (0.1s), HbO/R slope (14.3s), Std., Skew. and Kurt. colkdgtiv
know whether this particular patient is ill rather than whethe (3.3s), and NVO and NVR (3.45s).
the test can recognize ill peoplB€leites et al., 20).Here, our Our results suggest that Hybrid outperforms the uni-modal
result (Table 4 shows that Hybrid system has at the same timesystems for each subjeciTapbles?2, 3, every classication
a very promising PPV and NPV for all of the classi cation casesproblem (Tables 2, 3, every number of feature&igure 11), and
Except for the case of {1-back v rest}, the minimum of serijtiv every window sizeHigure 12. This could have been due to
speci city, PPV, NPV for the Hybrid system are 81.4, 82.5881. the neurovascular features that the uni-modal systems do no
and 84.6%, respectively. contain. NV obviously had a higher classi cation performance

Selecting an optimal subset from the full set of features igather than any of fNIRS based feature subgroups. However,
crucial for achieving high accuracy and avoiding overagi  Figure 10 indicates that such features contribute little if any
In some applications, e.g., those involving on-board reakti to the accuracy (two rightmost bars) after the other EEG and
analysis, it may also be important to keep the system siZ®&IRS features have been pooled. The likely explanation instead
small and avoid computational delayBigure 11b shows the s related to inter-subject variability. We have found thhe
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top ranked (in terms ofR?) features tend to dier among the highest observed accuracy were consistent with our nsling
di erent subjects. Although, the EEG frequency band powefThe dierences from our results could be attributed to the
(especially in the alpha range) tended to play an importantelatively lower number of sensors and fewer types of features
role for most subjects, for other subjects other feature sypethey employed.
fNIRS- or Hybrid based, dominated the top ranks. An example Acquiring the very low-frequency (VLF) oscillations Q.5
of this is provided inTable 1 where the third subjects most Hz) in the EEG signal requires highly specialized ampli ers
discriminating PCs were neurovascular. EEG and fNIRS ug®C-coupled, high input impedance, high DC stability, and a
di erent physical processes for detection and the underlyingvide dynamic rangeDemanuele et al., 2007n addition, VLF
physiology which they detect are di erent. Hence de cienciesoscillations are known to be linked with speci ¢ pathologiesfsu
such as artifacts, weak sensor coupling, or subject vatiabil as epileptic seizures or attention de cit hyperactivity diserd
leading to a weak signal would selective a ect only one mogali (Steriade et al., 1993; Vanhatalo et al., 2004; Demanuele et a
rather than both. The Hybrid advantage may be associate®d007) that are not within the range of interest in this study. On
primarily with the complementary nature of the individual the other hand, some studie§évins et al., 1997; Berka et al.,
modalities. 2007; So et al., 20Ldemonstrated EEG within gamma range as

Figure 12indicates that accuracy can be increased by using biomarker for discrimination between di erent cognitiviages.
larger windows. But this presents a tradeo between accuracWe de ned the band-pass Iter cuto frequency (0.5-80Hz)
and rapid detection. The windows with the highest accuracyased on these criteria. Although in the feature extracsection,
were 20s long and may be impractical for some applications iffe did not consider gamma frequency range features and have
the online response to rapid changes in MWL is desirable. Asonsidered this as the future work.
window size increases, although the amount of information pe The present study had several limitations which we have
window likely increases, the number of windows available fonot directly addressed due to constraints of available time
training the classi er decreases. Fewer training data apeeted or e ort. Firstly, the group of subjects included only one
to cause the classi ers to underperfornsiimes et al., 2008 female. This may have been due to the demographics of the
The decline in accuracy ifrigure 12 for windows>20s may subjects, who happened to be interested in volunteering for ou
be due to the excessively small number of data available fstudy. In addition to the neural correlates of MWL, we have
training. recorded the subjects' performance characteristics. Hewetv

A handful of studies on concurrent EEG and fNIRS andmay prove insightful to collect data on the MWL by using
WM tasks have been previously publishedirsh eld et al. additional techniques such as self-reporting, which was not
(2009) combined an 8 channel fNIRS covering the foreheadione in this study. In some studies for assessment of MWL
with 32 channel whole-head EEG withh D 4 subjects as they participants lled out the NASA Task Load Index (NASA
performed a counting and mental arithmetic task with adjidéa TLX) questionnaire fflart and Staveland, 198&o provide a
di culty. They used separate classi ers for the fNIRS and EEGsubjective evaluation of the mental demand induced by dirgre
(k-nearest neighbor and Naive Bayes classi cation, respagjiv levels of task diculty. In this study, we implicitly used the
and obtained a maximum accuracies of 64% (with fNIRS) andssumption that an increase in the level of task di culty will
82% (EEG). They did not attempt to use the multi-modalresult in a higher MWL. This can be also considered in future
data concurrently. The generally higher accuracy of the EEGtudies. In addition, it is possible that during the courseaof
is consistent with our results. Their overall lower accigac experiment the subjects' performance and MWL change through
relative to our results may be due to the relatively short 2 $raining e ects. Studying the performance and neural coriega
feature extraction windowLiu Y. et al. (2013used a 16-optode of MWL for subsets of our data could reveal dierences in
fNIRS system covering the forehead and 28 EEG sensors the beginning and at the end of the study. This would also
the standard 10-20 sites, with D 16 subjects performing a require an additional investigation of statistical validitand
n-back task. They found signi cant correlations between WMwas not attempted. The statistical signi cance of the resofts
load and some EEG frequency band powers as well as Hb@ur study was demonstrated through a two-way ANOVA that
and HbR, however did not attempt classi cation. Their studyshowed signi cant di erences in the accuracy of the Hybrid v
focused on discovering neural correlates of the e ects offirac uni-modal systems. However, we have not investigated veneth
time on performanceCo ey et al. (2012yecorded three fNIRS a smaller group of subjects would still yield a signi cant résu
channels over the left forehead together with 8 EEG eleesod We have investigated the capabilities of various subsetheof t
placed mainly in the frontal and central areas, fradhD 10 types of features that were available. It would also be illutimga
subjects in an-back task. They extracted EEG frequency bando investigate the classi cation accuracy of subsets offttie
power and fNIRS Hb amplitude features from 5s windows andarray of our sensors. Such information can help design more
employed them in linear discriminant analysis classi erseyh compact headsets and is the subject of an ongoing study. The
report maximum accuracies of 89.6% (EEG), 79.7% (fNIRSheadset we used is lightweight and no discomfort was reported
and 91.0% (Hybrid). Their results di ered from ours in that by any of the subjects. However, wearing it may nevertheless
in some subjects all their systems had very low accuraciés aa ect performance, and this could be revealed in a parallel set
their Hybrid accuracies were not always higher than those obf experiments which we have not done. The primary goal of our
both uni-modal systems. However, the fact that EEG generallstudy was to apply machine learning techniques in discrimirgat
had the higher uni-modal accuracy and that Hybrid could atta levels of MWL. We used multiple statistical techniques to ensure
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