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Electro-cortical activity in patients with epilepsy may sbw abnormal rhythmic transients
in response to stimulation. Even when using the same stimutisn parameters in the same
patient, wide variability in the duration of transient regmse has been reported. These
transients have long been considered important for the mapipg of the excitability levels in
the epileptic brain but their dynamic mechanism is still notell understood. To investigate
the occurrence of abnormal transients dynamically, we use &halamo-cortical neural
population model of epileptic spike-wave activity and stug the interaction between
slow and fast subsystems. In a reduced version of the thalamaortical model, slow

wave oscillations arise from a fold of cycles (FoC) bifurdan. This marks the onset of
a region of bistability between a high amplitude oscillatgrrhythm and the background

state. In vicinity of the bistability in parameter space, thmodel has excitable dynamics,
showing prolonged rhythmic transients in response to suprtareshold pulse stimulation.
We analyse the state space geometry of the bistable and ex@ble states, and nd that

the rhythmic transient arises when the impending FoC bifuation deforms the state
space and creates an area of locally reduced attraction to t xed point. This area

essentially allows trajectories to dwell there before esqang to the stable steady state,
thus creating rhythmic transients. In the full thalamo-cadical model, we nd a similar

FoC bifurcation structure. Based on the analysis, we propos an explanation of why
stimulation induced epileptiform activity may vary betweetrials, and predict how the
variability could be related to ongoing oscillatory backgund activity. We compare our
dynamic mechanism with other mechanisms (such as a slow paraeter change) to
generate excitable transients, and we discuss the proposedxcitability mechanism in
the context of stimulation responses in the epileptic corte.

Keywords: afterdischarge, epilepsy model, spike-wave, stimu lation, transients

1. INTRODUCTION

Epileptic seizures are typically marked by abnormal rhythniscliarges of electrical activity in the
human brain. The rhythmicity is taken as an indication of amderlying deterministic nonlinear
oscillation. The transition from a disorganized backgrduactivity to the epileptic rhythm is
described as a state transition either due to a changing patemBreakspear et al., 206r due to

a cross-separatrix perturbation in a bistable situatiboges da Silva et al., 2008r a combination
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of both (Wang et al.,, 2004 A problem that has not been and suggest a model based prediction to explain the varigbilit
satisfactorily addressed is the nature of the terminatibihe@  Future computational studies of abnormal brain activity can
abnormal rhythm. Corresponding to the situation at rhythm use these mechanisms to generate alternative predictions to
onset, rhythm termination could be equally be due to a paranet be compared to clinical observations (instead of attempting
change Kramer et al., 2012 a cross-separatrix perturbation in to t a single model to the data), c.fEstrada et al
a bistable situation Taylor et al., 2014 or a mixture of the (2016)
two. However, in the case of human EEG, no direct observation
for either the claimed (slow) parameter change or the cross» METHODS
separatrix perturbation has been provided, although we dscus
some indirect evidence later on. 2.1. Thalamocortical Model
Abnormal rhythmic discharges can also often be inducedVe simulate thalamocortical interactions by following picas
in patients with epilepsy by stimulation. Well-known examplesmodeling based on the known connectivity of this system (see
are the re ex epilepsies, where epileptic rhythms are induce#figure 2B c.f. Su czynski et al., 2004; Breakspear et al., 2006
by some form of motor-sensory stimulationK¢epp et al., Speci cally, the neural mass approachdy czynski et al. (2004)
2019, and the so-called afterdischarges following invasivéorms a neural population version of the detailed biophysical
electrical stimulation of the cortexPeneld and Jasper, model described bipestexhe (1998)n our macroscopic model,
1954; Blume et al.,, 20pP4Figurel is an example of an we consider the activity changes in four neural populations.
abnormal spike-wave rhythm induced by transcranialThe cortical pyramidal cell populationP{) is self-excitatory
magnetic stimulation. As in the case of spontaneougAmari, 1977 and excites the cortical inhibitory interneuron
epileptic seizures, these rhythms typically self-terminat@opulation (N) (Suczynski et al., 2004 In addition, PY
and the dynamic mechanism of the termination remainsexcites the thalamocortical cell population in the thalamus
speculative. (TC), and a population of cells in the reticular nucleus of the
A previous computational modeling study has suggestethalamus RE (Su czynski et al., 2004; Yousif and Denham,
that there is a third possibility to explain the termination 2005. The interneuron populationIN inhibits the excitatory
of an abnormal rhythm. Looking at the case of electricakcorticalPY population Su czynski et al., 2004 Direct thalamic
responses to cortical pulse stimulation, it was suggestetl thautput to the cortex comes exclusively from excitatorg
prolonged rhythmic transients could be self-terminating inconnections to thePY population Breakspear et al., 2006
spatially extended system&dodfellow et al., 2012a; Taylor Intrathalamic connectivity is incorporated into the modes a
et al., 201 This means that neither a parameter changdollows: TC cells have excitatory projections ®E which in
nor a cross-separatrix stimulus would be required for theturn inhibits the TC population along with self-inhibition oRE
rhythm to stop. The transient abnormal rhythm would This connectivity scheme is consistent with experimentalltesu
then constitute an example of excitability of a dynamicalkeviewed inPinault and O'Brien (2005and summarized in their
system. Excitability is a prominent feature of information- Figure 1.
processing systems (like neurons) as it allows self-ragetti It was demonstrated in a minimal model of epileptic spike-
after information has been delivered. It is unknown whetherwave discharges (SWD) that at least one slow driver is reduir
the epileptic brain constitutes an excitable medium within addition to the corticaPY andIN units (Vang et al., 201)2
thresholds to epileptic discharges, but computational models There is experimental evidence for abnormal slow thalamic
demonstrate that a large number of features surroundingrocesses (variations in a tonic inhibitory current), whictay
epilepsy can be recreated in heterogeneous excitable med#i@ a common mechanism in typical absence seizufaspé
(Goodfellow et al., 2013b However, a major problem et al.,, 200Q This is also supported by theoretical studies that
with high-dimensional spatio-temporal models is that the nd slow timescales crucial for the generation of realis$i/D.
mathematical nature of state space features is dicult toThese studies either incorporate the slow timescale dyjrdwstl
unveil. modeling the slower reaction of thalamic populatioridaiten
Here we study a previously proposed model of corticoet al., 2009; Taylor et al., 2Q18r by incorporating explicit
thalamic interaction which ignores the spatial extensiord an delays Breakspear et al., 2006viarten et al. (2009tompares
heterogeneities of the cortex as is typically done to descrithese approaches and nds bifurcation structures leading to
widely synchronized epileptiform rhythms shown in eglume  the onset of SWD which are similar. As the exact dynamic
et al. (2004)and Kimiskidis et al. (2015)also seeFigure 1  mechanisms underlying the emergence of the slow timessale i
for an example. To investigate the dynamic mechanisms dftill unclear, we assume here that the thalamic compartment
the transients in the thalamo-cortical model, we propose @perates on a slower timescale in the abnormal condition of
simplied version of it to demonstrate the possibility of increased susceptibility to undergo transitions to SWD.rirra@
abnormal rhythmic transients in its low-dimensional statetheoretical point of view, this has the advantage that the elod
space. With some variations, dierent types of transientcan be analyzed in terms of slow-fast subsystenisng et al.,
waveforms can be created in the full model, in particular201).
those known to occur in patients with epilepsy. With this The model uses the neural population approach based on
proposed alternative mechanism, we can explain the observatithe neural eld equations proposed bgmari (1977) Spike-
of variability on stimulation response in the clinical sagi wave solutions are found following the analysis don€éaylor
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300mV M/\WWWMWFMWMM

FIGURE 1 | Clinically recorded self-terminating spike-wave d ischarges induced by transcranial magnetic stimulation. The stimulation was applied at the
red arrow. Spike and wave afterdischarges are observed. Fige is visualized fromKimiskidis et al. (2015)
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FIGURE 2 | Connectivity scheme of the (A) simpli ed and (B) thalamocortical model. Excitatory connections are showmi green, inhibitory connections are shown
in orange.

and Baier (2011and Taylor et al. (2013)The set of ordinary Hence we replaced them with a linear activation. This is also

di erential equations is given as: useful to directly compare the slow thalamic subsystem to the
simpli ed model later, where we also use linear activation for
dPY simpli cation.

— D h PY f[P f[IN f[T
dt 1Py CCPY] GTIINTC Cof[TC) Details about the parameters can be foundTables S1S2

dIN ; . :
dN 5 e INCG[PY) Code to simulate the model can be found online at https://

dt senselab.med.yale.edu/modeldb/showmodel.cshtml?model
dTC 168856.

o D s(he TCCCrf[PY] Cs(dRH))

dRE 2.2. Simpli ed Model

— D h REC Cgf[P C RE) C TC e

dt 4(fe Caf[PY]  C4(dRE) C Cs(4TCH) To investigate mechanisms leading to bistability/exdiiighin

(1) the model we use a simpli ed model of three variables which
_ _ allows for easier visualization (we will call it the 3V model
where hpyintcre are input parameters, 1. 4 are time scale Figure 2A). The simplied model preserves the important

parameters andl[.] and d.] are the activation functions: aspects of the more detailed model including timescale sépara
and bistability. Speci cally, the two slow variables cremafecus
flul D A1C ) (2)  in the slow subsystem, just like the full thalamo-corticadael.
qu] D auCh (3) The two fast cortical variables have been simplied to one,

e ectively removing the Hopf bifurcation in the fast subsystem
with u D PY,IN,TC,RE The parameter determines the slope This is so that the full system is simplied to only display
of the sigmoid. Two activation functions are used here, onsimple oscillations, rather than slow-fast oscillationsldad, the
sigmoid, one linear. This is because we found thatin our mresi  transient dynamics are built up by these two slow and one fast
studies {aylor et al., 2014the REand TC interactions mainly variables. As we will show in results, the additional fastalze
happened in the linear range of the sigmoid activation funetio in the full system just adds the Hopf bifurcation back into the
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system, allowing for transient slow-fast (spike-wave)lzgwns. 3. RESULTS

The equations for the simpli ed system are as follows: .
. predsy 3.1. Analysis of a Slow-Fast Subsystem
To begin our analysis, we will look at the 3V simpli ed system

d—x D fasthx X CCyf[Y]) to illustrate the main dynamic mechanisms before applying the
(;j\t( analogous analysis to the full thalamo-cortical model.

— D gohy Y CaZCGCyX) The reduced three-dimensional model is a slow-fast system,
dt with one fast variableX) and two slow variablesy(, Z). Previous

az D gohz ZCC.Y) (4) studies of such slow-fast systems have shown that Fenichels
dt Theorem {enichel, 197Ris a powerful tool of analysis. The

) . theorem essentially states that the (stable of unstable) pants
where hxyz are input parameters, sioufast are time scale ot yhe fast subsystem form a manifolds in the full state space
parameters an€l[.] is thej actlyatlon function above (Equation 2). \ it similar properties. By analysing these manifolds, one ca

~We can essentially identify the slow subsystdi@ @ndRB  nqerstand the dynamics of the full system in state space.

with the slow subsystem in the 3V mod& @ndZ). The cortical Using Fenichels Theorem, and the slow and fast manifolds,
systemPY and IN can be considered the expansion of they,e pepavior of the system can be understood geometrically
3V system variablX. The parameter values for the simpli ed (Izhikevich, 2000; Desroches et al., 2012; Wang et al.,)2012
model were obtained through visual comparison of the statgase siow and fast manifolds are shownFilgures 3A-D as
space structures as described above. Or in other words, Weaen and red manifolds, respectively. The slow manifold, (i.e
constructed the state space structures in the simpli ed mod here the change in the fast subsystem is zedodt D 0)
with the parameters, such that they matched the the full syste ;o green sigmoid shaped plane, which is attractive in the

as described above. _ direction of X. The fast manifold (i.e., where there is no change
Details about the parameters can be foundables S1S2 in the slow subsystemdY=dt D 0 anddZ=dt D 0) is a
. red line indicating a stable focus in the slow subsystem. The
2.3. Slow and Fast Manifolds intersection of these two manifolds is a xed point of the full

We will use the slow and fast manifolds in state space to explag‘ystem (blue dot irFigures 3A-D). Additionally, when the fast
some of the phenomena and mechanisms we observe. The slgiito|q (red) is positioned near the non-linear part of thewlo
manlfo_ld is technically _de ned as the manlfold_ in State_Spacesigmoidal manifold (green), the interplay between the fast an
on which the change in the fast subsystem is zero, i.e., §qy gynamics can create a stable limit cycle in the fullespst
slow dynamics dominate. For the 3V model, this would be the(indicated in magenta irFigures 3A-D) that is bistable to the
condition & D 0, hencelfx X C Cyq f[Y]) D 0,hx C  yed point (blue). The bistability is additionally demonstes
Cd f[Y] D X. This means the manifold is a Sigmoid-shaped plan% Figures 3E,Fby perturbing the xed point and Showing
(green plane irFigure 3. For the full thalamo-cortical system, the following trajectory evolving to the limit cycle; and by a
this would be the condition§5Y D 0,4} D 0. Essentially the subsequent perturbation from the limit cycle back to the xed
xed point of the fast subsystem. However, in our analysis, W@oint. Note that the bistable limit cycle is created aroundda
have expanded this de nition of slow manifold, by also inclugli  due) to the non-linearity in the sigmoidal slow manifold.
limit cycles of the fast subsystem in the slow manifold (blue The stable xed point and the stable limit cycle are separated
mesh in the latefFigures 6-8). This is justi ed in more detail by a saddle cycle (indicated in orange Figures 3A-D). We
in Wang et al. (2012)but essentially we assume that the timeadditionally show the stable direction of the saddle cyclegsy
scale separation is su cient to separate the slow dynamicsifro tube manifold inFigures 3A-D This manifold also represents
the fast oscillations. We obtained the slow manifold for th# f the separatrix between the xed point and limit cycle.
system numerically by obtaining the xed points and limit ¢gs In order to understand the type of bifurcation leading to this
of the fast subsystem. The numerical simulation approach wasistability, we slowly vary the parameteg, which controls how
used here (as opposed to continuation), as routine for detgcti close the fast manifold (red line) is shifted toward the noskr
xed points and limit cycles could be reused for the detectionpart of the sigmoid-shaped slow manifold (green plane). We
of transient events with small adaptations. In both cases weqd that the new coexisting limit cycle arises in a fold of aysl
essentially detect if trajectories stay in the proximityaéleother.  pifurcation (marked as FoC1 iRigure 4A), as the fast manifold
The fast manifold, in contrast, is where the slow dynami@s arapproaches the nonlinear part of the sigmoidal slow manifold.
essentially zero. For the 3V system this me%}hsﬁ) Oand‘(’j—% DO. When hx is further increased, the stable xed point becomes
Thisgivesliy Y CaZCCyX)DOandfiz ZCC:Y)DO. unstablein a subcritical Andronov-Hopf bifurcation, wheaikso
If expressed as dependent dhwe get:Z D hz C C. Y and the saddle cycle disappears (marked as HFigure 4A). Due
YD(C hzCGC XChy)H1CCy C).Inother tothe symmetry inthe sigmoid slow manifold, both bifuraats
words, the fast manifold is a line in the state space (orange li occur again as the fast manifold passes through the upper part of
in Figure 3. For the full thalamocortical system, we have thethe sigmoid (marked as H2 and FoC2Figure 4A).

conditions; 97¢ D 0,% D 0. This gives a linear equation  Interestingly, the impending fold of cycles bifurcation

dt
system, where the solution is the set of xed points of the slovintroduces a slowing/trapping in the local state space, which i

subsystem (orange line Figure 6F). well documented for the fold or saddle-node types of bifuied

Frontiers in Computational Neuroscience | www.frontiersiorg 4 April 2017 | Volume 11 | Article 25


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Baier et al. Understanding Epileptiform After-Discharges

FIGURE 3 | Bistability in the 3V model. (A-D) state space diagrams of the 3V system in different projectizs showing the fast (red line), slow (green), and separating
(gray) manifolds, and the xed point (blue dot) and limit cyel(magenta line)(E) Time series of the system when stimulated to transition frorthe xed point to the limit
cycle, and back. (F) Y-Z state space showing the trajectory in(E). Black arrows indicate the stimulation points. Parameteralues used can be found inTable S1.

(see e.gDamme and Valkering, 1987In the case of a fold of We additionally measured the length of these transients
cycles bifurcation, this means that long transients ofl@ns  for dierent values of hy and nd a sudden increase just
can be observed prior to the bifurcatiofigure 4B shows an prior to the FoC bifurcation in parameter spacefigure 5,
example of such a long transient lasting for 14 cycles (over 5st column). This behavior changes quantitatively withhetr
model time seconds)rigure 4C shows the same time series in parameters. For example, as the bifurcation pointhjn shifts
state space. In this projection the slowing/trapping in stateespa with the parameter g0, the parameter region ihx supporting
becomes particularly clear, as the trajectories dwell irélggon  long transients also increases. In other words, long teamtsi

in state space, where the stable and saddle limit cycle are to ban be found further away from the FoC point ihx as
born. slow decreasesHgure 5A). When analysing properties of the
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FIGURE 4 | Excitability in the 3V model. (A) Bifurcation diagram for the parameteihx showing minimum and maximum values of. The red line indicates the
parameter setting for(B,C). FoC indicates a fold of cycles bifurcation. H indicates a sacritical Andronov-Hopf bifurcation. The zoom-in shows te FoC bifurcation in
the variablesY and Z. The unstable limit cycle is shown in the zoomed panel in blyevith the stable limit cycle in pink(B) An example of a transient following a
stimulus (black arrow) at a parameter setting before the Fo@ifurcation (red line inA). (C) The same transient is shown in the state space of the variabdey and z.
Parameters used here can be found iffable S1.

transients further, we observe that indeed the oscillatippesars  system variableX. This identi cation is possible through the
to become slower with decreasing,,, (Figure 5B). This results analysis of the geometry of the fast and slow manifolds irestat
in a roughly constant number of oscillations for di erent,,, Space (compargigure 3with Figure 6). Where the fast manifold
(Figure 50. However, this e ect is not observed in another in the 3V model was a stable focus, this is exactly preservibein
parameter (e.g.Cc, Figures 5D—F. The parameter region in full system (by design of the 3V system, see Section 2). Where
hy showing long transients appears to stay about the samsow manifold in the 3V model was previously a simple sigmoid
for dierent C; (Figure 5D), but the number of oscillations manifold, it is now a manifold that partly resembles a sigmoid
increases substantially with di erer@@; (Figure 5F. These two manifold, only with a Hopf bifurcation at one end creating an
examples illustrate that the properties of the transients niear additional limit cycle manifold in the fast subsystem. Natgin,
FoC bifurcations inhx can be modulated by other parameters.the bistable limit cycle is created around the non-lineaior
Particularly, the properties of the duration of the transiemtd  bend) of the slow manifold—as in the simpli ed model.

the number of oscillations in the transient can be modi edewW Using the knowledge from the three-dimensional reduced
found that the modi cation essentially works by the mechemi  model, the analysis of the four-dimensional system can proceed
of changing the ow in state space near the ghost of then an analogous manneirigures 6C—Fshow the state space
saddle cycle. More precisely, the local ow creating the dnglli projections of the full model, which can be compared to
behavior in state space (near where the saddle node of cycleigures 3A-D qualitatively. The fast manifold is still a stable
bifurcation will happen) determines how the transients willfocus, shown as an orange line in the projectiofrimfures 6C,D
appear. This local ow is in uenced by other parameters of theThe fast subsystem is now richer in dynamics. With respect

system, such &; and gjow to the slow modulation from the thalamic subsystem, the
] fast cortical system can undergo a supercritical Andronov-
3.2. Analysis of the Full Model Hopf bifurcation. This means that the slow manifold is more

We now turn our attention to the full thalamo-cortical syste  complex in structureFigures 6C—Fshow the slow manifold as
We can essentially identify the slow subsyst&i@ &ndRE) with  a blue mesh. Particularly iffigures 6C,E,Rhe cone structure
the slow subsystem in the 3V modeY (and Z). The cortical of the slow manifold is visible, which occurs due to the
systemPY and IN can be considered the expansion of the 3Vsupercritical Andronov-Hopf bifurcation in the fast subsgst.
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FIGURE 5 | Properties of the transients in parameter space oft ~ he 3V model. (A-C) Scanninghy and gjoy. (D—F) Scanninghy and Cc. (A,D) Duration of the
transient shows the total duration of the induced transienin seconds. In the dark red area, the FoC1 bifurcation is alrely passed and the limit cycle is stable(B,E)

Shows that some parameters can change the period of the osdétory transient, e.g., low values of go,, can prolong the period. (C,F) The number of oscillations in
the transient can also change depending on the parameters, .g., at very high values ofCc. Parameter values can be found infable S1.

The intersection of the fast and slow manifold again forms again showing the dwelling in the region where the stable and
stable xed point. The interaction of the slow and fast sulbsys saddle limit cycles will appear.
additionally creates a limit cycle. The limit cycle is notlpn Desroches et al. (201and other studies have shown that in
a simple slow oscillation as in the reduced system, but alsslow-fast systems of bursting, adjusting the time scal® r@n
includes an additional fast spike. The fast spike arises dtigeto increase the winding numbers of the spikes in a cycle of spikle an
Andronov-Hopf oscillation in the fast subsystem. The attoac wave. In our system this is indeed the case as well. By adjusting
(black line in Figures 6C—F can be characterized as having athe time scale ratio we can produce a poly-spike-wave limitecycl
spike-and-wave morphologyr{gure 6A). The basin of attraction that is bistable to the xed pointKigures 8A,Q. Prior to the
for the xed point is now more complex than in the three- FoC, we can also observe transient poly-spike-wave osmilati
dimensional case, and more di cult to visualize as it is feur (Figures 8B,D.
dimensional. We have illustrated it iffigures 6C—Fas a dot
cloud, and also agideo S1 3.3. Implication for Clinical Application
The bistability between the xed point and the spike-waveAs an outlook, we present a prediction for the clinical
limit cycle is additionally demonstrated ifigures 6A,B The  application in afterdischarges. When testing for afterdisges
red and blue bars indicate two perturbations, which induce &linically, variability in the stimulation response durati is
transition to and from the spike-wave limit cycle. often observed (e.g., in single pulse stimulation such as in
The mechanism by which the bistable spike-wave limit cycle/ajlentin et al., 2002 despite using the same stimulation
arises is, as in the three-dimensional case, through a falgades  parameters. InFigure 9A we show that in our 3V model
bifurcation. The bifurcation scan of the system with resgiedtc  of excitable transients simulated with low level noise input,
and hre are shown inFigures 7A,B Analogous to the 3V case, similarly variable stimulation responses can be observei |
just prior to the FoC bifurcation, the transient length ina®es important to note that the noise is of such a low level that
(Figures 7C,D. Figure 7Eshows an example time series of suchon its own, it does not provoke high amplitude oscillatory
atransient. As the impending bifurcation will create a limycte  transients in our total simulation time of 1,500 s. We stira
of spike-wave morphology, the transients also show a spik&wayuch a system every 15 s, and indeed see that the response
oscillation.Figure 7F shows the same time series in state spacgs not the same every time. Rather, short and long transients
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FIGURE 6 | Bistability in the 4V model. (A) Time series of the full thalamo-cortical system when stimated to transition from the xed point to the spike-wave limit
cycle, and back. (B) PY-RE-TC state space showing the trajectory ifA). Blue and red arrows indicate the stimulation points(C—F) State space projection of the
four-dimensional thalamo-cortical system. Blue mesh showthe slow manifold (attractors of the fast subsystem), anchie orange dashed line shows the fast manifold
(attractors of the slow subsystem). The intersection of thblue mesh and orange line is the xed point for the full systemgfay dot). The black line shows the
spike-wave limit cycle of the full system. The colored dots utline the state space area that is the basin of attraction fothe xed point of the full system. As this basin
is a 4D structure, we show a 3D slices of it here, and the slice@nt is a point on the SWD attractor, marked by the red star. P@meters used here can be found in
Table S2.

are seen, despite using the same stimulation and systesame ag-igure 4C only simulated with noise and zoomed in).
parameters. We nd the majority of the time series around the background
To understand if there is any regularity to when shorter orstate ( xed point) in state space. The stimuli every 15 s ara see
longer transients are provoked, we project the simulated timas large displacements in the stimulation direction. We aslim
series into state space kigure 9B (note this is essentially the the stimulation direction, i.e., to what extent each valéais
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FIGURE 7 | Excitability in the 4V thalamo-cortical model. (A,B ) Numerical bifurcation scan of the full thalamo-cortical mdel (see Section 2 for details) for the
parametersh;c and hre. (C,D) Numerical scan of the transient length before the FoC bifuations (marked by the green and blue lines) ihy and hre. (E) Time series of
an example of a excitable spike-wave transient. Stimulatiois shown as a red arrow. The corresponding parameters are ntéied as dashed red lines in(C,D). (F)
Same trajectory as in(E) shown in the PY, TC, RE state space. Parameters used here canebfound in Table S2.

a ected by the stimulus, to be constant. The transient ostoiftla  is producing long afterdischarges. The implication of thithit,
responses are then seen as trajectories around the baclkdyrouwhilst clinically one may simply see a varied response, a phase
state. To determine from where in state space long (vs. shorgpace reconstruction of the response may explely there is
transients are provoked, we marked the stimulation positigthw a varied response. An alternative interpretation of the rssisl
dots inFigure 9B The color of the dots indicates the provoked if the background state has a dominant oscillatory component
response length. With such a projection, we indeed see that ttieen we predict that afterdischarges might be more readimib
longer stimulation responses tend to be clustered, andémtah  in a particular phase of this ongoing oscillation. This ndia¢so
the right hand side of the gure. holds for the full systemRigure SJ.

With our knowledge of the deterministic 3V system described
earlier, this is easy to understand: the stimuli need to loenfr 4. DISCUSSION
a position in state space that is near the ghost of the basin
boundary of the background state. The stimulation direstimd ~ We demonstrated that excitable transients can be provoked ne
strength then determine where the long oscillatory traneran  a fold of cycles bifurcation in a reduced thalamocorticaldab
be provoked from. The remaining degree of variability canlipa We also showed that this helps to explain the occurrence of
be attributed to the noisy nature of the simulation. In termsexcitable complex transients in the full thalamocortical rabd
of clinical prediction, our results indicate that if we projed The thalamocortical model thereby generates time serias th
clinical EEG into a state space equivalent (e.g., using Ekemesemble the dierent waveform morphologies of transient
reconstructionrakens, 1981; Taylor et al., 2);we might be able dynamics provoked by stimulation in patient8Igme et al.,
to observe a similar pattern, where a particular area of sgees  2004. Hence we hypothesize that excitability in the vicinity of
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FIGURE 8 | Excitability in the 4V model. (A,B) 3D state space projections of the 4D thalamocortical systemThe slow and fast manifolds (blue mesh and orange
dashed line) are shown exactly as ifrigure 6. (A) A bistable poly-spike-wave can also be created from the saméngredients as in the spike-wave case, simply by
increasing the relative time scale of the fast vs. the slow f1isystem. The trajectory of the poly-spike-wave limit cyclés shown as a blue line.(B) By the same
procedure as (A) the spike-wave excitable transient can also be transformeéhto an excitable poly-spike-wave transient. The trajecty of the poly-spike-wave
transient is shown as a red line(C,D) Time series of the trajectories irf{A,B), respectively. Parameters used here can be found iffable S2.

a FoC bifurcation is a potential dynamic mechanism undeidyin mechanism of excitability is very similar to the type Il fold o

the clinically observed abnormal transients. cycles bifurcation, however the con gurations of the sumaling
state space are such that the dwelling behavior as described i
4.1. Mechanism of Excitable Transients Results is much more prominent than in other system. The

The study of neural dynamics has traditionally focused oe th dwelling behavior is mainly determined by the phase space
analysis of stable states, either xed points or limit cyclégle ~ Ow, which in turn is controlled by connectivity and time siea

e ort has been devoted to the analysis of transient dynamicdarameters (seféigure 5).

with the exception of a few studiesN¢wacki et al., 2011,  Inthis type Il of excitability, there is a soft threshold (ike
2012; Goodfellow et al., 2012a; Osinga and Tsaneva-Atemasoin type | excitability, where it is a hard threshold, which et
2019, although they were successful to explain other biologicaitable manifold of the saddle). The soft threshold in our case
phenomena (e.g., gene expression regulaficel et al., 2006 is essentially the state space area, where the stable ndaoifol
Traditionally, excitability in neural systems is divided iwo the saddle cycle (gray tube figure 3) will form. Perturbation
classes: type I, and type Il excitability. The distinction igoeyond this area will be followed by an excitable transient,
made based on how the frequency of the oscillation followingvhich settles in an oscillation with almost stable frequefary
stimulation changes with the strength of stimulation. Thias @ substantial amount of time before returning to the stable
classically also been mapped to di erent bifurcations, neactvh  xed point. The impending bifurcation essentially introduces
the excitable transients are found. Type | excitability irfd @ local deformation in state space that allows trajector@s t
near saddle-node on invariant circle (SNIC) bifurcatioasid ~ dwell in the “ghost” of the to-be-born cyclesigure 4). The
type Il excitability is found near an Andronov-Hopf and a fold frequency and amplitude of the excitable transient is esatyti

of cycles bifurcation Ighikevich, 2000; Buri et al., 200%ur  determined by the cycle that will form. Of course, this ditgc
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are not aware of consistent reports of the dependency of the
response amplitude or frequency on stimulus intensity. Howeve
usually a threshold phenomenon is reported in the stimulus
intensity (Lesser et al., 19R4All these properties are ful lled

in our rhythmic transient, but not in the traditional type | ah
type Il transients (zhikevich, 2000; Buri et al., 20090 test if

the state space setup in our model is a good candidate, a simila
approach as idia and Gu (2012Zould be used, where the system
is driven by noise input. The statistics of noise induced trants
(interval distributions) could hint at the type of excitaltyliand
state space setup in the data, which can be compared to real
experiments, where a noisy input is provided to brain tissue.

We also highlight here, that our mechanism of creating
transient oscillatory behavior is dierent to that of e.gliysa
et al. (2014) Our slow timescale does not simply serve as
the slow variable change (i.e., our slow time scale is not the
ultraslow time scale in variable z ifrsa et al., 20)4Indeed,
we show with our model that the ultraslow time scale/slow
parameter change is not needed to create transient oscilato
behavior. This point may also have important implications for
the biophysics of transient epileptiform afterdischargessmelso
far the hypothesized mechanism of creating transient beatmavi
is through such ultra-slow variables. Our model proposes that
such ultra-slow variables—often hypothesized to be quastiti
such as extracellular potassium, or p@rsa et al. (2014-may
not be needed. In this context, it is of course important to
acknowledge that ultraslow time scales may still play a crucia
role in the termination of seizure events or even stimulatio
triggered epileptiform events. For example, one compelling piece
of evidence in the context of seizures is providedBayier et al.
(2017)

Finally, we also show that the waveform morphology can be
modi ed to re ect the various waveforms that are observed in
clinical settings Blume et al., 2004 In Figure 7 we showed
that, in addition to slow oscillations, the excitable traarg can

FIGURE 9 | Afterdischarge duration depends on where in state s pace
the system is when stimulated. (A)  Simulation of repeated stimuli every 15 s
to provoke after discharges in the 3V model with noise inputAll parameters
are unchanged between stimuli. Purple markers indicate théming of the

stimulus. (B) When plotting the time series from(A) in state space (white lines),
we see the background state as a dense concentration of trajetories, and the
stimulations occasionally cause bigger deviations beyonthe background
state. Overlayed, we show the state space position where stiuli were applied

take the form of a train of spike-waves, similar to the clinical
picture in Figure 1L This is possible through the addition of
another fast variable, and the required dynamic mechanism i
the introduction of a supercritical Andronov-Hopf bifurcain

as dots. The color of the dots indicate the duration of the ensing response.
Larger deviations tend to cluster on the right hand side of th background
state. The direction of simulated stimulation is shown wittthe blue arrow.

in the fast system during each cycle of the slow oscillation
(Figure 6). The global bifurcation mechanism of generating the
excitable transient in the rst place remains the same as in
the 3V system, i.e., through the fold of cycles. By adjusting
the time scale separation of the two time scales, additional
depends on the parameter setting of the modElg(re5. spikes can be added between successive waves, leading to
The absolute duration of the excitable transient depends othe appearance of poly-spike-waves, also observed clinically.
the proximity to the bifurcation (as expected, as the locallhis spike-adding mechanism through the time-scale ratis ha
state space deformation nearer the bifurcation is strongerpeen well-documented in previous studies of slow-fast syste
If perturbed beyond the soft threshold the stimulus integsit (Desroches et al., 20012
will not signi cantly impact the morphology of the rhythmic
transient, except for the initial return to the dwelling areesitate ) .
space. 4.2. Stimulation Provoked Events as

These properties make the excitable transients in our modelransients
an attractive candidate for modeling stimulus induced sz In a more general context, the question arises whether éxteita
like events (SLE). As these SLE are often referred to as compleansients are a good model of stimulus induced seizure-
discharges following stimulation, they are usually of astabtial like activity at all. Particularly in the context of clinical
duration (i.e., not a simple return to the background stal&)e  seizures, the established concept is that seizures aréatmsyil
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attractors that a neural system can reach either throughesonthat for low noise levels, the duration of afterdischarge w
underlying parameter change (bifurcation)Vendling et al., be much longer in the bistable case, compared to that of the
2002; Breakspear et al., 20@# through perturbation from a excitable case. For medium levels of noise, more complex and
coexisting stable background state (bistabilitypijes da Silva non-trivial phenomena can arise.iidner et al., 2004 which
et al., 2003; Lytton, 2098 can be studied in future work, and matched to experimental

However, as we pointed out in the introduction, the nding (Lesser et al., 2008In this context, it has for example
bifurcation-based explanation requires the change of abeen noted that an afterdischarge increases the likelihddldeo
underlying parameter for the start and termination of the following afterdischarge in the same stimulation locatiathim a
seizure. This is often illustrated as a “path through parametecertain time window [ee et al., 20)0Such a phenomenon is for
space” (Vendling et al., 2002; Breakspear et al., 2006; Nevadexample imaginable for an intermediate noise level driving th
Holgado et al., 2002 The particular attraction of the parameter fast system, which can stabilize a state space region ardwnd t
variation hypothesis is that seizures (and also a small peagen xed point (see e.gMuratov et al., 2005 enabling an increased
of afterdischarges for that matt&lume et al., 2004can evolve likelihood for a subsequent excitable transient.
in their waveform morphology over seconds, which would In this context, we also oer a prediction for the
point to a slow change in parameter. However, such a patbbservation and interpretation of afterdischarges. Assgmi
has never been conrmed through direct measurements irthat afterdischarges are indeed excitable transients, then
a clinical context. Some indirect evidence exists in animahe presence of low level noise, the response to stimulation
models and human EEGK¢amer et al., 2012; Jirsa et al.,is variable (as observed in the clinical setting). We predict
2019. So, although this concept can be useful in somehat part of this variability may be explained by the state of
applications, it still needs further consolidation in ordeo t the ongoing background activityF{gure 9). If our prediction
provide a mechanistic explanation of seizure onset/o set. Improves to be true, it does not only support our theory, but also
the context of stimulation induced activity, such as thabwih  has wide-ranging implications. For the evaluation of catic
in Figure 1, this concept becomes particularly dicult. For stimulation and afterdischarges, it means that these nedukt
the onset, the parameter change would have to take e eaonsidered carefully with regards to the ongoing activityg(e
instantaneously triggered by the stimulus, and the tertiora  phase of the ongoing background oscillations), and ideallgr o
would involve a parameter change that is not stimulationseveral trials. This may indeed be at the heart of the discrepa
triggered. Although conceivable in theory, it is dicult to that afterdischarges do not seem to overlap well with seizure
identify processes that could be measured and manipulateshset zoneflume et al., 2004
directly to test this hypothesis. In terms of biophysical Finally, this leads us to comment on the relationship of the
interpretation, we essentially suggest that a slow parametstimulation induced seizure-like events, and naturallyuwdag
change (e.g., extracellular potassium, or p@nay not be seizure activity. To our knowledge, there is no direct ligtween
necessary to produce stimulation induced transient epileptif  the two phenomenaKlume et al., 2004 although they may be
activity. related on a fundamental leve?én eld and Jasper, 1954; Kovac

The bistability-based explanation has the advantage that al., 2015 From the modeling perspective, the generation of
stimuli can indeed induce a transition without the need forexcitable transients through stimulation re ects a gemhéeael
underlying parameter changes. However, for the termingtionof propensity/ability of the human cortex to generate seisure
the bistable model still required a terminating stimulus, @ (as the system is near a bifurcation to seizure-like agdvit
parameter change. Hence, excitable transients appear wellsuiHowever, the dynamic mechanism of seizure onset could be
as a deterministic model to describe stimulation inducedw®  entirely di erent (as discussed, speci ¢ parameter changedico
like activity. However, in a noise-driven system, the pietur drive onset and o set, or a bistability could occur). This rnig
is more complicated. If we assume that local brain activity i€xplain that although afterdischarges and seizures appeavi® h
modeled by noise-driven dynamics (see eBgeakspear et al., some commonalities, the spatial sites and networks invotleed
2006; Deco et al.,, 2009; Taylor et al., 90Vven a bistable not necessarily overlap. In other words, afterdischargeshinig
system could terminate the transient activity just throutjfte = be a general (not necessarily spatial) indicator of proximity t
noise input. However, this will depend on the noise levekhe seizure attractor, but the actual seizure onset and &wvolu
and we suggest that again, a detailed analysis of the evemtuld (through active parameter changes) involve sitesdhet
statistics (e.g., distribution of duration of after dischas) from those activated by local stimulation. A careful evéluaof
might o er insights into the exact dynamic mechanism. Onestimulation and afterdischarges over several repeatdd trigght
study uses this approach and presents some indirect evidenaalock the true mechanism underlying afterdischarges, lamd
that seizure onset may be described by a random walit mechanistically to seizures.
process, but not seizure o seS( czynski et al., 2006 This is
particularly interesting, as they describe seizure o sehawe a
deterministic component, which would t with the excitaiyi AUTHOR CONTRIBUTIONS
model.
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