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Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients
in response to stimulation. Even when using the same stimulation parameters in the same
patient, wide variability in the duration of transient response has been reported. These
transients have long been considered important for the mapping of the excitability levels in
the epileptic brain but their dynamic mechanism is still notwell understood. To investigate
the occurrence of abnormal transients dynamically, we use athalamo-cortical neural
population model of epileptic spike-wave activity and study the interaction between
slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow
wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of
a region of bistability between a high amplitude oscillatory rhythm and the background
state. In vicinity of the bistability in parameter space, the model has excitable dynamics,
showing prolonged rhythmic transients in response to suprathreshold pulse stimulation.
We analyse the state space geometry of the bistable and excitable states, and �nd that
the rhythmic transient arises when the impending FoC bifurcation deforms the state
space and creates an area of locally reduced attraction to the �xed point. This area
essentially allows trajectories to dwell there before escaping to the stable steady state,
thus creating rhythmic transients. In the full thalamo-cortical model, we �nd a similar
FoC bifurcation structure. Based on the analysis, we propose an explanation of why
stimulation induced epileptiform activity may vary between trials, and predict how the
variability could be related to ongoing oscillatory background activity. We compare our
dynamic mechanism with other mechanisms (such as a slow parameter change) to
generate excitable transients, and we discuss the proposedexcitability mechanism in
the context of stimulation responses in the epileptic cortex.

Keywords: afterdischarge, epilepsy model, spike-wave, stimu lation, transients

1. INTRODUCTION

Epileptic seizures are typically marked by abnormal rhythmic discharges of electrical activity in the
human brain. The rhythmicity is taken as an indication of an underlying deterministic nonlinear
oscillation. The transition from a disorganized background activity to the epileptic rhythm is
described as a state transition either due to a changing parameter (Breakspear et al., 2006); or due to
a cross-separatrix perturbation in a bistable situation (Lopes da Silva et al., 2003); or a combination
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of both (Wang et al., 2014). A problem that has not been
satisfactorily addressed is the nature of the termination of the
abnormal rhythm. Corresponding to the situation at rhythm
onset, rhythm termination could be equally be due to a parameter
change (Kramer et al., 2012), a cross-separatrix perturbation in
a bistable situation (Taylor et al., 2014) or a mixture of the
two. However, in the case of human EEG, no direct observation
for either the claimed (slow) parameter change or the cross-
separatrix perturbation has been provided, although we discuss
some indirect evidence later on.

Abnormal rhythmic discharges can also often be induced
in patients with epilepsy by stimulation. Well-known examples
are the re�ex epilepsies, where epileptic rhythms are induced
by some form of motor-sensory stimulation (Koepp et al.,
2016), and the so-called afterdischarges following invasive
electrical stimulation of the cortex (Pen�eld and Jasper,
1954; Blume et al., 2004). Figure 1 is an example of an
abnormal spike-wave rhythm induced by transcranial
magnetic stimulation. As in the case of spontaneous
epileptic seizures, these rhythms typically self-terminate
and the dynamic mechanism of the termination remains
speculative.

A previous computational modeling study has suggested
that there is a third possibility to explain the termination
of an abnormal rhythm. Looking at the case of electrical
responses to cortical pulse stimulation, it was suggested that
prolonged rhythmic transients could be self-terminating in
spatially extended systems (Goodfellow et al., 2012a; Taylor
et al., 2013). This means that neither a parameter change
nor a cross-separatrix stimulus would be required for the
rhythm to stop. The transient abnormal rhythm would
then constitute an example of excitability of a dynamical
system. Excitability is a prominent feature of information-
processing systems (like neurons) as it allows self-resetting
after information has been delivered. It is unknown whether
the epileptic brain constitutes an excitable medium with
thresholds to epileptic discharges, but computational models
demonstrate that a large number of features surrounding
epilepsy can be recreated in heterogeneous excitable media
(Goodfellow et al., 2012b). However, a major problem
with high-dimensional spatio-temporal models is that the
mathematical nature of state space features is di�cult to
unveil.

Here we study a previously proposed model of cortico-
thalamic interaction which ignores the spatial extension and
heterogeneities of the cortex as is typically done to describe
widely synchronized epileptiform rhythms shown in e.g.,Blume
et al. (2004)and Kimiskidis et al. (2015), also seeFigure 1
for an example. To investigate the dynamic mechanisms of
the transients in the thalamo-cortical model, we propose a
simpli�ed version of it to demonstrate the possibility of
abnormal rhythmic transients in its low-dimensional state
space. With some variations, di�erent types of transient
waveforms can be created in the full model, in particular
those known to occur in patients with epilepsy. With this
proposed alternative mechanism, we can explain the observation
of variability on stimulation response in the clinical setting,

and suggest a model based prediction to explain the variability.
Future computational studies of abnormal brain activity can
use these mechanisms to generate alternative predictions to
be compared to clinical observations (instead of attempting
to �t a single model to the data), c.f.Estrada et al.
(2016).

2. METHODS

2.1. Thalamocortical Model
We simulate thalamocortical interactions by following previous
modeling based on the known connectivity of this system (see
Figure 2B; c.f.Su�czynski et al., 2004; Breakspear et al., 2006).
Speci�cally, the neural mass approach bySu�czynski et al. (2004)
forms a neural population version of the detailed biophysical
model described byDestexhe (1998). In our macroscopic model,
we consider the activity changes in four neural populations.
The cortical pyramidal cell population (PY) is self-excitatory
(Amari, 1977) and excites the cortical inhibitory interneuron
population (IN) (Su�czynski et al., 2004). In addition, PY
excites the thalamocortical cell population in the thalamus
(TC), and a population of cells in the reticular nucleus of the
thalamus (RE) (Su�czynski et al., 2004; Yousif and Denham,
2005). The interneuron populationIN inhibits the excitatory
corticalPY population (Su�czynski et al., 2004). Direct thalamic
output to the cortex comes exclusively from excitatoryTC
connections to thePY population (Breakspear et al., 2006).
Intrathalamic connectivity is incorporated into the model as
follows: TC cells have excitatory projections toRE, which in
turn inhibits theTC population along with self-inhibition ofRE.
This connectivity scheme is consistent with experimental results
reviewed inPinault and O'Brien (2005)and summarized in their
Figure 1.

It was demonstrated in a minimal model of epileptic spike-
wave discharges (SWD) that at least one slow driver is required
in addition to the corticalPYandIN units (Wang et al., 2012).

There is experimental evidence for abnormal slow thalamic
processes (variations in a tonic inhibitory current), whichmay
be a common mechanism in typical absence seizures (Cope
et al., 2009). This is also supported by theoretical studies that
�nd slow timescales crucial for the generation of realisticSWD.
These studies either incorporate the slow timescale directly by
modeling the slower reaction of thalamic populations (Marten
et al., 2009; Taylor et al., 2013) or by incorporating explicit
delays (Breakspear et al., 2006). Marten et al. (2009)compares
these approaches and �nds bifurcation structures leading to
the onset of SWD which are similar. As the exact dynamic
mechanisms underlying the emergence of the slow timescale is
still unclear, we assume here that the thalamic compartment
operates on a slower timescale in the abnormal condition of
increased susceptibility to undergo transitions to SWD. From a
theoretical point of view, this has the advantage that the model
can be analyzed in terms of slow-fast subsystems (Wang et al.,
2012).

The model uses the neural population approach based on
the neural �eld equations proposed byAmari (1977). Spike-
wave solutions are found following the analysis done inTaylor
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FIGURE 1 | Clinically recorded self-terminating spike-wave d ischarges induced by transcranial magnetic stimulation. The stimulation was applied at the
red arrow. Spike and wave afterdischarges are observed. Figure is visualized fromKimiskidis et al. (2015).

FIGURE 2 | Connectivity scheme of the (A) simpli�ed and (B) thalamocortical model. Excitatory connections are shown in green, inhibitory connections are shown
in orange.

and Baier (2011)and Taylor et al. (2013). The set of ordinary
di�erential equations is given as:

dPY
dt

D � 1(hpy � PYC C1 f [PY] � C3 f [IN] C C9 f [TC])

dIN
dt

D � 2(hin � IN C C2 f [PY])

dTC
dt

D � 3(htc � TC C C7 f [PY] � C6 (s[RE]))

dRE
dt

D � 4(hre � REC C8 f [PY] � C4 (s[RE]) C C5 (s[TC]))

(1)

where hpy,in,tc,re are input parameters,� 1...4 are time scale
parameters andf [.] and s[.] are the activation functions:

f [u] D (1=(1 C � � u)) (2)

s[u] D auC b (3)

with u D PY, IN,TC,RE. The parameter� determines the slope
of the sigmoid. Two activation functions are used here, one
sigmoid, one linear. This is because we found that in our previous
studies (Taylor et al., 2014) the REand TC interactions mainly
happened in the linear range of the sigmoid activation function.

Hence we replaced them with a linear activation. This is also
useful to directly compare the slow thalamic subsystem to the
simpli�ed model later, where we also use linear activation for
simpli�cation.

Details about the parameters can be found inTables S1, S2.
Code to simulate the model can be found online at https://
senselab.med.yale.edu/modeldb/showmodel.cshtml?model=
168856.

2.2. Simpli�ed Model
To investigate mechanisms leading to bistability/excitability in
the model we use a simpli�ed model of three variables which
allows for easier visualization (we will call it the 3V model-
Figure 2A). The simpli�ed model preserves the important
aspects of the more detailed model including timescale separation
and bistability. Speci�cally, the two slow variables createa focus
in the slow subsystem, just like the full thalamo-cortical model.
The two fast cortical variables have been simpli�ed to one,
e�ectively removing the Hopf bifurcation in the fast subsystem.
This is so that the full system is simpli�ed to only display
simple oscillations, rather than slow-fast oscillations. Indeed, the
transient dynamics are built up by these two slow and one fast
variables. As we will show in results, the additional fast variable
in the full system just adds the Hopf bifurcation back into the
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system, allowing for transient slow-fast (spike-wave) oscillations.
The equations for the simpli�ed system are as follows:

dX
dt

D � fast(hX � X C Cd f [Y])

dY
dt

D � slow(hY � Y � Ca Z C Cb X)

dZ
dt

D � slow(hZ � Z C Cc Y) (4)

where hX,Y,Z are input parameters,� slow,fast are time scale
parameters andf [.] is the activation function above (Equation 2).

We can essentially identify the slow subsystem (TC and RE)
with the slow subsystem in the 3V model (Y andZ). The cortical
systemPY and IN can be considered the expansion of the
3V system variableX. The parameter values for the simpli�ed
model were obtained through visual comparison of the state
space structures as described above. Or in other words, we
constructed the state space structures in the simpli�ed model
with the parameters, such that they matched the the full system
as described above.

Details about the parameters can be found inTables S1, S2.

2.3. Slow and Fast Manifolds
We will use the slow and fast manifolds in state space to explain
some of the phenomena and mechanisms we observe. The slow
manifold is technically de�ned as the manifold in state space
on which the change in the fast subsystem is zero, i.e., the
slow dynamics dominate. For the 3V model, this would be the
condition dX

dt D 0, hence (hX � X C Cd f [Y]) D 0, hX C
Cd f [Y] D X. This means the manifold is a sigmoid-shaped plane
(green plane inFigure 3). For the full thalamo-cortical system,
this would be the conditionsdPY

dt D 0, dIN
dt D 0. Essentially the

�xed point of the fast subsystem. However, in our analysis, we
have expanded this de�nition of slow manifold, by also including
limit cycles of the fast subsystem in the slow manifold (blue
mesh in the laterFigures 6–8). This is justi�ed in more detail
in Wang et al. (2012), but essentially we assume that the time
scale separation is su�cient to separate the slow dynamics from
the fast oscillations. We obtained the slow manifold for the full
system numerically by obtaining the �xed points and limit cycles
of the fast subsystem. The numerical simulation approach was
used here (as opposed to continuation), as routine for detecting
�xed points and limit cycles could be reused for the detection
of transient events with small adaptations. In both cases we
essentially detect if trajectories stay in the proximity of each other.

The fast manifold, in contrast, is where the slow dynamics are
essentially zero. For the 3V system this meansdY

dt D 0 anddZ
dt D 0.

This gives (hY � Y � Ca Z C Cb X) D 0 and (hZ � Z C Cc Y) D 0.
If expressed as dependent onX we get:Z D hZ C Cc Y and
Y D (� Ca � hZ C Cb � X C hY)=(1 C Ca � Cc). In other
words, the fast manifold is a line in the state space (orange line
in Figure 3). For the full thalamocortical system, we have the
conditions: dTC

dt D 0, dRE
dt D 0. This gives a linear equation

system, where the solution is the set of �xed points of the slow
subsystem (orange line inFigure 6F).

3. RESULTS

3.1. Analysis of a Slow-Fast Subsystem
To begin our analysis, we will look at the 3V simpli�ed system
to illustrate the main dynamic mechanisms before applying the
analogous analysis to the full thalamo-cortical model.

The reduced three-dimensional model is a slow-fast system,
with one fast variable (X) and two slow variables (Y,Z). Previous
studies of such slow-fast systems have shown that Fenichels
Theorem (Fenichel, 1979) is a powerful tool of analysis. The
theorem essentially states that the (stable of unstable) �xed points
of the fast subsystem form a manifolds in the full state space
with similar properties. By analysing these manifolds, one can
understand the dynamics of the full system in state space.

Using Fenichels Theorem, and the slow and fast manifolds,
the behavior of the system can be understood geometrically
(Izhikevich, 2000; Desroches et al., 2012; Wang et al., 2012).
These slow and fast manifolds are shown inFigures 3A–D as
green and red manifolds, respectively. The slow manifold (i.e.,
where the change in the fast subsystem is zero,dX=dt D 0)
is a green sigmoid shaped plane, which is attractive in the
direction ofX. The fast manifold (i.e., where there is no change
in the slow subsystem,dY=dt D 0 and dZ=dt D 0) is a
red line indicating a stable focus in the slow subsystem. The
intersection of these two manifolds is a �xed point of the full
system (blue dot inFigures 3A–D). Additionally, when the fast
manifold (red) is positioned near the non-linear part of the slow
sigmoidal manifold (green), the interplay between the fast and
slow dynamics can create a stable limit cycle in the full system
(indicated in magenta inFigures 3A–D) that is bistable to the
�xed point (blue). The bistability is additionally demonstrated
in Figures 3E,Fby perturbing the �xed point and showing
the following trajectory evolving to the limit cycle; and by a
subsequent perturbation from the limit cycle back to the �xed
point. Note that the bistable limit cycle is created around (and
due) to the non-linearity in the sigmoidal slow manifold.

The stable �xed point and the stable limit cycle are separated
by a saddle cycle (indicated in orange inFigures 3A–D). We
additionally show the stable direction of the saddle cycle asa gray
tube manifold inFigures 3A–D. This manifold also represents
the separatrix between the �xed point and limit cycle.

In order to understand the type of bifurcation leading to this
bistability, we slowly vary the parameterhX, which controls how
close the fast manifold (red line) is shifted toward the nonlinear
part of the sigmoid-shaped slow manifold (green plane). We
�nd that the new coexisting limit cycle arises in a fold of cycles
bifurcation (marked as FoC1 inFigure 4A), as the fast manifold
approaches the nonlinear part of the sigmoidal slow manifold.
When hX is further increased, the stable �xed point becomes
unstable in a subcritical Andronov-Hopf bifurcation, wherealso
the saddle cycle disappears (marked as H1 inFigure 4A). Due
to the symmetry in the sigmoid slow manifold, both bifurcations
occur again as the fast manifold passes through the upper part of
the sigmoid (marked as H2 and FoC2 inFigure 4A).

Interestingly, the impending fold of cycles bifurcation
introduces a slowing/trapping in the local state space, which is
well documented for the fold or saddle-node types of bifurcations
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FIGURE 3 | Bistability in the 3V model. (A–D) state space diagrams of the 3V system in different projections showing the fast (red line), slow (green), and separating
(gray) manifolds, and the �xed point (blue dot) and limit cycle (magenta line).(E) Time series of the system when stimulated to transition fromthe �xed point to the limit
cycle, and back. (F) Y-Z state space showing the trajectory in(E). Black arrows indicate the stimulation points. Parameter values used can be found inTable S1.

(see e.g.,Damme and Valkering, 1987). In the case of a fold of
cycles bifurcation, this means that long transients of oscillations
can be observed prior to the bifurcation.Figure 4B shows an
example of such a long transient lasting for 14 cycles (over 5
model time seconds).Figure 4C shows the same time series in
state space. In this projection the slowing/trapping in state space
becomes particularly clear, as the trajectories dwell in theregion
in state space, where the stable and saddle limit cycle are to be
born.

We additionally measured the length of these transients
for di�erent values of hX and �nd a sudden increase just
prior to the FoC bifurcation in parameter space, (Figure 5,
�rst column). This behavior changes quantitatively with other
parameters. For example, as the bifurcation point inhX shifts
with the parameter� slow, the parameter region inhX supporting
long transients also increases. In other words, long transients
can be found further away from the FoC point inhX as
� slow decreases (Figure 5A). When analysing properties of the

Frontiers in Computational Neuroscience | www.frontiersin.org 5 April 2017 | Volume 11 | Article 25



Baier et al. Understanding Epileptiform After-Discharges

FIGURE 4 | Excitability in the 3V model. (A) Bifurcation diagram for the parameterhX showing minimum and maximum values ofY. The red line indicates the
parameter setting for(B,C). FoC indicates a fold of cycles bifurcation. H indicates a subcritical Andronov-Hopf bifurcation. The zoom-in shows the FoC bifurcation in
the variablesY and Z. The unstable limit cycle is shown in the zoomed panel in blue, with the stable limit cycle in pink.(B) An example of a transient following a
stimulus (black arrow) at a parameter setting before the FoCbifurcation (red line inA). (C) The same transient is shown in the state space of the variables y and z.
Parameters used here can be found inTable S1.

transients further, we observe that indeed the oscillation appears
to become slower with decreasing� slow (Figure 5B). This results
in a roughly constant number of oscillations for di�erent� slow
(Figure 5C). However, this e�ect is not observed in another
parameter (e.g.,Cc, Figures 5D–F). The parameter region in
hX showing long transients appears to stay about the same
for di�erent Cc (Figure 5D), but the number of oscillations
increases substantially with di�erentCc (Figure 5F). These two
examples illustrate that the properties of the transients nearthe
FoC bifurcations inhX can be modulated by other parameters.
Particularly, the properties of the duration of the transientand
the number of oscillations in the transient can be modi�ed. We
found that the modi�cation essentially works by the mechanism
of changing the �ow in state space near the ghost of the
saddle cycle. More precisely, the local �ow creating the dwelling
behavior in state space (near where the saddle node of cycles
bifurcation will happen) determines how the transients will
appear. This local �ow is in�uenced by other parameters of the
system, such asCc and� slow.

3.2. Analysis of the Full Model
We now turn our attention to the full thalamo-cortical system.
We can essentially identify the slow subsystem (TC andRE) with
the slow subsystem in the 3V model (Y and Z). The cortical
systemPY and IN can be considered the expansion of the 3V

system variableX. This identi�cation is possible through the
analysis of the geometry of the fast and slow manifolds in state
space (compareFigure 3with Figure 6). Where the fast manifold
in the 3V model was a stable focus, this is exactly preserved inthe
full system (by design of the 3V system, see Section 2). Wherethe
slow manifold in the 3V model was previously a simple sigmoid
manifold, it is now a manifold that partly resembles a sigmoid
manifold, only with a Hopf bifurcation at one end creating an
additional limit cycle manifold in the fast subsystem. Noteagain,
the bistable limit cycle is created around the non-linearity (or
bend) of the slow manifold—as in the simpli�ed model.

Using the knowledge from the three-dimensional reduced
model, the analysis of the four-dimensional system can proceed
in an analogous manner.Figures 6C–Fshow the state space
projections of the full model, which can be compared to
Figures 3A–D qualitatively. The fast manifold is still a stable
focus, shown as an orange line in the projection ofFigures 6C,D.
The fast subsystem is now richer in dynamics. With respect
to the slow modulation from the thalamic subsystem, the
fast cortical system can undergo a supercritical Andronov-
Hopf bifurcation. This means that the slow manifold is more
complex in structure.Figures 6C–Fshow the slow manifold as
a blue mesh. Particularly inFigures 6C,E,Fthe cone structure
of the slow manifold is visible, which occurs due to the
supercritical Andronov-Hopf bifurcation in the fast subsystem.
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FIGURE 5 | Properties of the transients in parameter space of t he 3V model. (A–C) ScanninghX and � slow. (D–F) ScanninghX and Cc . (A,D) Duration of the
transient shows the total duration of the induced transientin seconds. In the dark red area, the FoC1 bifurcation is already passed and the limit cycle is stable.(B,E)
Shows that some parameters can change the period of the oscillatory transient, e.g., low values of� slow can prolong the period.(C,F) The number of oscillations in
the transient can also change depending on the parameters, e.g., at very high values ofCc . Parameter values can be found inTable S1.

The intersection of the fast and slow manifold again forms a
stable �xed point. The interaction of the slow and fast subsystem
additionally creates a limit cycle. The limit cycle is not only
a simple slow oscillation as in the reduced system, but also
includes an additional fast spike. The fast spike arises due tothe
Andronov-Hopf oscillation in the fast subsystem. The attractor
(black line in Figures 6C–F) can be characterized as having a
spike-and-wave morphology (Figure 6A). The basin of attraction
for the �xed point is now more complex than in the three-
dimensional case, and more di�cult to visualize as it is four-
dimensional. We have illustrated it inFigures 6C–Fas a dot
cloud, and also asVideo S1.

The bistability between the �xed point and the spike-wave
limit cycle is additionally demonstrated inFigures 6A,B. The
red and blue bars indicate two perturbations, which induce a
transition to and from the spike-wave limit cycle.

The mechanism by which the bistable spike-wave limit cycle
arises is, as in the three-dimensional case, through a fold of cycles
bifurcation. The bifurcation scan of the system with respectto htc
and hre are shown inFigures 7A,B. Analogous to the 3V case,
just prior to the FoC bifurcation, the transient length increases
(Figures 7C,D). Figure 7Eshows an example time series of such
a transient. As the impending bifurcation will create a limit cycle
of spike-wave morphology, the transients also show a spike-wave
oscillation.Figure 7Fshows the same time series in state space,

again showing the dwelling in the region where the stable and
saddle limit cycles will appear.

Desroches et al. (2012)and other studies have shown that in
slow-fast systems of bursting, adjusting the time scale ratio can
increase the winding numbers of the spikes in a cycle of spike and
wave. In our system this is indeed the case as well. By adjusting
the time scale ratio we can produce a poly-spike-wave limit cycle
that is bistable to the �xed point (Figures 8A,C). Prior to the
FoC, we can also observe transient poly-spike-wave oscillations
(Figures 8B,D).

3.3. Implication for Clinical Application
As an outlook, we present a prediction for the clinical
application in afterdischarges. When testing for afterdischarges
clinically, variability in the stimulation response duration is
often observed (e.g., in single pulse stimulation such as in
Valentín et al., 2002), despite using the same stimulation
parameters. InFigure 9A we show that in our 3V model
of excitable transients simulated with low level noise input,
similarly variable stimulation responses can be observed. It is
important to note that the noise is of such a low level that
on its own, it does not provoke high amplitude oscillatory
transients in our total simulation time of 1,500 s. We stimulate
such a system every 15 s, and indeed see that the response
is not the same every time. Rather, short and long transients
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FIGURE 6 | Bistability in the 4V model. (A) Time series of the full thalamo-cortical system when stimulated to transition from the �xed point to the spike-wave limit
cycle, and back. (B) PY-RE-TC state space showing the trajectory in(A). Blue and red arrows indicate the stimulation points.(C–F) State space projection of the
four-dimensional thalamo-cortical system. Blue mesh shows the slow manifold (attractors of the fast subsystem), and the orange dashed line shows the fast manifold
(attractors of the slow subsystem). The intersection of theblue mesh and orange line is the �xed point for the full system (gray dot). The black line shows the
spike-wave limit cycle of the full system. The colored dots outline the state space area that is the basin of attraction for the �xed point of the full system. As this basin
is a 4D structure, we show a 3D slices of it here, and the slice point is a point on the SWD attractor, marked by the red star. Parameters used here can be found in
Table S2.

are seen, despite using the same stimulation and system
parameters.

To understand if there is any regularity to when shorter or
longer transients are provoked, we project the simulated time
series into state space inFigure 9B (note this is essentially the

same asFigure 4C, only simulated with noise and zoomed in).
We �nd the majority of the time series around the background
state (�xed point) in state space. The stimuli every 15 s are seen
as large displacements in the stimulation direction. We assumed
the stimulation direction, i.e., to what extent each variable is
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FIGURE 7 | Excitability in the 4V thalamo-cortical model. (A,B ) Numerical bifurcation scan of the full thalamo-cortical model (see Section 2 for details) for the
parametershtc and hre. (C,D) Numerical scan of the transient length before the FoC bifurcations (marked by the green and blue lines) inhtc and hre. (E) Time series of
an example of a excitable spike-wave transient. Stimulation is shown as a red arrow. The corresponding parameters are marked as dashed red lines in(C,D). (F)
Same trajectory as in(E) shown in the PY, TC, RE state space. Parameters used here can be found in Table S2.

a�ected by the stimulus, to be constant. The transient oscillatory
responses are then seen as trajectories around the background
state. To determine from where in state space long (vs. short)
transients are provoked, we marked the stimulation position with
dots in Figure 9B. The color of the dots indicates the provoked
response length. With such a projection, we indeed see that the
longer stimulation responses tend to be clustered, and located on
the right hand side of the �gure.

With our knowledge of the deterministic 3V system described
earlier, this is easy to understand: the stimuli need to be from
a position in state space that is near the ghost of the basin
boundary of the background state. The stimulation direction and
strength then determine where the long oscillatory transients can
be provoked from. The remaining degree of variability can �nally
be attributed to the noisy nature of the simulation. In terms
of clinical prediction, our results indicate that if we projected
clinical EEG into a state space equivalent (e.g., using Taken's
reconstructionTakens, 1981; Taylor et al., 2014), we might be able
to observe a similar pattern, where a particular area of state space

is producing long afterdischarges. The implication of this isthat,
whilst clinically one may simply see a varied response, a phase
space reconstruction of the response may explainwhy there is
a varied response. An alternative interpretation of the results is:
if the background state has a dominant oscillatory component,
then we predict that afterdischarges might be more readily found
in a particular phase of this ongoing oscillation. This �ndingalso
holds for the full system (Figure S1).

4. DISCUSSION

We demonstrated that excitable transients can be provoked near
a fold of cycles bifurcation in a reduced thalamocortical model.
We also showed that this helps to explain the occurrence of
excitable complex transients in the full thalamocortical model.
The thalamocortical model thereby generates time series that
resemble the di�erent waveform morphologies of transient
dynamics provoked by stimulation in patients (Blume et al.,
2004). Hence we hypothesize that excitability in the vicinity of
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FIGURE 8 | Excitability in the 4V model. (A,B) 3D state space projections of the 4D thalamocortical system. The slow and fast manifolds (blue mesh and orange
dashed line) are shown exactly as inFigure 6 . (A) A bistable poly-spike-wave can also be created from the sameingredients as in the spike-wave case, simply by
increasing the relative time scale of the fast vs. the slow subsystem. The trajectory of the poly-spike-wave limit cycleis shown as a blue line.(B) By the same
procedure as (A) the spike-wave excitable transient can also be transformedinto an excitable poly-spike-wave transient. The trajectory of the poly-spike-wave
transient is shown as a red line.(C,D) Time series of the trajectories in(A,B), respectively. Parameters used here can be found inTable S2.

a FoC bifurcation is a potential dynamic mechanism underlying
the clinically observed abnormal transients.

4.1. Mechanism of Excitable Transients
The study of neural dynamics has traditionally focused on the
analysis of stable states, either �xed points or limit cycles. Little
e�ort has been devoted to the analysis of transient dynamics,
with the exception of a few studies (Nowacki et al., 2011,
2012; Goodfellow et al., 2012a; Osinga and Tsaneva-Atanasova,
2013), although they were successful to explain other biological
phenomena (e.g., gene expression regulationSüel et al., 2006).
Traditionally, excitability in neural systems is divided in two
classes: type I, and type II excitability. The distinction is
made based on how the frequency of the oscillation following
stimulation changes with the strength of stimulation. Thishas
classically also been mapped to di�erent bifurcations, near which
the excitable transients are found. Type I excitability is found
near saddle-node on invariant circle (SNIC) bifurcations,and
type II excitability is found near an Andronov-Hopf and a fold
of cycles bifurcation (Izhikevich, 2000; Buri et al., 2005). Our

mechanism of excitability is very similar to the type II fold of
cycles bifurcation, however the con�gurations of the surrounding
state space are such that the dwelling behavior as described in
Results is much more prominent than in other system. The
dwelling behavior is mainly determined by the phase space
�ow, which in turn is controlled by connectivity and time scale
parameters (seeFigure 5).

In this type II of excitability, there is a soft threshold (unlike
in type I excitability, where it is a hard threshold, which is the
stable manifold of the saddle). The soft threshold in our case
is essentially the state space area, where the stable manifold of
the saddle cycle (gray tube inFigure 3) will form. Perturbation
beyond this area will be followed by an excitable transient,
which settles in an oscillation with almost stable frequencyfor
a substantial amount of time before returning to the stable
�xed point. The impending bifurcation essentially introduces
a local deformation in state space that allows trajectories to
dwell in the “ghost” of the to-be-born cycles (Figure 4). The
frequency and amplitude of the excitable transient is essentially
determined by the cycle that will form. Of course, this directly
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FIGURE 9 | Afterdischarge duration depends on where in state s pace
the system is when stimulated. (A) Simulation of repeated stimuli every 15 s
to provoke after discharges in the 3V model with noise input.All parameters
are unchanged between stimuli. Purple markers indicate thetiming of the
stimulus. (B) When plotting the time series from(A) in state space (white lines),
we see the background state as a dense concentration of trajectories, and the
stimulations occasionally cause bigger deviations beyondthe background
state. Overlayed, we show the state space position where stimuli were applied
as dots. The color of the dots indicate the duration of the ensuing response.
Larger deviations tend to cluster on the right hand side of the background
state. The direction of simulated stimulation is shown withthe blue arrow.

depends on the parameter setting of the model (Figure 5).
The absolute duration of the excitable transient depends on
the proximity to the bifurcation (as expected, as the local
state space deformation nearer the bifurcation is stronger).
If perturbed beyond the soft threshold the stimulus intensity
will not signi�cantly impact the morphology of the rhythmic
transient, except for the initial return to the dwelling area in state
space.

These properties make the excitable transients in our model
an attractive candidate for modeling stimulus induced seizure-
like events (SLE). As these SLE are often referred to as complex
discharges following stimulation, they are usually of a substantial
duration (i.e., not a simple return to the background state).We

are not aware of consistent reports of the dependency of the
response amplitude or frequency on stimulus intensity. However,
usually a threshold phenomenon is reported in the stimulus
intensity (Lesser et al., 1984). All these properties are ful�lled
in our rhythmic transient, but not in the traditional type I and
type II transients (Izhikevich, 2000; Buri et al., 2005). To test if
the state space setup in our model is a good candidate, a similar
approach as inJia and Gu (2012)could be used, where the system
is driven by noise input. The statistics of noise induced transients
(interval distributions) could hint at the type of excitability and
state space setup in the data, which can be compared to real
experiments, where a noisy input is provided to brain tissue.

We also highlight here, that our mechanism of creating
transient oscillatory behavior is di�erent to that of e.g.,Jirsa
et al. (2014). Our slow timescale does not simply serve as
the slow variable change (i.e., our slow time scale is not the
ultraslow time scale in variable z inJirsa et al., 2014). Indeed,
we show with our model that the ultraslow time scale/slow
parameter change is not needed to create transient oscillatory
behavior. This point may also have important implications for
the biophysics of transient epileptiform afterdischarges, where so
far the hypothesized mechanism of creating transient behavior
is through such ultra-slow variables. Our model proposes that
such ultra-slow variables—often hypothesized to be quantities
such as extracellular potassium, or pO2 Jirsa et al. (2014)—may
not be needed. In this context, it is of course important to
acknowledge that ultraslow time scales may still play a crucial
role in the termination of seizure events or even stimulation
triggered epileptiform events. For example, one compelling piece
of evidence in the context of seizures is provided byBauer et al.
(2017).

Finally, we also show that the waveform morphology can be
modi�ed to re�ect the various waveforms that are observed in
clinical settings (Blume et al., 2004). In Figure 7 we showed
that, in addition to slow oscillations, the excitable transient can
take the form of a train of spike-waves, similar to the clinical
picture in Figure 1. This is possible through the addition of
another fast variable, and the required dynamic mechanism is
the introduction of a supercritical Andronov-Hopf bifurcation
in the fast system during each cycle of the slow oscillation
(Figure 6). The global bifurcation mechanism of generating the
excitable transient in the �rst place remains the same as in
the 3V system, i.e., through the fold of cycles. By adjusting
the time scale separation of the two time scales, additional
spikes can be added between successive waves, leading to
the appearance of poly-spike-waves, also observed clinically.
This spike-adding mechanism through the time-scale ratio has
been well-documented in previous studies of slow-fast systems
(Desroches et al., 2012).

4.2. Stimulation Provoked Events as
Transients
In a more general context, the question arises whether excitable
transients are a good model of stimulus induced seizure-
like activity at all. Particularly in the context of clinical
seizures, the established concept is that seizures are oscillatory
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attractors that a neural system can reach either through some
underlying parameter change (bifurcation) (Wendling et al.,
2002; Breakspear et al., 2006) or through perturbation from a
coexisting stable background state (bistability) (Lopes da Silva
et al., 2003; Lytton, 2008).

However, as we pointed out in the introduction, the
bifurcation-based explanation requires the change of an
underlying parameter for the start and termination of the
seizure. This is often illustrated as a “path through parameter
space” (Wendling et al., 2002; Breakspear et al., 2006; Nevado-
Holgado et al., 2012). The particular attraction of the parameter
variation hypothesis is that seizures (and also a small percentage
of afterdischarges for that matterBlume et al., 2004) can evolve
in their waveform morphology over seconds, which would
point to a slow change in parameter. However, such a path
has never been con�rmed through direct measurements in
a clinical context. Some indirect evidence exists in animal
models and human EEG (Kramer et al., 2012; Jirsa et al.,
2014). So, although this concept can be useful in some
applications, it still needs further consolidation in order to
provide a mechanistic explanation of seizure onset/o�set. In
the context of stimulation induced activity, such as that shown
in Figure 1, this concept becomes particularly di�cult. For
the onset, the parameter change would have to take e�ect
instantaneously triggered by the stimulus, and the termination
would involve a parameter change that is not stimulation
triggered. Although conceivable in theory, it is di�cult to
identify processes that could be measured and manipulated
directly to test this hypothesis. In terms of biophysical
interpretation, we essentially suggest that a slow parameter
change (e.g., extracellular potassium, or pO2) may not be
necessary to produce stimulation induced transient epileptiform
activity.

The bistability-based explanation has the advantage that
stimuli can indeed induce a transition without the need for
underlying parameter changes. However, for the termination,
the bistable model still required a terminating stimulus, or a
parameter change. Hence, excitable transients appear well suited
as a deterministic model to describe stimulation induced seizure
like activity. However, in a noise-driven system, the picture
is more complicated. If we assume that local brain activity is
modeled by noise-driven dynamics (see e.g.,Breakspear et al.,
2006; Deco et al., 2009; Taylor et al., 2014), even a bistable
system could terminate the transient activity just throughthe
noise input. However, this will depend on the noise level
and we suggest that again, a detailed analysis of the event
statistics (e.g., distribution of duration of after discharges)
might o�er insights into the exact dynamic mechanism. One
study uses this approach and presents some indirect evidence
that seizure onset may be described by a random walk
process, but not seizure o�set (Su�czynski et al., 2006). This is
particularly interesting, as they describe seizure o�set tohave a
deterministic component, which would �t with the excitability
model.

For low noise levels (low meaning transitions induced just
by the noise alone is extremely unlikely), the distinction of
bistable vs. excitable would still make sense. It is easy to see

that for low noise levels, the duration of afterdischarges will
be much longer in the bistable case, compared to that of the
excitable case. For medium levels of noise, more complex and
non-trivial phenomena can arise (Lindner et al., 2004), which
can be studied in future work, and matched to experimental
�nding ( Lesser et al., 2008). In this context, it has for example
been noted that an afterdischarge increases the likelihood of the
following afterdischarge in the same stimulation location within a
certain time window (Lee et al., 2010). Such a phenomenon is for
example imaginable for an intermediate noise level driving the
fast system, which can stabilize a state space region around the
�xed point (see e.g.,Muratov et al., 2005), enabling an increased
likelihood for a subsequent excitable transient.

In this context, we also o�er a prediction for the
observation and interpretation of afterdischarges. Assuming
that afterdischarges are indeed excitable transients, thenin
the presence of low level noise, the response to stimulation
is variable (as observed in the clinical setting). We predict
that part of this variability may be explained by the state of
the ongoing background activity (Figure 9). If our prediction
proves to be true, it does not only support our theory, but also
has wide-ranging implications. For the evaluation of cortical
stimulation and afterdischarges, it means that these need to be
considered carefully with regards to the ongoing activity (e.g.,
phase of the ongoing background oscillations), and ideally over
several trials. This may indeed be at the heart of the discrepancy
that afterdischarges do not seem to overlap well with seizure
onset zone (Blume et al., 2004).

Finally, this leads us to comment on the relationship of the
stimulation induced seizure-like events, and naturally occurring
seizure activity. To our knowledge, there is no direct link between
the two phenomena (Blume et al., 2004), although they may be
related on a fundamental level (Pen�eld and Jasper, 1954; Kovac
et al., 2016). From the modeling perspective, the generation of
excitable transients through stimulation re�ects a general level
of propensity/ability of the human cortex to generate seizures
(as the system is near a bifurcation to seizure-like activity).
However, the dynamic mechanism of seizure onset could be
entirely di�erent (as discussed, speci�c parameter changes could
drive onset and o�set, or a bistability could occur). This might
explain that although afterdischarges and seizures appear to have
some commonalities, the spatial sites and networks involveddo
not necessarily overlap. In other words, afterdischarges might
be a general (not necessarily spatial) indicator of proximity to
the seizure attractor, but the actual seizure onset and evolution
could (through active parameter changes) involve sites thatdi�er
from those activated by local stimulation. A careful evaluation of
stimulation and afterdischarges over several repeated trials might
unlock the true mechanism underlying afterdischarges, andlink
it mechanistically to seizures.
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Figure S1 | Afterdischarge duration depends on where in state space the
system is when stimulated. (A) Simulation of repeated stimuli every 10 s to
provoke afterdischarges in the 4V model with noise input. All parameters are
unchanged between stimuli.(B) When plotting the time series from(A) in state
space (white lines), we see the background state as a dense concentration of

trajectories, and the stimulations occasionally cause bigger deviations beyond the
background state. Overlayed, we show the state space position where stimuli
were applied as dots. The color of the dots indicate the duration of the ensuing
response. Larger deviations tend to cluster on the right hand side of the
background state. The direction of simulated stimulation is shown with the blue
arrow.

Table S1 | Parameter values used to produce the �gures for the re duced
3D system in this manuscript.

Table S2 | Parameter values used to produce the �gures for the ful l
thalamo-cortical system in this manuscript.

Video S1 | Basin of attraction for the full thalamo-cortical sys tem. The basin
of attraction for the full model is a 4D object. In each frame ofthe video, we project
the basin into 3D state space of PY, IN, TC (into PY TC RE for the inset video). The
slice point through the 4D space for each frame is shown as a red dot, and the
video shows the full basin, where the fourth dimension is projected onto time.
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