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A central question in cognitive neuroscience is how unitary, coherent decisions at the
whole organism level can arise from the distributed behavior of a large population of
neurons with only partially overlapping information. We address this issue by studying
neural spiking behavior recorded from a multielectrode array with 169 channels during
a visual motion direction discrimination task. It is well known that in this task there are
two distinct phases in neural spiking behavior. Here we showPhase I is a distributed or
incompressible phase in which uncertainty about the decision is substantially reduced
by pooling information from many cells. Phase II is a redundant or compressible phase
in which numerous single cells contain all the information present at the population
level in Phase I, such that the �ring behavior of a single cellis enough to predict the
subject's decision. Using an empirically grounded dynamical modeling framework, we
show that in Phase I large cell populations with low redundancy produce a slow timescale
of information aggregation through critical slowing down near a symmetry-breaking
transition. Our model indicates that increasing collective ampli�cation in Phase II leads
naturally to a faster timescale of information pooling and consensus formation. Based on
our results and others in the literature, we propose that a general feature of collective
computation is a “coding duality” in which there are accumulation and consensus
formation processes distinguished by different timescales.

Keywords: collective computation, decision tasks, critica l slowing down

1. INTRODUCTION

The nervous system is a distributed information processing system. Functional encodings have
been identi�ed at the level of single cells (e.g.,Shadlen and Newsome, 2001), correlated modules
(e.g.,Power et al., 2013; Gu et al., 2015), and hemispheres (e.g.,Doron et al., 2012). How activity
within a scale produces new functional encodings one level upand how the consolidating modules
interact to produce coherent, functional behavioral output at the whole brain level are among the
primary concerns of cognitive neuroscience (e.g.,Gu et al., 2015).

Here we ask how coherent output is produced when neurons in a relevant target population
have di�erent “opinions” about an input and are not coordinatedby a “Deus Ex Machina” or
central controller (e.g.,Gazzaniga, 2013). Two competing explanations are supported by the data.
One is a “distributed perspective”—coherent output requires encoding the output over many cells
(“population-level coding”). The second favors localization—coherent output can be generated by
encoding the output by strong activity in one or a few neurons (“grandmother neurons,” reviewed
in Gross, 2002, or “sparse coding”Quian Quiroga and Kreiman, 2010).
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We show that these two views and the data supporting them
can be reconciled by framing the problem of coherent output as
one ofcollective computationand drawing on information theory
and theories of collective behavior in statistical physics to ask
how information from upstream neurons is accumulated and
integrated by downstream neurons (whether one or many) and
whether the integrated information is disseminated to a broader
ensemble.

2. DATA SET AND PREVIOUS WORK

We use data from a well-known experimental paradigm, the
Random Dot Motion discrimination task (RDM) (Shadlen and
Newsome, 2001; Kiani and Shadlen, 2009; Kiani et al., 2014,
2015), in which the subject must decide which direction dots
on a screen are moving (task described inFigure 1). The
“coherent output” in this experiment is the decision. To study
the computation of the output, we analyze the activity of 169
neural channels in a macaque monkey performing the task.
The recorded neurons are located in the prearcuate gyrus in
prefrontal cortex (area 8Ar) (Kiani et al., 2015). Area 8Ar has
been implicated in motor planning and control of eye movements
as described below. The recording is achieved using a multi-
electrode array of size 4 mm� 4 mm (seeFigure 10). Spikes
are sorted using standard techniques, mapping spikes detected
by each electrode onto a set of unique neural units, each of which
represent the activity of one or a few individual neurons (Kiani
et al., 2015).

The measured neural activity is qualitatively di�erent before
and after the go cue, demarcating two time intervals that we call
Phase I and Phase II (Figure 1).

2.1. Previous Work
The causal pathway for perceptual decisions in the primate brain
is still debated. The lateral intraparietal cortex (LIP) hasbeen a

FIGURE 1 | Timing of trial events. A monkey is trained to discriminate opposed directions of motion in a random dot display and to report the perceived direction with
an eye movement (saccade) to one of two visual targets. In eachtrial the subject is presented with the visual stimulus of dots drifting left or right across the screen for
a �xed duration. Once the dots disappear, and after a delay, a “go” cue is given to prompt subjects to indicate their decision about the direction in which the dots are
moving—by looking either to the left or right—with a mean reaction time of 245 ms.

contender as a causal decision-making locus, as it demonstrates
accumulation of perceptual evidence (Shadlen and Newsome,
2001; Huk and Shadlen, 2005; Gold and Shadlen, 2007; Kiani
and Shadlen, 2009; Hanks et al., 2014) and because stimulating
LIP neurons can lead to more quickly reaching a decision
threshold (Hanks et al., 2006). Yet a recent study has shown that
inactivating large sections of LIP has little e�ect on decision-
making (Katz et al., 2016), suggesting that other areas with
which LIP is closely associated may redundantly play a causal
role (Hanks and Summer�eld, 2017). Such redundancy is also
suggested by a study in analogous brain regions in rats (Erlich
et al., 2015).

Here, we use data from one of these closely related areas, area
8Ar in dorsolateral prefrontal cortex. Area 8Ar, like LIP, carries
information about planned saccades in direction discrimination
tasks (Kim and Shadlen, 1999; Constantinidis and Goldman-
Rakic, 2002; Hussar and Pasternak, 2009; Kiani et al., 2014,
2015). The accuracy, latency, and con�dence in the decision are
in�uenced by noise in the input (experimentally controlled in
the RDM task by introducing random motion in the stimulus
that varies the percentage of dots moving coherently in one
direction), which has measurable e�ects in both prefrontal cortex
(Kim and Shadlen, 1999) and LIP (Shadlen and Newsome, 2001).
This sensitivity to the strength of the input suggests that these
brain areas do not only represent the decision once made, but
are also involved in the decision making process, accumulating
information about sensory input.

At the most abstract level, decision-making can be �tted using
a variety of continuous or discrete one-dimensional random
walks or di�usion models with �xed or variable thresholds
(Gold and Shadlen, 2007). A number of closely related simple
neural network models, extended to include lateral inhibition or
recurrent activation, recover several features of these empirical
�ndings (Gold and Shadlen, 2007; Ratcli� and McKoon, 2008),
including timescales in the decision process that are much slower
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than those of individual neurons. More detailed mechanistic
models have successfully reproduced important aspects of the
observed decision-making process using individual spiking
neurons and also emphasize the emergence of slowly acquired
information at the neuronal level using the terminology of
recurrent “reverberation” (Wang, 2002). (See Discussion for
more details about existing models.)

Most of these models assume a single phase in which
information is accumulated. They do not, however, explicitly
consider the collective properties of this accumulation—is the
information about the decision localized in individual neurons
or encoded at the population level? Furthermore, is accumulated
information shared or transmitted across the population of
neurons? The observation that neuronal behavior is qualitatively
di�erent before and after the go cue (seeFigures 1, 2) minimally
suggests that there are two processes taking place, rather than just
one accumulation phase.

Existing decision-making literature tends to neglect neural
behavior after the go cue, treating it as “choice execution.”
We argue that post-go-cue behavior is an extension of decision
making at the system level and view the process between the go
cue and the saccade as essential to collective decision-making—
“reading out” the information that is, before this point, only
available by pooling information from many cells.

3. PROPOSAL AND SUMMARY OF
RESULTS

In this paper we propose, building on previous work (Flack,
2012; Flack et al., 2013), that collective computing systems
are characterized by two phases—slow aggregation and fast
propagation. The idea is that this two phase computation
is useful when the system has many imperfect sensors each
forming an opinion based on incoming data. In the case of the
study system, in order to both accumulate information about
a temporally extended signal and retain it during the delay
period, we expect that individual cells should form collectives
that can accumulate information over hundreds of milliseconds
by (1) sharing information through recurrent excitation but (2)
avoiding committing to a decision too early.

Hence in Phase I (slow aggregation) we propose information is
acquired through a process of sensory accumulation. To improve
the reliability of the information given noisy input and propensity
for error at the component level, a sum or other integration
is performed at the population or subpopulation level. This
is essentially crowd-sourcing. In the measured neurons, this
happens during the stimulus presentation and delay period
(Figure 1).

In Phase II (fast propagation) we propose that information
at the level of units in Phase I is propagated quickly across a
population of cells that may or may not have participated in Phase
I. The outcome of propagation is neural consensus in so far as it
results in the decision being encoded in each individual neuron.
This consensus allows the system to act.

In our study system we �nd evidence for both Phase I and
Phase II. Our results suggest Phase II occurs post-go-cue and

FIGURE 2 | The amount of information that individual neural units encode
about the decision output varies strongly over units and over trial time. (A)
Plotted is the mutual information between spike rates of individual neural units
and the decision (using Equation 9, with 200 ms bins), aligned by the go cue
at the vertical white line (time scale bar corresponds to 500ms). Before the go
cue, only a few units predict the decision, but afterward, many do. Basis for
classifying neurons: those in Class H encode information before the go cue,
those in Class M encode information after but not before the go cue, and
those in Class L never encode information. (We group in this way to
conveniently display the diversity of the behavior of individual neural units;
these groups are not meant to indicate statistically distinct clusters.) (B)
Histogram of information encoded by each unit at and after the go cue. At the
go cue (light green), no individual units encode more than 0.1 bits about the
decision, but half a second later (dark blue), many do.

is achieved through increased information ampli�cation and
sharing.

Finally, we develop a dynamical rate model that
explains this behavior in terms of varying distance from
a symmetry-breaking transition. In the simplest form of
the model, this distance is controlled using a time-varying
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FIGURE 3 | Neurons encode information about the output decision, withdistinct dynamics in Phase I (pre-go cue) and Phase II (post-go cue). (A) Predictive power
with respect to the output decision, for the single most informative unit in Phase I (light color) and, using LDA, for the entire population (dark color). Information about
the decision grows slowly in Phase I and jumps suddenly in Phase II. The jump happens before the mean time of the saccade, indicated by the vertical dotted line.
(Note that data after the saccade is likely to be in�uenced by visual feedback due to the motion of the eye.)(B) This qualitative behavior is reproduced by a simple rate
model in which the degree of recurrent excitation is increased in Phase II. Corresponding mutual informations are plottedin Figure 11 .

FIGURE 4 | At the time of the physical implementation of the decision, encoding shifts: Phase I resembles a population code, whereas in Phase II individual rates are
predictive. (A) The number of cells required to be measured in order to saturate in predictive power is plotted in purple, de�ned as the number needed to reach
performance relative to chance in an LDA encoding that is 95%of performance using all 169 units (red, same as plotted inFigure 3 ). Up to the time of the go cue,
most neurons individually encode little information aboutthe output (see alsoFigure 2 ), but are highly predictive when the activity of many neurons is combined.
Predictive power saturates only once about 20 neurons have been measured. Shortly after the go cue, and just before the typical time of the saccade (dotted line), the
population reaches perfect predictive power, while at the same time individual neurons become highly predictive—maximal information can be obtained by measuring
only one to two neurons. SeeFigure 13 for an analogous plot aligned to the saccade.(B) The simple rate model reproduces these qualitative features.

recurrent excitation among informative neurons. The model
demonstrates a fundamental connection between timescales
and redundancy, with the formation of a collective slow
timescale requiring a population with lower informational
redundancy.

4. RESULTS

4.1. Heterogeneity of Individual Information
over Space and Time
First, we quantify how much information about the decision is
encoded in individual neural �ring rates. We �nd substantial
heterogeneity over neurons and as a function of time. As shown
in Figure 2A and described in the �gure legend, we can group
neurons into three classes based on when their �ring patterns
encode information about the decision.

Figure 2B compares histograms of mutual information at
the time of the go cue and 500 ms later, demonstrating that
while no individual neuron encodes more than 0.1 bits of
information about the decision at the time of the go cue, many
individual neurons encode a substantial amount of information
during and after the saccade indicating the decision. This
observation motivates splitting the process into two distinct
temporal periods, Phase I (pre go cue) and Phase II (post-go cue)
(Figure 1).

4.2. Switching of Collective Information
from Synergistic to Redundant
We next assess whether information about the decision is
encoded collectively at the whole population level or within
a subpopulation and how this quantity compares to the
information encoded at the individual neuron level.
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FIGURE 5 | A subset of neurons collectively encodes information aboutthe
decision in Phase I, and more neurons contain information in Phase II.
Information about the decision gradually builds during Phase I in some
neurons (Class H; red), whereas in other neurons (Class M; orange), little
information is present until just before the saccade representing the decision
(mean saccade time indicated by dotted line). Class L units (blue) always
contain little information.

An encoding based on Linear Discriminant Analysis (LDA)
allows us to verify that the population encodes more information
than any single neural unit by producing a lower bound on the
mutual information encoded jointly by the entire population (see
Methods). As shown inFigure 3A, this collective encoding is able
at the time of the go cue to predict the decision on more than
80% of out-of-sample trials, corresponding to a collective mutual
information (CMI) reaching about 0.5 bits (Figure 11A). Shortly
after the go cue, CMI rises to nearly 1 bit, with nearly perfect
out-of-sample predictions.

Interestingly, at the same time that the collective information
jumps to its maximum value, there is a switch in the distributed
nature of the encoding: many individual units become highly
informative in Phase II, providing redundant information. This
contrasts with Phase I, in which much more information is
contained at the population level than in any single unit. To
quantify the redundancy of the encoding, we ask how many units
need to be included in the LDA encoding in order to reach 95%
of the maximal collective predictive power. As shown inFigure 4,
about 20 units need to be included for peak performance in Phase
I, but this drops sharply to 1 or 2 at the time of the saccade.
(SeeFigure 13for a version of this plot aligned by saccade time,
showing explicitly that this decrease in distributedness starts
before the saccade.)

Figure 5demonstrates that all information about the decision
is encoded in class H units in Phase I, and that this changes
to include class M units in Phase II. In addition, information
is acquired over a longer timescale in Phase I than in Phase II.
Table 1summarizes the observed properties of the three classes.

We also �nd information at the population level speci�cally
about the input stimulus, but it is small compared to the
information about the decision, and is signi�cant only during
Phase I. This can be seen inFigure 11C: at its peak during Phase
I, we estimate that the LDA encoding provides only about 0.02
bits of information per trial about whether the coherence of the
input is strong or weak (out of a possible 1.0 bit; see Appendix).

TABLE 1 | Qualitative summary of informational properties of each neural class.

Neural class Phase I information Phase II information

H Synergistic, slow growth Redundant, fast growth

M Uninformative Redundant, fast growth

L Uninformative Uninformative

Though this value is similar to the uncertainty in our estimate of
the mutual information, we can be con�dent that it is nonzero
by noting that the LDA encoding can predict the coherence of
out-of-sample trials signi�cantly better than chance (Figure 6A).

4.3. Information Accumulation and
Consensus Formation using a Dynamic
Rate Model
We explore the relationship between timescales of information
accumulation, memory, and informational redundancy using
a simple dynamical model. We start simply by representing
individual neurons as having a state that (1) is persistent on the
timescale of tens of ms, (2) transiently a�ects the states of other
neurons via a �ring rate that saturates as a function of the current
state, and (3) is subject to random noise. The model consists ofN
homogeneous, all-to-all coupled neurons with individual �ring
ratesri D tanhxi , whose dynamics are governed by:

�
dxi

dt
D s� xi C � C c

X

j6Di

rj . (1)

Here,s represents an input signal with magnitude proportional
to the coherence of the visual stimulus and sign indicating
the dominant direction of motion,c is the strength of positive
interactions between every pair of neurons,� D 10 ms sets
the timescale of decay for a single neuron, and the �nal term
represents noise with variance0 2 [drawn from a Gaussian
distribution for simplicity: h� (t0)� (t1)i D � (t1 � t0)N(0,0 2)].
See Methods and Appendix for additional details motivating this
form for the dynamics. We assume that theN neurons are fully
responsible for making the decision, and that the experiment
measures some subset of these units (Nmeasured < N). As
shown in Figures 3, 4, 6, 8, (see alsoFigures 11, 12) we �nd
that this model can capture both the integration and storage of
the decision during Phase I and the consensus formation and
propagation of the decision during Phase II.

Our simple dynamic rate model model produces behavior
that is critically dependent on the degree of recurrent excitation,
controlled byNc D c(N � 1), and the amount of neural noise0
(Figure 7). For �xed 0 , there exists a critical value of recurrent
excitationNc� such that forNc < Nc� , the only stable attractor is
at Er D Er0 D E0, while forNc > Nc� , two stable attractors,ErC and
Er� , emerge symmetrically on two sides ofEr0 (see Appendix).1

Bistability is required for persistent activity that remembers the

1This logic can likely be generalized to decision-making involving more than
two options by using Hop�eld networks that involve both positive andnegative
interactions. An analogous parameter toc in that case is the gain� in Hop�eld
(1984).
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FIGURE 6 | Neurons encode information about the input stimulus, but much less than about the output decision. Analogous plots toFigure 3 for predicting the
coherence of the visual stimulus. Information about the coherence is small but visible in Phase I, and disappears in Phase II.Single unit traces are not included on
these plots because they are not signi�cantly different fromzero. Corresponding mutual informations are plotted inFigure 11 .

FIGURE 7 | Long timescales and low redundancy occur near the collective transition at which memory storage becomes feasible. We plot three aspects of the
collective behavior produced by a simple distributed, dynamic rate model as a function of recurrent excitation and noise, for N D 500. (A) The degree to which the
system can retain a stable memory is measured by the proportion of times one can be successful in predicting the sign of themean pre-delay state given the
post-delay state. This delineates the transition between monostable and bistable systems.(B) The system is less redundant near the transition, requiringmore
neurons to be measured to reconstruct the memory.(C) The timescale over which certainty in the eventual choice builds (measured as the �rst time at which the
predictive power reaches 95% of its �nal value) is largest near the transition. Regions that do not successfully retain a memory (performance less than 0.9) are blacked
out in plots (B,C).

decision during the delay period. The informative directionin
rate space lies along the vectorEv D ErC � Er� , which in this simple
model weights all units equally and with the same sign.

The degree of recurrent excitationNc also controls two other
aspects of decision-making: (1) the timescale� decisionover which
information is accumulated and (2) the redundancy of the
encoding of the decision.

First, the relevant timescale for motion along the decision
directionEv is inversely related to the distance from the instability
threshold Nc� (seeFigure 7C): e.g., without noise (0 D 0),
Nc� D 1, and� decision D �=(Nc � Nc� ). This is the phenomenon
of “critical slowing down,” which slows motion alongEv when
the system is near the threshold.2 Hence, units that forget on a
short timescale can still contribute to aggregate-level behavior
that integrates over longer timescales. This emergent timescale
has been recognized in “reverberation” models (Wang, 2002) as
an essential feature of distributed decision-making.

Secondly, su�ciently close to the threshold, noisy individual
cells are only weakly constrained to have a similar state as the

2Too far below the threshold, information is quickly forgotten, andtoo far above
the threshold, a decision is made prematurely.

others; whereas summing over many cells can reliably predict
the behavior of the whole, individual cells do not encode much
information. This corresponds to the “synergistic” state of Phase
I. As recurrent excitation increases, consensus is more strongly
enforced, leading to individuals containing more information.
This corresponds to the “redundant” state of Phase II. This
dependence is demonstrated inFigure 7B: the number of units
one needs to measure to obtain maximal information is largest
near the transition point.

The combination of low redundancy and slow dynamics
therefore suggests that Phase I should correspond toNc only
slightly greater thanNc� , and large redundancy in Phase II suggests
a largerNc. Indeed, as displayed inFigures 3, 4, 8, the simple
rate model reproduces the qualitative behavior of the systemby
changing the single parameterNc between Phase I and II, with
NcII > NcI > Nc� . Speci�cally, the increased redundancy of Phase II
is associated with a faster timescale. Together, these results imply
a dual coding theory for collective decision-making through
critical slowing down, summarized inFigure 9.

Additionally, the model explains how neurons responsible
for the decision can encode a relatively small amount of
information about the input stimulus coherence. As the attractors
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FIGURE 8 | Decision-making model performance decreases if recurrent
excitation is large throughout the entire trial. The strength of the model's input
signals is calibrated with a single parameter such that it reproduces the
empirical performance curve (red circles) using relatively small recurrent
excitation NcI D 1.1 (dark blue triangles). If the model is modi�ed to have the
same Nc through both Phase I and Phase II (light blue squares), the decision is
made too quickly and performance decreases at moderately dif�cult
coherence levels. Shaded regions represent bootstrapped 90% con�dence
intervals.

representing the decision do not depend on the coherence,
information is only contained in the speed with which those
attractors are approached. This speed is in turn related to the
magnitude of the input current (s), which can be small ifN is
su�ciently large to magnify a small signal.

Using a simple linear relationship between stimulus coherence
and input s produces a good �t to the observed psychometric
function, shown inFigure 8. The �gure also demonstrates the
model's prediction (as inWang, 2002) that using the same large
recurrent excitationNcin both Phase I and Phase II would lead to a
faster decision process, which would integrate the input stimulus
over a shorter time and therefore produce poorer performance in
trials with more ambiguous, less coherent visual stimuli.

5. DISCUSSION

In this study we used information theory and the theory
of collective phenomena to analyze time series data from a
microelectrode array capturing 169 neural channels in the
prefrontal cortex area 8Ar of a macaque monkey. This is a
well studied area of the brain that has been shown to play
an important role in both visual decision-making and motor
behavior (Kim and Shadlen, 1999; Constantinidis and Goldman-
Rakic, 2002; Hussar and Pasternak, 2009; Kiani et al., 2014,2015).
Our �ndings lead us to propose a coding-duality framework,
applicable to collective computation in adaptive systems more
generally, that includes a slow accumulation process in which
information is encoded in populations and a fast consensus
formation process in which information is encoded redundantly
in multiple individual neurons.

In the neural time series studied here, the idea of Phase I as
information accumulation is in good agreement with many prior

studies of MT, LIP, and prefrontal cortex in which information
is integrated at the population level (essentially through crowd-
sourcing) in order to increase the accuracy of a decision (Kiani
et al., 2008, 2014; Kiani and Shadlen, 2009; Fetsch et al., 2014)
and reduce decision latency (Huk and Shadlen, 2005; Hanks et al.,
2014; Kira et al., 2015).

Neural behavior post-Phase I has received less attention. Our
results suggest a second phase, during which a large subset of
cells becomes correlated and acquires redundant information
extremely rapidly. This phase of “consensus formation,” in
which information rapidly spreads from the “knowledgeable”
neurons to many neurons, dramatically increases redundancy
in the system. Our simple rate model accomplishes this switch
by changing the degree of recurrent excitation, but it could
alternatively be controlled by external inputs to the circuit
through a perturbation that moves the system away from the
symmetry-breaking transition.

Our results suggest investigating other forms of neural
decision making to look for similar dynamic consensus
phenomena. We expect the separation of timescales between
Phases I and II to be most clear in cases involving a gradual
accumulation of evidence, such as comparing two extended
auditory signals (Erlich et al., 2015). In vibrotactile decision
making, a similar mechanism has already been proposed for
carrying out multiple phases of a decision process using a single
population of neurons (Machens et al., 2005), which suggests
looking for comparable patterns of changing consensus.

Although there has been little focus on Phase II and, more
generally, consensus formation, in neuroscience, the role of
consensus formation in collective computation has been a focus
in the study of social processes. For example, search engines and
auctions illustrate both slow accumulation and fast consensus
(e.g., Leise, 2006; Brush et al., 2013, see alsoAllesina and
Pascual, 2009for related results for food webs). In order to
generate an approximate importance or price for a website
or good, information needs to be acquired from a variety of
independent sources through search trends or bids. At this stage
(accumulation of individual decisions), it is best for sources not
to interact, to avoid premature consensus before all relevant
information can be gathered. Secondary web sites and sellers
can then very quickly establish new prices and strategies by
polling the sale price or popularity of comparable products
from those that have already accumulated this information.This
generates increased correlations among both markets and web
sites (consensus on a collective decision).

Collective computation based on information accumulation
and consensus formation has also been observed in the formation
of power structures in primate societies (Flack and Krakauer,
2006; Flack, 2012; Brush et al., 2013; Brush, in press). Individual
monkeys acquire information about the ability of other monkeys
in the group to use force successfully during �ghts, and they
communicate this slowly changing perception using special
status signals (Flack and de Waal, 2007)—signal emission is
the analog to neural �ring or linking web pages. The degree of
consensus or agreement in the group about any single individual's
ability to use force is its “social power” (Flack and Krakauer,
2006). Consensus about power is encoded in the network of status
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FIGURE 9 | Dual coding through critical slowing down. During Phase I the
state of cells is determined largely by the coherence of the input signal, s. A
small population of cellsH are able to slowly accumulate information (�lled
circles) about the inputs. Cells of typeM and type L accumulate no
information (open circles). In Phase II the informational state of cells is
dominated by recurrent excitationc among the cells. Cells of typeH and M
become highly informed whereas cells of typeL remain uninformed. In Phase I,
the system is governed by stochastic dynamics with a timescale set by “critical
slowing down,” in which the system in the initial stateEr0 slowly moves
between two decision statesErC and Er� . The symmetry is weakly broken by
the coherence of the input signal, slowly biasing the systeminto one state. In
Phase II the symmetry is strongly broken and one of two decision states is
rapidly approached. Accuracy is determined in Phase I whereas consensus is
reached in Phase II.

signaling interactions just as consensus about value in thesearch
engine example is encoded in links making up the World Wide
Web. It has been shown in prior work that the same algorithms
can be used in both the search engine and power cases to quickly
and e�ciently calculate the consensus encoded in the networks
(Brush et al., 2013).

In all three examples (neural, search, power) accumulation
is slow and consensus is fast. In the power example it has
additionally been shown that an advantage of this timescale
separation in collective computation is that it produces a slowly
changing yet accurate power structure that serves as a reliable
“background” against which individuals can, on a fast timescale,
tune strategies quickly and e�ectively (Flack, 2012; Flack et al.,
2013). This is also likely to be true for the search engine case butit
remains unclear how this kind of `timescale separation dependent
feedback' could play a role in the neural case.

One additional important di�erence between the neural case
and the social cases is that in the social cases both accumulation
and consensus can be occurring simultaneously but on di�erent
timescales. In the neural case presented here, accumulation
(Phase I) occurs �rst with consensus (Phase II) following, but this
may be an artifact of the experimental setup with an externally
forced go-cue.

In large systems that are processing information from multiple
sources it is di�cult to conceive of any way of achieving an
e�cient, accurate, coordinated representation of environmental
regularities other than through a dual-process dynamic. This is
because (1) it takes time to integrate information from noisy

sources, and (2) not all cells have equal access to information
and therefore must acquire input from informed cells. We refer
to this requirement as “coding-duality” as it implies a shiftfrom
an emphasis on populations of cells pooling resources in Phase I
to single cells in possession of all adaptive information through
consensus mechanisms in Phase II.

These results help clarify the debate between proponents
of the modern neuron-doctrine and distributed-representation
theory (Bowers, 2009; Quian Quiroga and Kreiman, 2010). In
the data-set we have analyzed, both processes are occurring but
at di�erent temporal phases of the decision task. By restricting
analysis to only one phase, or averaging over time, the ability
to resolve the bi-phasic distinction is lost and one or the
other extreme—informed single cells or informed populations of
cells—is statistically favored.

5.1. Area 8Ar Neurons Primarily Represent
the Motor Decision, Yet Could Be Solely
Responsible for Mapping Sensory
Information to a Decision
In prior studies the representational status of areas 8Ar and
LIP has remained ambiguous, and is often described as partly
sensory and partly motor. We �nd that whereas spiking activity
in 8Ar cells is strongly predictive of saccadic eye-movements,
there is little residual information concerning the visualstimuli
(Figures 3, 11). In other words, these cells are primarily
predictive of motor behavior and not sensory input, and in this
informational sense are almost purely motor.

Yet this does not rule out the measured neurons being part
of a group of similar cells that are collectively fully responsible
for the decision. In the rate model, the simulated cells are
fully responsible for the decision but measuring a subset of
the cells reveals only a small amount of information about the
input signal—and even this information is quickly lost once the
system reaches an attractor state representing the decision.Thus,
because we have data on only a small fraction of all neurons in
these areas, it is feasible that 8Ar neurons as a whole could be
solely responsible for mapping sensory data onto the decision.

5.2. Relationship to Known Classes of
Neurons
Many previous studies that attempt to model the perceptual
decision-making system (e.g.,Wang, 2002) and neural
computation more generally (seeLisman, 2015for a review)
have focused on interactions within and between two distinct
groups of neurons: the pyramidal neurons and the inhibitory
interneurons.

These neural classes are typically identi�ed from electrode
data by di�erences in �ring rate, spiking waveform, burstiness,
and refractory period (e.g.,Csicsvari et al., 1999; Diba et al., 2014).
Pyramidal cells are typically more informative about (selective
with respect to) sensory input than interneurons (e.g.,Diba
et al., 2014). Additionally, sensory selective cells and/or cells
identi�ed as pyramidal have been shown in many contexts to
�re more independently of one another: pyramidal compared
to parvalbumin-expressing interneurons in the visual cortex
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(Hofer et al., 2011); visually responsive neurons in V1 (Ecker
et al., 2010); excitatory vs. inhibitory neurons in the prefrontal
cortex (Constantinidis and Goldman-Rakic, 2002); pyramidal
vs. interneurons in rat hippocampus (Diba et al., 2014). This
suggests classifying our Class H (and perhaps Class M) units as
pyramidal cells and Class L as interneurons.

5.3. Relationship to Other Models of
Decision-Making
In Table 2, we compare the model of Equation (1) to related
binary decision-making models that vary in their level of detail.
The equations shown here use a single population, but an
equivalent formulation can be found in each case consistingof
two competing populations (Usher and McClelland, 2001; Gold
and Shadlen, 2007). We do not include models using discrete
neural �ring rate states (e.g.,Latimer et al., 2015), which we
expect to have equivalent behavior at the collective level.

The simplest models are most analytically tractable,
abstracting away both the distributed nature of the computation
and mechanisms for saturation and persistent memory,
beginning with the simplest drift di�usion model (Bogacz et al.,
2006). These models assume that a separate mechanism makes
and stores the decision once a stochastic process reaches a
given threshold. This simple process successfully explains the
integration of sensory information, the distribution of reaction
times, and accuracy as a function of input coherence.

However, models that do not include decay or saturation
of �ring rates cannot explain the loss of information about
the coherence of the input late in the trial (Figure 6A).
Di�usive models constrained to stay within speci�ed bounds
could potentially alleviate this problem, as could so-called`leaky
integrators' with a state that decays back to a starting value (Kiani
et al., 2008). Such models have been ruled out because they
predict persistent susceptibility to sensory evidence presented
late in the trial, which is not seen in experiments (Kiani et al.,
2008).

Instead, the loss of information about coherence and the
loss of susceptibility can be parsimoniously explained if the
decision process involves approaching stable attractors thatstore
the decision during the delay period. Including feedback is one
way to produce multiple attractors. In the simplest case, this
leads to the Ornstein-Uhlenbeck (OU) model (Busemeyer and
Townsend, 1993; Bogacz et al., 2006), which produces multiple
attractors when combining positive feedback with saturation or
boundedness (Zhang and Bogacz, 2010).

None of these low-dimensional models, however, address
the issue of how the computation is distributed over multiple
cells. The noisiness of individual neurons likely necessitates
larger populations of neurons in order to accumulate persistent
information over longer timescales.

Existing models that incorporate collections of cells include
those with populations of spiking neurons (Wang, 2002; Lo and
Wang, 2006; Wimmer et al., 2015) or of neurons with continuous
states governed by noisy dynamics (Wong and Wang, 2006).
As in our model, these studies have emphasized the importance
of recurrent interactions to slow the e�ective timescale using

the phenomenon of “reverberation,” essentially equivalent to
critical slowing down. One proposed model also includes
separate neurons that act as a switch governing the transition
from information accumulation to decision commitment (Lo
and Wang, 2006). This is distinct from the single-population
story we present here, instead hypothesizing that information
accumulation and consensus happen in di�erent brain regions.
Generally, these studies have not explicitly addressed the
distributedness of neural information, but we expect the models
may display similar phenomena with respect to population
dynamics, coding, and redundancy. It will be useful in future
work to con�rm this.

The model presented in Equation (1) captures the details
necessary to describe the distributed nature of the computation
but abstracts away most details of neurobiology. It can be viewed
as a distributed implementation of an Ornstein-Uhlenbeck
model (Busemeyer and Townsend, 1993; Bogacz et al., 2006;
Zhang and Bogacz, 2010) that includes biologically realistic
saturation of �ring rates.

5.4. Outlook
The results we �nd here in the speci�c case of the random
dots task in prefrontal cortex hint at more general design
principles for decision-making and collective computation. For
instance, much attention has been paid to the idea that it may
be bene�cial for collective information processing systemsto
exist near a symmetry breaking transition, or critical point
(Langton, 1990; Mora and Bialek, 2011; Plenz and Niebur, 2014).
We can come to a similar but more subtle conclusion in our
dynamic model: a system near a transition (our Phase I) is indeed
successful in producing distributed, collective states that remain
more sensitive to exogenous inputs (as has been emphasized
in “criticality” research; e.g.,Shew et al., 2009), but reaching
consensus (in Phase II) requires moving away from the transition
toward a collectively boring but useful “frozen” state. Locating,
managing, and controlling dynamics with respect to such
transitions and collective states is certainly important for not only
a brain involved in cognition and learning, but in controlling
collective behavior across many biological and social systems.

6. METHODS

6.1. Measuring Association: Mutual
Information
Mutual information is the information shared by any two streams
of dataA andB. This can be thought of in information theoretic
terms as the average number of bits that are revealed aboutB
upon measuringA. For instance, withA representing a �ring rate
andB the behavioral output (a choice of either left or right), the
mutual information I(A,B) represents how much information
the neuron's rate provides about the decision variable. The
mutual information betweenA andB is the sum of the marginal
entropies (the maximum potential information content of the
paired system) minus the joint entropy (the amount of noise in
the paired system); see Appendix.

In these analyses, we employ rates of neural �ring averaged
over time bins of length 200 ms (assuming rate encoding and
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FIGURE 10 | The physical locations of measured neural units. Colored circles indicate units that have signi�cant mutual information with the decision sometime
before the go cue (Class H, left) and only after the go cue (Class M, right). Stacked circles indicate multiple neural units detected by a single electrode.

FIGURE 11 | Mutual information with respect to the output decision, an information theoretic measure of the predictive power curves. Here we plot the mutual
information with respect to the output decision(A,B) and motion coherence(C,D). Note the different vertical scale in(C,D). Trials are split into two equal and randomly
selected halves, with one half treated as in-sample data used to calculate quantities for LDA classi�cation, and the second half treated as out-of-sample data whose
�ring rates are used to make predictions.

ignoring details about the precise timing of spikes) in order
to calculate dependencies among neural and behavioral states
using mutual information. Entropies are estimated using theNSB
method (Nemenman et al., 2004, 2002). We consider a mutual
information to be signi�cant if it is greater than 0.01 bits,roughly
the resolution of entropy estimation for the amount of data we
have, which is also estimated using the NSB method.

6.2. Linear Discriminant Analysis for
Population Encoding
To combine neural �ring rates into a collective encoding, weuse
LDA. Given neural rate data from many trials and classi�cation
of those trials as left decisions and right decisions, LDA attempts
to �nd the linear combination of neural rates that is most
informative of the class (left or right).
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TABLE 2 | Related perceptual binary decision-making models.

Model Input Noise Decay Feedback Decision mechanism Equilibria

Drift diffusion (Bogacz et al.,
2006)

dx
dt = s C� Threshold

Leaky integrator (Kiani et al.,
2008)

dx
dt = s C� � x Threshold

Ornstein-Uhlenbeck (OU)
(Usher and McClelland,
2001)

dx
dt = s C� � x Cc x Threshold

Distributed saturating OU
[Equation (1)]

dxi
dt = s C� � xi Cc

P
j r(xj) Attractor

Distributed spiking models
(Wang, 2002)

Detailed spiking dynamics Attractor

In the Equilibria column, we schematically represent equilibria along the dimension of the decision variable, assuming c> 1. T, threshold; S.E., stable equilibrium; U.E., unstable
equilibrium.

LDA makes the simplifying assumption that data from each
class is produced by a multidimensional Gaussian speci�ed by
the observed meanE� � and covariance matrixC� for each class
� . In this case, projecting any given data vectorEr along the LDA
vector, de�ned as

Ev D (C1 C C2)� 1 � ( E� 2 � E� 1), (2)

produces a number designed to be informative about the class
from which the data vector came (with maximal performance
guaranteed whenC1 D C2). That is, the LDA vectorEv provides
a weighting of individual neural rates that, when summed,
approximately maximally separates the two classes.

LDA simultaneously provides a framework for predicting the
output given rate data. Looking at any given set of ratesEr, the
LDA's estimate of the relative log-likelihood of left vs. right can
be written as:

L(Er) D log
�

likelihoodEr came from left trial
likelihoodEr came from right trial

�
(3)

D �
1
2

log(Ev � C1 � Ev) �
((Er � E� 1) � Ev)2

2 Ev � C1 � Ev

C
1
2

log(Ev � C2 � Ev) C
((Er � E� 2) � Ev)2

2 Ev � C2 � Ev
. (4)

Thus, positiveL(Er) corresponds to a (maximum likelihood)
prediction thatEr came from a left trial, and negative to prediction
of a right trial.

6.3. Dynamic, Stochastic, Distributed
Decision-Making Model
Equation (1) describes a dynamic Hop�eld network (Hop�eld,
1984) that includes Gaussian noise on neuron states and is
restricted to uniform positive interactions among all cells.

We imagine that we measure some subsetNmeasuredof N
neurons that are collectively responsible for the decision, with no
input from other areas of the brain except for a temporary signal
s, which is proportional to the signed coherence of the visual
stimulus.

Although this simpli�ed picture does not include spiking,
models that include spiking have been shown to produce similar
behavior (Wang, 2002). Our model can be mapped onto a model
with separate populations that are positively selective for leftward
and rightward stimuli by assuming that (1) the variablesri
represent the di�erence from a typical �ring rate, (2) oppositely
selective cells are mapped ontori with opposite sign while
simultaneously changing the sign ofsi and the sign ofcij when
i and j are oppositely selective cells, corresponding to mutual
inhibition between opposite populations.
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7. APPENDIX

7.1. Experimental Data
Experimental data were provided by Roozbeh Kiani and
William Newsome. Data were gathered in accordance with the
recommendations of the National Institutes of Health Guides
for the Care and Use of Laboratory Animals. The protocol
was approved by the Stanford University Animal Care and
Use Committee (IACUC number 9720). The data is a subset
of that described in Kiani et al. (2014, 2015). Details of the
stimulus and eye monitoring method are explained in those
references. Neural spiking data consists of spike times measured
at a resolution of 1/30 ms for 169 neural units using a 4 mm
� 4 mm multielectrode array (seeFigure 10). Data includes
1,778 trials taken from one animal in one recording session,with
the signed coherence of the stimulus for each trial chosen at
random from the setf� 0.32,� 0.16,� 0.08,� 0.04,� 0.02,� 0.01,
0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32g. Other task data for each trial
include the direction of the decision saccade as well as the times
of the onset of the stimulus, end of stimulus, go cue, and response
saccade.

7.2. Dynamic, Stochastic, Distributed
Decision-Making Model
In a continuous-time model of neural activity (Hop�eld, 1984;
Beer, 1995), the time derivative of the statexi of synapsei is the
sum of external inputs, leak current proportional toxi , and input
from other neurons in the system. Input from each other neuron
is assumed to be proportional to its current �ring raterj , which is
a sigmoidal function of its current state:rj D g(xj). This produces:

� i
dxi

dt
D si � xi C

X

j6Di

cij gj(xj), (5)

where the timescale of the cell returning to equilibrium in the
absence of other signals is set by� i . For simplicity, we assume
complete homogeneity, with all-to-all synaptic connectionsof
strengthc, constant individual timescales� i D � , andgi(xi) D
ri D tanh(xi):

�
dxi

dt
D s� xi C c

X

j 6Di

tanh(xj). (6)

Adding a Gaussian noise term� , with h� (t0)� (t1)i D
� (t1 � t0)N(0,0 2), we obtain Equation (1):

�
dxi

dt
D s� xi C � C c

X

j 6Di

rj . (7)

The timescale� is set at 10 ms to match the order of magnitude of
the characteristic timescales of synaptic receptors (Moreno-Bote
and Parga, 2010).

Importantly, we expect the qualitative features of the
relationship between timescales and redundancy to be insensitive
to the exact form of the dynamics. These features are produced
near any collective transition displaying critical slowingdown, as
described below.

As the strengthcof recurrent excitatory interactions increases,
there is a transition from one stable state atri D 0 to two stable
states atri D � r � . Without noise (0 D 0) and assuming identical
individualsri D r, the dynamics becomes one-dimensional:

�
dx
dt

D s� x C c(N � 1) tanhx. (8)

As can be seen by measuring the stability of thex D 0
state (taking a derivative of Equation 8 with respect tox), this
transition (bifurcation) is controlled by the degree of recurrent
excitationNc D c(N � 1), with the transition occurring atNc D
Nc� D 1. Above the instability transition and neglecting noise, the
�nal state retains inde�nitely a perfect memory of the sign ofthe
input s. Furthermore, the characteristic timescale of moving away
from x D 0, which sets the timescale for the decision process, is
inversely related to the distance from this transition:� decision D
�=(Nc � 1). When noise is added (0 > 0), the attractors are
destabilized, but we expect equivalent stability to be regained by
moving to largerNc. This dependence ofNc� on 0 is demonstrated
in Figure 7.

The remaining parameters of the model can be set
by matching the qualitative characteristics of informational
dynamics observed in the data (seeFigures 3, 4). First, the degree
of recurrent excitation is set to roughly match the timescales with
which information increases in Phases I and II: with no noise,
NcI D 1.1 corresponds to accumulation on the scale of 100 ms in
Phase I, andNc D 1.5 to a faster timescale of 20 ms in Phase II.

Second, because the dynamics is only slightly perturbed by the
input (Figure 11C), we next sets D 0 and match the behavior of
information redundancy (Figure 4A) solely by varying the total
number of model neuronsN, the number of measured neurons
Nmeasured, and the amount of noise0 . As N becomes larger,
we expect that a larger0 will produce the same dynamics and
variance along the decision dimensionEv, while corresponding to
larger noise and thus less information carried by individuals.3 We
�nd that N D 500,NmeasuredD 5, and0 D 0.16 reproduces the
qualitative features of the two phases. We do not attempt here to
estimate the number of neurons truly involved in the decision-
making process; this will require a more sophisticated model
than presented here. Speci�cally, this model does not capture
the strong heterogeneity that exists even within the de�ned cell
classes, which will be important to estimating the actual number
of required cells.

Finally, we set the form of the external inputs representing
transient sensory information. We assume that each cell receives
input that is proportional to the signed coherence of the visual
stimulus (with sign determined by the dominant direction of
motion): s D sc� for coherence� . The signal is applied for
the duration of the visual stimulus, 810 ms, after which it is
set to zero. The proportionality constantsc is set by roughly
matching the proportion of correct decisions as a function of
coherence (Figure 8). The values of all model parameters are
listed inTable 3.

We emphasize that there are very likely other sets of
parameters that equally well match the qualitative featuresof the

3The exact scaling withN is not obvious in this strongly interacting system.
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TABLE 3 | Stochastic dynamic model parameters used throughout the paper,
unless otherwise speci�ed.

� 10 ms

N 500

Nmeasured 5

sc 0.03

cI(N � 1) 1.1

cII(N � 1) 1.5

0 0.16

In Figure 7 , Nmeasured D 25.

data, so the values of the individual parameters are not meantto
represent best choices to be used in other contexts. For instance,
moving along the transition line inFigure 7 produces largely
equivalent behavior, demonstrating that distance from thepoint
of instability is most important. We use the model not to infer
speci�c parameters for individual level behavior, but rather(1) to
show that it is possible to reproduce the behavior seen in both
temporal phases using a simple model, and (2) to demonstrate
the close relationships among distance from instability, timescale
of accumulation, and redundancy of representation.

The model simulation recapitulates the timing of trials.
In Phase I, withNc D NcI and initial conditionsri D 0 8i, the
stimulus is presented for 810 ms, followed by an 810 ms delay
period4 during whichs D 0. The signed coherence takes values
f� 0.32,� 0.16,� 0.08, � 0.04,� 0.02,� 0.01, 0, 0.01, 0.02, 0.04,
0.08, 0.16, 0.32g, with each signed coherence simulated 140 times
for a total of 1820 simulation trials.5 Phase II consists of two
more 810 ms time periods with increasedNc D NcII , with initial
conditions given by the �nal timestep of Phase I. Integration
is performed using straightforward Euler timesteps, with 500
timesteps per 810 ms time period. Decreasing the step size by a
factor of two does not qualitatively a�ect the results.

7.3. Details about Mutual Information
The mutual information is a standard measure of dependence
in information theory. Calculating mutual information
between random variablesA and B begins with estimating
the probabilities of all possible pairs of states ofA (with
states a1,a2, ...) and B (with states b1,b2, ...). Call these
probabilities P(a1,b1),P(a1,b2),P(a2,b1), .... The marginal
entropy S(B) measures the number of bits6 necessary to
communicate the state ofB without knowing the state ofA.
This marginal entropyS(B) D �

P
j P(bj) logP(bj), where

P(bj) D
P

i P(ai ,bj) sums over the unknown state ofA. Similarly,
S(A) D �

P
i P(ai) logP(ai) with P(ai) D

P
j P(ai ,bj).

Finally, the joint entropy measures the number of bits
necessary to describe the combined state ofA and B:

4 The duration of this delay period was randomized in the experiment, taking
values between 300 and 1500 ms, in order to avoid anticipation of the go cue. We
do not include this variation in our simulations as we do not expectit to a�ect the
results—the behavior of the model during the delay period is largely static.
5In the experiment, the coherence level was chosen at random from thisset for
each trial, so the number of trials per coherence was not precisely uniform.
6Measuring entropy in bits corresponds to taking logarithms with base 2in the
following formulas.

S(A,B) D �
P

i
P

j P(ai ,bj) logP(ai ,bj), and the mutual
information is given by the di�erence of the total possible
entropy of the paired data and its actual entropy:

I (A, B) D S(A) C S(B) � S(A,B). (9)

Intuitively, I (A,B) measures the reduction of uncertainty about
the state ofBwhen given the state ofA, and vice versa.

7.4. Lower Bound on Mutual Information
via LDA
Estimating the mutual information between the collective �ring
pattern of the measured neurons and a behavioral variable
requires estimating the entropy of each (Equation 9). The entropy
of the neural �ring is di�cult to calculate because it has many
dimensions and thus many possible states.7

If we hypothesize a speci�c encoding, however, we can use
the Data Processing Inequality to produce a lower bound on
the mutual information. LDA constitutes such a hypothesis; by
transforming the neural rate dataEr at a given time into a single
continuous variablev D Ev � Er (with Ev given by Equation 2), the
mutual information ofv with the variable in question provides a
lower bound on the true mutual information.

In Figure 11, to estimate the entropy of the LDA projectionv
used to calculate the lower bound on the CMI, we bin values for
v into NB equally-spaced bins (withNB � Ns) and use the NSB
method (Nemenman et al., 2004, 2002) on this reduced space. We
chooseNB D 30 by increasingNB until the mutual informations
shown inFigure 11saturate.

7.5. Details about Figure 3
Neural rates are calculated using a bin width of 200 ms for
measuring information about the decision (Figure 3) and 500 ms
for measuring information about the coherence of the stimulus
(Figure 6). “Best unit in Phase I” refers to the unit with largest
average mutual information in 200 ms time bins in Phase I (in the
2000 ms before the go cue). Data is split randomly into an equal
number of in- and out-of-sample trials; we plot the resulting
mean (line) and standard deviation (shaded area) over 20 of these
random partitions in the case of predicting the output decision,
and 100 partitions in the case of predicting motion coherence.

To test the amount of information present about coherence
of the input, we split the trials into “strong coherence” trials
(coherence value equal to 0.08, 0.16, or 0.32; 820 trials; relative
frequency 0.461) and “weak coherence” trials (coherence value
equal to 0, 0.01, 0.02, or 0.04; 958 trials; relative frequency
0.539). Mutual information and out-of-sample prediction are
measured with respect to the binary classi�cation of strong
vs. weak, leading to a maximum possible mutual information
of � 0.461 log 0.461� 0.539 log 0.539D 0.996 bits. Previous
studies have found that variation in �ring rates is opposite in
sign depending on the output direction (Shadlen and Newsome,

7Even if we bin the spikes into time intervals and create binary data, to guarantee
a good estimate of the entropy, we need a number of samplesNs � 2N (or perhaps
Ns �

p
2N using a method such as NSB). With 1778 trials, we can reliably estimate

the entropy only ifN < log2 Ns D 10.8 (or perhapsN < 2 log2 Ns D 21.6), so
using all units, even restricted to one of our de�ned classes, is not possible.
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FIGURE 12 | Informational redundancy decreases during Phase I and increases during Phase II. Redundancy is measured by Equation 10, with similar dynamics
displayed in(A) the neural data and(B) the simple rate model.

FIGURE 13 | Changes to distributedness happen prior to saccade. The left plot is the same asFigure 4A , and the right half shows the same calculation using data
aligned at the saccade start instead of the go cue (and using 100 ms time bins). Note that the decrease in the number of unitsneeded to saturate predictive power
begins before the saccade.

2001). For this reason, without knowing the eventual output,
di�erences in �ring rates due to stimulus coherence tend to be
invisible using the linear LDA encoding. The coherence LDA
calculations and predictions are thus performed separately in
the two output direction conditions and then averaged; this
corresponds to the task of predicting the coherence of the signal
given both neural �ring rates and the eventual output direction.

In Figure 11, we plot the mutual information measures
corresponding to the predictive power plotted inFigure 3.

7.6. Details about Figure 4
To measure the number of units needed to reach a certain
predictive performance, we add neurons one at a time ordered
by their individual mutual information with the output at the
given time (calculated with bin width 200 ms). Plotted lines
indicate means and shaded regions indicate standard deviations
over 20 realizations of in-sample and out-of-sample partitioning,
as described above with regard toFigure 3.

Though it is intuitive, our measure of the number of individual
units needed to reach the collective performance may not be

ideal for future experiments in that we expect it to become
uninformative for largeN when individual neural behavior is
heterogeneous. If there is some small fraction of neurons that
are individually very informative (as was found inShadlen and
Newsome, 2001), then the number of units needed to reach the
collective performance will always approach 1 asN becomes
large. Alternatively, we can use an information theoretic measure
of redundancy that also takes into account the number of very
informative units. We use here the relative redundancy:

R D 1 �
I(all units, decision)
P

i I (ri , decision)
, (10)

estimating the collective and individual mutual informations in
the same way as inFigure 11. This redundancy is plotted as
a function of trial time in Figure 12. The story is the same
as that told byFigure 4: Units become more redundant in the
information they encode about the output near the time of the
saccade in Phase II.

Finally, we would like to test directly the extent to which
the change in redundancy happens before or after the saccade.
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Aligning by the saccade time instead of the go cue, and using
a smaller time window of 100 ms for �ner temporal resolution,
produces the right half ofFigure 13. We see that the abrupt
increase in collective information and decrease in distributedness
begins before the saccade. This rules out an interpretation in
which the change is caused only by visual feedback coming
from the execution of the eye movement. The datapoint at
t D 0 corresponds to a time window from 50 ms before to
50 ms after the saccade, during which it is unlikely that any
visual feedback signal has reached the measured neurons. Even
ignoring this datapoint, however, the number of units needed
to saturate predictive power decreases signi�cantly before the
saccade: Saturation using rates in the 100 ms prior to the go cue
requires 23� 5 units, whereas the 100 ms prior to the saccade
requires 11� 2 units (and a 100 ms window 250 ms after the
saccade requires 2.8� 0.4 units, in each case averaged over 20 in-
and out-of-sample shu�es, as inFigure 4).

7.7. “Wisdom of the Crowd” Argument
Besides avoiding premature saturation, another argument for
decreased interactions during decision-making comes froma
“wisdom of the crowd” argument, in which noise in individual
decisions is best removed from an average by having individuals
cast independent votes. We do not focus on this explanation
because the magnitude of the e�ect in general depends on
the speci�cs of the interactions, and for some cases (e.g.,
each individual moves their opinion closer to the average of
individuals it interacts with) has no e�ect on the accuracy ofthe
decision.

For �xed means and variances, it is true that having noise
correlations that are the same sign as signal correlations

leads to worse performance (as inJeanne et al., 2013,
originally explored in Abbott and Dayan, 1999). Yet
this is not easily connected to optimizing interactions
for decision-making, because changing interactions in a
dynamical context does not typically leave means and variances
�xed.
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