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A central question in cognitive neuroscience is how unitarycoherent decisions at the
whole organism level can arise from the distributed behawioof a large population of
neurons with only partially overlapping information. We afitess this issue by studying
neural spiking behavior recorded from a multielectrode aay with 169 channels during
a visual motion direction discrimination task. It is well lawn that in this task there are
two distinct phases in neural spiking behavior. Here we showhase | is a distributed or
incompressible phase in which uncertainty about the decisn is substantially reduced
by pooling information from many cells. Phase Il is a redunaé or compressible phase
in which numerous single cells contain all the informationrpsent at the population
level in Phase I, such that the ring behavior of a single cels enough to predict the
subject's decision. Using an empirically grounded dynamial modeling framework, we
show that in Phase | large cell populations with low redundazy produce a slow timescale
of information aggregation through critical slowing down ear a symmetry-breaking
transition. Our model indicates that increasing collectesampli cation in Phase Il leads
naturally to a faster timescale of information pooling andansensus formation. Based on
our results and others in the literature, we propose that a geeral feature of collective
computation is a “coding duality” in which there are accumuwtion and consensus
formation processes distinguished by different timescake

Keywords: collective computation, decision tasks, critica | slowing down

1. INTRODUCTION

The nervous system is a distributed information processiygiesn. Functional encodings have
been identi ed at the level of single cells (eghadlen and Newsome, 2Q0torrelated modules
(e.g.,Power et al., 2013; Gu et al., 2)1&nd hemispheres (e.dpron et al., 201 How activity
within a scale produces new functional encodings one levalngbhow the consolidating modules
interact to produce coherent, functional behavioral outptittee whole brain level are among the
primary concerns of cognitive neuroscience (é3y1,et al., 201p

Here we ask how coherent output is produced when neurons inevegit target population
have di erent “opinions” about an input and are not coordinatéy a “Deus Ex Machina’ or
central controller (e.gGazzaniga, 20).3Two competing explanations are supported by the data.
One is a “distributed perspective”—coherent output requinesogling the output over many cells
(“population-level coding”). The second favors localizatiecoherent output can be generated by
encoding the output by strong activity in one or a few neurofggdndmother neurons,” reviewed
in Gross, 20020r “sparse codingQuian Quiroga and Kreiman, 20).0
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We show that these two views and the data supporting themontender as a causal decision-making locus, as it demoastrat
can be reconciled by framing the problem of coherent output asccumulation of perceptual evidenc8h@adlen and Newsome,
one ofcollective computaticemd drawing on information theory 2001; Huk and Shadlen, 2005; Gold and Shadlen, 2007; Kiani
and theories of collective behavior in statistical physwsask and Shadlen, 2009; Hanks et al., 20add because stimulating
how information from upstream neurons is accumulated andLIP neurons can lead to more quickly reaching a decision
integrated by downstream neurons (whether one or many) andhreshold {Hanks et al., 2006 Yet a recent study has shown that
whether the integrated information is disseminated to adster inactivating large sections of LIP has little e ect on deaisio

ensemble. making (Katz et al., 201% suggesting that other areas with
which LIP is closely associated may redundantly play a causal
role (Hanks and Summer eld, 2037 Such redundancy is also
2. DATA SET AND PREVIOUS WORK suggested by a study in analogous brain regions in fatsch

We use data from a well-known experimental paradigm, thé' al., 201p

Random Dot Motion discrimination task (RDM)Shadlen and Here, we use data from one of these closely related areas, area
Newsome. 2001 Kiani and Shadlen. 2009: Kiani et al.. 2018 in dorsolateral prefrontal cortex. Area 8Ar, like LIPrgas

2019, in which the subject must decide which direction dots "formation about planned saccades in direction discrintioa

on a’ screen are moving (task described Figure 1). The tasks Kim and Shadlen, 1999; Constantinidis and Goldman-
“coherent output” in this experiment is the decision. To study Z2KIC iOOZ; Hussarl and Past((ejrnak,d2009;. K|En|det al., 2014,
the computation of the output, we analyze the activity of 16¢£0 19+ 1he accuracy, latency, and con dence in the decision are
neural channels in a macaque monkey performing the task" uenced by noise in the_lnput (expenme_ntal!y contrqlled n
The recorded neurons are located in the prearcuate gyrus if'¢ RPM task by introducing random motion in the stimulus
prefrontal cortex (area 8An)Kiani et al., 2015 Area 8Ar has that varies the percentage of dots moving coherently in one

been implicated in motor planning and control of eye movement?ir_eCtion)’ which has measurable e ects in both prefrontates
as described below. The recording is achieved using a mulff!m and Shadlen, 199a@nd LIP Shadlen and Newsome, 2001

electrode array of size 4 mm 4 mm (seeFigure 10. Spikes Thi_s sensitivity to the strength of the input_ s_uggests thatsth
are sorted using standard techniques, mapping spikes detectBEf’“n areas do no.t only repre.sent thg decision once made, put
by each electrode onto a set of unique neural units, each @hwh are also_lnvolved in the de_C|S|on making process, accumugatin
represent the activity of one or a few individual neuromSa(ni information about sensory input. - ) :
etal., 201% At the most abstract level, decision-making can be tted using
The measured neural activity is qualitatively di erent befor @ variety of continuous or discrete one-dimensional random
and after the go cue, demarcating two time intervals that ale ¢ Walks or diusion models with xed or variable thresholds

Phase | and Phase IFigure 1). (Gold and Shadlen, 20R7A number of closely related simple
neural network models, extended to include lateral inhiitior
2.1. Previous Work recurrent activation, recover several features of thesgirézal

The causal pathway for perceptual decisions in the primate braimdings (Gold and Shadlen, 2007; Ratcli and McKoon, 2§08
is still debated. The lateral intraparietal cortex (LIP) legn a including timescales in the decision process that are muahiesio

Stimulus Delay Action

Phase | Phase Il
810 ms I 300 — 1500 ms ~245 msI
| | » Time
Stimulus Stimulus Go Saccadic
start end cue response

FIGURE 1 | Timing of trial events. A monkey is trained to discriminatepposed directions of motion in a random dot display and to reprt the perceived direction with
an eye movement (saccade) to one of two visual targets. In eadhial the subject is presented with the visual stimulus of ds drifting left or right across the screen for
a xed duration. Once the dots disappear, and after a delay, ago” cue is given to prompt subjects to indicate their decisia about the direction in which the dots are
moving—Dby looking either to the left or right—with a mean reetion time of 245 ms.
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than those of individual neurons. More detailed mechanisti
models have successfully reproduced important aspects of the A __ 10
observed decision-making process using individual spiking o ’
neurons and also emphasize the emergence of slowly acquiret o o9
information at the neuronal level using the terminology of @ )
recurrent “reverberation” \(Vang, 200). (See Discussion for T los
more details about existing models.) = )
Most of these models assume a single phase in which N 107
information is accumulated. They do not, however, explicitly * = 9 )
consider the collective properties of this accumulation—his t = = 8 106
information about the decision localized in individual nems S ~ » ’
or encoded at the population level? Furthermore, is accuredlat o < 0.5
information shared or transmitted across the population of 8 i N )
neurons? The observation that neuronal behavior is qualiht 5 Time ? 0.4
di erent before and after the go cue (sE@gures 1 2) minimally é’ = )
suggests that there are two processes taking place, ratimgusta @) v 0.3
one accumulation phase. & )
Existing decision-making literature tends to neglect redur 7] 0.2
behavior after the go cue, treating it as “choice execution : )
We argue that post-go-cue behavior is an extension of detisid » 0.1
making at the system level and view the process between the (g - )
cue and the saccade as essential to collective decisiomgrak g Time 0.0
“reading out” the information that is, before this point, gnl » )
available by pooling information from many cells. — [(rate,output)
Time (bits)
B
3. PROPOSAL AND SUMMARY OF 2 ! ' '
RESULTS £ 10" 7 At go-cue E
C C ]
= 1 500 ms post go-cue ||
In this paper we propose, building on previous worklgck, o 10" L 4
2012; Flack et al., 20)3that collective computing systems 3
are characterized by two phases—slow aggregation and fas g I ]
propagation. The idea is that this two phase computation < 10° 3 1 3
is useful when the system has many imperfect sensors eacl ; J ] ' ' °
. - . . 0.0 0.2 0.4 0.6 0.8 1.0
forming an opinion based on incoming data. In the case of the ) . o
study system, in order to both accumulate information about Mutual information between firing rate
a temporally extended signal and retain it during the delay and behavioral output (bits)
period, we expect that individual cells should form colleesiv ) ) o ,
that can accumulate information over hundreds of milliseds FIGURE 2 |Th§ amount of |nformat|on that |nd|V|'duaI neural gn|t§ enade
about the decision output varies strongly over units and owetrial time. (A)
by (1) sharing information through recurrent excitation b(2) Plotted is the mutual information between spike rates of inigidual neural units
avoiding committing to a decision too early. and the decision (using Equation 9, with 200 ms bins), aligrieby the go cue
Hence in Phase | (slow aggregation) we propose information isat the vertical white line (time scale bar corresponds to 50@ns). Before the go
acquired through a process of sensory accumulation. To imgroy Sue: 0Nl a few units predict the decision, but afterward, may do. Basis for
s . . . .. . classifying neurons: those in Class H encode information Here the go cue,
the I’e||ab||lty of the information given noisy input and propsity those in Class M encode information after but not before the g cue, and
for error at the component level, a sum or other integration those in Class L never encode information. (We group in thisay to
is performed at the population or subpopulation level. This conveniently display the diversity of the behavior of indiual neural units;
is essentially crowd-sourcing. In the measured neurong th thlese groups lare not meant to indicate statistif:ally distict clusters.)(B)
happens during the stimulus.presentation and delay. period " foater seaied s vt st o e o e
(Figure 1). decision, but half a second later (dark blue), many do.

In Phase Il (fast propagation) we propose that information
at the level of units in Phase | is propagated quickly across a
population of cells that may or may not have participated in Phase achieved through increased information ampli cation and
I. The outcome of propagation is neural consensus in so far as $haring.
results in the decision being encoded in each individualroau Finally, we develop a dynamical rate model that
This consensus allows the system to act. explains this behavior in terms of varying distance from
In our study system we nd evidence for both Phase | anda symmetry-breaking transition. In the simplest form of
Phase II. Our results suggest Phase Il occurs post-go-cue atite model, this distance is controlled using a time-varying
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FIGURE 3 | Neurons encode information about the output decision, withdistinct dynamics in Phase | (pre-go cue) and Phase Il (postegcue). (A) Predictive power
with respect to the output decision, for the single most infemative unit in Phase | (light color) and, using LDA, for thengére population (dark color). Information about
the decision grows slowly in Phase | and jumps suddenly in Pis@ Il. The jump happens before the mean time of the saccade, inciaited by the vertical dotted line.
(Note that data after the saccade is likely to be in uenced by igual feedback due to the motion of the eye.B) This qualitative behavior is reproduced by a simple rate
model in which the degree of recurrent excitation is incread in Phase Il. Corresponding mutual informations are plottesh Figure 11.

FIGURE 4 | At the time of the physical implementation of the decision, mcoding shifts: Phase | resembles a population code, wheresain Phase Il individual rates are
predictive. (A) The number of cells required to be measured in order to satute in predictive power is plotted in purple, de ned as the numler needed to reach
performance relative to chance in an LDA encoding that is 95%f performance using all 169 units (red, same as plotted iffigure 3). Up to the time of the go cue,
most neurons individually encode little information abouthe output (see alsoFigure 2), but are highly predictive when the activity of many neuranis combined.
Predictive power saturates only once about 20 neurons haveden measured. Shortly after the go cue, and just before the pical time of the saccade (dotted line), the
population reaches perfect predictive power, while at the ame time individual neurons become highly predictive—manxial information can be obtained by measuring
only one to two neurons. SeeFigure 13 for an analogous plot aligned to the saccade(B) The simple rate model reproduces these qualitative featuse

recurrent excitation among informative neurons. The model Figure 2B compares histograms of mutual information at
demonstrates a fundamental connection between timescalése time of the go cue and 500 ms later, demonstrating that
and redundancy, with the formation of a collective slowwhile no individual neuron encodes more than 0.1 bits of
timescale requiring a population with lower informational information about the decision at the time of the go cue, many
redundancy. individual neurons encode a substantial amount of inforioat
during and after the saccade indicating the decision. This
observation motivates splitting the process into two distinct
4. RESULTS temporal periods, Phase | (pre go cue) and Phase Il (post-go cue)

4.1. Heterogeneity of Individual Information (Figure 1).

over Space and Time o ) )

First, we quantify how much information about the decisian i 4.2. Switching of Collective Information

encoded in individual neural ring rates. We nd substantia from Synergistic to Redundant

heterogeneity over neurons and as a function of time. As showWe next assess whether information about the decision is
in Figure 2A and described in the gure legend, we can groupencoded collectively at the whole population level or within
neurons into three classes based on when their ring patterna subpopulation and how this quantity compares to the
encode information about the decision. information encoded at the individual neuron level.
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TABLE 1 | Qualitative summary of informational properties of each neal class.

Neural class Phase | information Phase Il information

H Synergistic, slow growth Redundant, fast growth
M Uninformative Redundant, fast growth
L Uninformative Uninformative

Though this value is similar to the uncertainty in our esti@af
the mutual information, we can be con dent that it is nonzero
by noting that the LDA encoding can predict the coherence of
out-of-sample trials signi cantly better than chandédure 6A).

FIGURE 5 | A subset of neurons collectively encodes information abouhe 43 |nf0rmati0n ACClJmU|ati0n and
decision in Phase |, and more neurons contain information inffase II. . . .
Information about the decision gradually builds during Phasl in some Consensus Formation US|ng a Dynam|C
neurons (Class H; red), whereas in other neurons (Class M;ange), little Rate MOdel

information is present until just before the saccade repremnting the decision . . . . .
(mean saccade time indicated by dotted line). Class L unitblue) always We explore the relatlonshlp between timescales of inforamai

contain little information. accumulation, memory, and informational redundancy using

a simple dynamical model. We start simply by representing

individual neurons as having a state that (1) is persistenttaen t

. . L . timescale of tens of ms, (2) transiently a ects the statestioéro

e oo oo e i o i g et satraes asaunton of o

than any single neural unit by producing a lower bound on theState’ and (3) is subject to random noise. Thg que] gonsuﬂls of
homogeneous, all-to-all coupled neurons with individualng

mutual information encoded jointly by the entire populatioregs _ ! . .
Methods). As shown ifrigure 3A, this collective encoding is able ratesri D tanhx;, whose dynamics are governed by:

at the time of the go cue to predict the decision on more than dx; X

80% of out-of-sample trials, corresponding to a collectiveuali Gt Ds xxC Cc 1. 1)
information (CMI) reaching about 0.5 bitd~{gure 11A). Shortly jeD

after the go cue, CMI rises to nearly 1 bit, with nearly perfect ) ) ) ) )
out-of-sample predictions. Here,srepresents an input signal with magnitude proportional

Interestingly, at the same time that the collective infotiom ~ [© the coherence of the visual stimulus and sign indicating
jumps to its maximum value, there is a switch in the distritiite th® dominant direction of motiong is the strength of positive
nature of the encoding: many individual units become highlylntéractions between every pair of neurons,D 10 ms sets
informative in Phase Il providing redundant informationhis  the timescale of decay for a sngle neuron, and the nal term
contrasts with Phase I, in which much more information is"€Présents noise with variandg@” [drawn from a Gau323|an
contained at the population level than in any single unit. Todistribution for simplicity:h (to) (tn)i D (1 1)N(0,09].
quantify the redundancy of the encoding, we ask how manysunitsee Methods and Appendix for additional details motivating thi
need to be included in the LDA encoding in order to reach 95040rm for the dynamics. We assume that theneurons are fully
of the maximal collective predictive power. As showiFigure 4, responsible for making the decision, and that the experiment
about 20 units need to be included for peak performance in PhadB€asures some subset of these unfdasured < N). AS
I, but this drops sharply to 1 or 2 at the time of the saccadeSNOWn inFigures 3 4, 6, 8, (see alsdrigures 11 12) we nd
(SeeFigure 13for a version of this plot aligned by saccade time {hat this model can capture both the integration and storage o
showing explicitly that this decrease in distributednessritst the decision during Phase | and the consensus formation and
before the saccade.) propagation of the decision during Phase II.

Figure Sdemonstrates that all information about the decision ~ ©Ur simple dynamic rate model model produces behavior
is encoded in class H units in Phase I, and that this changdBat is critically dependent on the degree of recurrent eatwn,
to include class M units in Phase II. In addition, informatio controlled by&iD N 1), and the amount of neural noise
is acquired over a longer timescale in Phase | than in Phase fiFigure 7). For xed 0, there exists a critical value of recurrent
Table 1summarizes the observed properties of the three classe§Xcitationdl such that forti < &, the only stable attractor is

We also nd information at the population level speci cally 8 E D B D & while fordi> 8, two stable attractordz: and
about the input stimulus, but it is small compared to the E » €merge symmetrically on two sides Bf(see Appendix}.
information about the decision, and is signi cant only dog Bistability is required for persistent activity that remembéhe
Phase I. This can be seenfiigure 11C at its peak during Phase 1This logic can likely be generalized to decision-making involvingrenthan
|, we estimate that the LDA encoding provides only about 0.0, o ions by using Hop eld networks that involve both positive anelgative
bits of information per trial about whether the coherence €t  interactions. An analogous parameterdn that case is the gain in Hop eld
input is strong or weak (out of a possible 1.0 bit; see Appendix)198).
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FIGURE 6 | Neurons encode information about the input stimulus, but mah less than about the output decision. Analogous plots td=igure 3 for predicting the
coherence of the visual stimulus. Information about the cohence is small but visible in Phase I, and disappears in Phase 8ingle unit traces are not included on
these plots because they are not signi cantly different fronzero. Corresponding mutual informations are plotted ifrigure 11.

FIGURE 7 | Long timescales and low redundancy occur near the collecte transition at which memory storage becomes feasible. We pt three aspects of the
collective behavior produced by a simple distributed, dynanic rate model as a function of recurrent excitation and nois, for N D 500. (A) The degree to which the
system can retain a stable memory is measured by the propodn of times one can be successful in predicting the sign of thenean pre-delay state given the
post-delay state. This delineates the transition between mnostable and bistable systems.(B) The system is less redundant near the transition, requiringnore
neurons to be measured to reconstruct the memory(C) The timescale over which certainty in the eventual choice hids (measured as the rst time at which the
predictive power reaches 95% of its nal value) is largest neahe transition. Regions that do not successfully retain a emory (performance less than 0.9) are blacked
out in plots (B,C).

decision during the delay period. The informative direction others; whereas summing over many cells can reliably predict
rate space lies along the vect®D E: Er , which in this simple the behavior of the whole, individual cells do not encode much
model weights all units equally and with the same sign. information. This corresponds to the “synergistic” state bfBe

The degree of recurrent excitatiddalso controls two other 1. As recurrent excitation increases, consensus is moreglyo
aspects of decision-making: (1) the timescalgisionover which  enforced, leading to individuals containing more inforriuat.
information is accumulated and (2) the redundancy of theThis corresponds to the “redundant” state of Phase Il. This
encoding of the decision. dependence is demonstrated figure 7B the number of units

First, the relevant timescale for motion along the decisiorone needs to measure to obtain maximal information is larges
directiontis inversely related to the distance from the instabilitynear the transition point.
threshold 8l (seeFigure 70): e.g., without noise(( D 0), The combination of low redundancy and slow dynamics
8l D 1, and gecision D =(B Nt ). This is the phenomenon therefore suggests that Phase | should correspondl tmly
of “critical slowing down,” which slows motion along when slightly greater thail, and large redundancy in Phase Il suggests
the system is near the threshdlddence, units that forget on a a largerdl Indeed, as displayed iRigures 3 4, 8, the simple
short timescale can still contribute to aggregate-levélab®r  rate model reproduces the qualitative behavior of the sydigm
that integrates over longer timescales. This emergentstimle changing the single parametétbetween Phase | and I, with
has been recognized in “reverberation” modélgafig, 200pas & > &l > bl. Speci cally, the increased redundancy of Phase Il
an essential feature of distributed decision-making. is associated with a faster timescale. Together, theskséaply

Secondly, su ciently close to the threshold, noisy indiveal a dual coding theory for collective decision-making through
cells are only weakly constrained to have a similar statdas tcritical slowing down, summarized iRigure 9.

Additionally, the model explains how neurons responsible

2Too far below the threshold, information is quickly forgotten, at far above for the decision can encode a relatively small amount of
the threshold, a decision is made prematurely. information about the input stimulus coherence. As the attras
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studies of MT, LIP, and prefrontal cortex in which information
is integrated at the population level (essentially through aow
sourcing) in order to increase the accuracy of a decistoii
et al., 2008, 2014; Kiani and Shadlen, 2009; Fetsch et &), 201
and reduce decision latency(k and Shadlen, 2005; Hanks et al.,
2014; Kira et al., 20)5

Neural behavior post-Phase | has received less attention. Ou
results suggest a second phase, during which a large subset of
cells becomes correlated and acquires redundant infoonati
extremely rapidly. This phase of “consensus formation,” in
which information rapidly spreads from the “knowledgeable”
neurons to many neurons, dramatically increases redunganc
in the system. Our simple rate model accomplishes this switch
by changing the degree of recurrent excitation, but it could
alternatively be controlled by external inputs to the circuit

FIGURE 8 | Decision-making model performance decreases if recurrent through a perturbation that moves the system away from the
excitation is large throughout the entire trial. The stren of the model's input symmetry-breaking transition
signals is calibrated with a single parameter such that it reproducethe

empirical performance curve (red circles) using relatiyebmall recurrent Our results suggest Investigating other forms of neural

excitation®y D 1.1 (dark blue triangles). If the model is modi ed to have the decision making to look for similgr dynz_amic consensus
same &lthrough both Phase | and Phase Il (light blue squares), the dision is phenomena. We expect the separation of timescales between
made too quickly and performance decreases at moderately flcult Phases | and Il to be most clear in cases invo|ving a gradua]

coherence levels. Shaded regions represent bootstrapped %6 con dence

interval accumulation of evidence, such as comparing two extended
Intervals.

auditory signals Krlich et al., 2016 In vibrotactile decision
making, a similar mechanism has already been proposed for
carrying out multiple phases of a decision process using a single
representing the decision do not depend on the coherenc@opulation of neurons I(lachens et al., 20)5which suggests
information is only contained in the speed with which thoselooking for comparable patterns of changing consensus.
attractors are approached. This speed is in turn related to the Although there has been little focus on Phase Il and, more
magnitude of the input currentg), which can be small iN is  generally, consensus formation, in neuroscience, the réle o
su ciently large to magnify a small signal. consensus formation in collective computation has been asfoc
Using a simple linear relationship between stimulus coheeen in the study of social processes. For example, search engides an
and input s produces a good t to the observed psychometricauctions illustrate both slow accumulation and fast consensu
function, shown inFigure 8 The gure also demonstrates the (e.g., Leise, 2006; Brush et al., 20QIisee alsoAllesina and
model's prediction (as inWang, 200¥that using the same large Pascual, 200%or related results for food webs). In order to
recurrent excitatiordin both Phase | and Phase Il would lead to agenerate an approximate importance or price for a website
faster decision process, which would integrate the inputslim  or good, information needs to be acquired from a variety of
over a shorter time and therefore produce poorer performance itndependent sources through search trends or bids. At tlrgest

trials with more ambiguous, less coherent visual stimuli. (accumulation of individual decisions), it is best for solre®t
to interact, to avoid premature consensus before all relevant
5. DISCUSSION information can be gathered. Secondary web sites and seller

can then very quickly establish new prices and strategies by

In this study we used information theory and the theorypolling the sale price or popularity of comparable products
of collective phenomena to analyze time series data from faom those that have already accumulated this informatibinis
microelectrode array capturing 169 neural channels in theenerates increased correlations among both markets atd we
prefrontal cortex area 8Ar of a macaque monkey. This is aites (consensus on a collective decision).
well studied area of the brain that has been shown to play Collective computation based on information accumulation
an important role in both visual decision-making and motor and consensus formation has also been observed in the faymati
behavior Kim and Shadlen, 1999; Constantinidis and Goldman-of power structures in primate societiesléck and Krakauer,
Rakic, 2002; Hussar and Pasternak, 2009; Kianietal.,2013, 2006; Flack, 2012; Brush et al., 2013; Brush, in prestividual
Our ndings lead us to propose a coding-duality framework, monkeys acquire information about the ability of other mays
applicable to collective computation in adaptive systems morm the group to use force successfully during ghts, and they
generally, that includes a slow accumulation process in kvhiccommunicate this slowly changing perception using special
information is encoded in populations and a fast consensustatus signalsHlack and de Waal, 20p+signal emission is
formation process in which information is encoded redundgnt the analog to neural ring or linking web pages. The degree of
in multiple individual neurons. consensus or agreement in the group about any single indalisl

In the neural time series studied here, the idea of Phase | ability to use force is its “social powerFlack and Krakauer,
information accumulation is in good agreement with many prio 2006. Consensus about power is encoded in the network of status
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sources, and (2) not all cells have equal access to informatio
and therefore must acquire input from informed cells. We refer
to this requirement as “coding-duality” as it implies a skifim

an emphasis on populations of cells pooling resources in Phase |
to single cells in possession of all adaptive information tigtou
consensus mechanisms in Phase Il.

These results help clarify the debate between proponents
of the modern neuron-doctrine and distributed-representati
theory Bowers, 2009; Quian Quiroga and Kreiman, 20160
the data-set we have analyzed, both processes are occurting bu
at di erent temporal phases of the decision task. By restricting
analysis to only one phase, or averaging over time, the ability
to resolve the bi-phasic distinction is lost and one or the
other extreme—informed single cells or informed populatiofis o
cells—is statistically favored.

FIGURE 9 | Dual coding through critical slowing down. During Phase | #

state of cells is determined largely by the coherence of theput signal,s. A 5 1 Area 8Ar NeuronS P”mar”y Represent
small population of cellsH are able to slowly accumulate information ( lled the Motor Decision, Yet Could Be So|e|y
circles) about the inputs. Cells of typeM and type L accumulate no . .

information (open circles). In Phase Il the informational séaof cells is ReSponS|b|e fOf Mappmg Sensory

dominated by recurrent excitationc among the cells. Cells of typeH and M Information to a Decision

become highly informed whereas cells of typéd remain uninformed. In Phase I,
the system is governed by stochastic dynamics with a timescie set by “critical
slowing down,” in which the system in the initial statdg slowly moves

In prior studies the representational status of areas 8Ar and
LIP has remained ambiguous, and is often described as partly

between two decision stateskc and E . The symmetry is weakly broken by sensory and partly motor. We nd that whereas spiking activity
the coherence of the input signal, slowly biasing the systerinto one state. In in 8Ar cells is strongly predictive of saccadic eye-movesent
Phase Il the symmetry is strongly broken and one of two decisiostates is there is little residual information concerning the viswgimuli

rapidly approached. Accuracy is determined in Phase | wheees consensus is

renched in Phase Il (Figures3 11). In other words, these cells are primarily

predictive of motor behavior and not sensory input, and in this
informational sense are almost purely motor.

signaling interactions just as consensus about value is¢lagch Yet this does not rule out the measured neurons being part
engine example is encoded in links making up the World Widef & group of similar cells that are collectively fully respite
Web. It has been shown in prior work that the same algorithmd©r the decision. In the rate model, the simulated cells are
can be used in both the search engine and power cases to quicly responsible for the decision but measuring a subset of
and e ciently calculate the consensus encoded in the netkwgor € cells reveals only a small amount of information abow th
(Brush etal., 2033 input signal—and even this information is quickly lost once th

In all three examples (neural, search, power) accumulatiofyStem reaches an attractor state representing the deciios, _
is slow and consensus is fast. In the power example it hagcause we ha_ve datg on only a small fraction of all neurons in
additionally been shown that an advantage of this timescald1€Se areas, it is feasible that 8Ar neurons as a whole could be
separation in collective computation is that it produces a ow solely responsible for mapping sensory data onto the decision.
changing yet accurate power structure that serves as aleeliab } )

“packground” against which individuals can, on a fast ticade, 5.2. Relationship to Known Classes of

tune strategies quickly and e ectivelyFlack, 2012; Flack et al., Neurons

2013. Thisis also likely to be true for the search engine casé@ butMany previous studies that attempt to model the perceptual
remains unclear how this kind of “timescale separation depetd decision-making system (e.g.\Wang, 200® and neural
feedback’ could play a role in the neural case. computation more generally (ségsman, 2015for a review)

One additional important di erence between the neural caseéhave focused on interactions within and between two distinct
and the social cases is that in the social cases both acctimnula groups of neurons: the pyramidal neurons and the inhibitory
and consensus can be occurring simultaneously but on di ereninterneurons.
timescales. In the neural case presented here, accumulation These neural classes are typically identi ed from electrode
(Phase ) occurs rstwith consensus (Phase Il) following,this ~ data by di erences in ring rate, spiking waveform, burstirses
may be an artifact of the experimental setup with an externallyand refractory period (e.gGsicsvarietal., 1999; Dibaetal., 2014
forced go-cue. Pyramidal cells are typically more informative about (stec

Inlarge systems that are processing information from mudtipl with respect to) sensory input than interneurons (e.Dipa
sources it is dicult to conceive of any way of achieving anet al., 201} Additionally, sensory selective cells and/or cells
e cient, accurate, coordinated representation of enviroemtal identi ed as pyramidal have been shown in many contexts to
regularities other than through a dual-process dynamic.sTiki re more independently of one another: pyramidal compared
because (1) it takes time to integrate information from nois to parvalbumin-expressing interneurons in the visual cortex
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(Hofer et al., 201} visually responsive neurons in VEc¢ker the phenomenon of “reverberation,” essentially equivalent t
et al., 201)) excitatory vs. inhibitory neurons in the prefrontal critical slowing down. One proposed model also includes
cortex (Constantinidis and Goldman-Rakic, 200Zyramidal separate neurons that act as a switch governing the transitio
vs. interneurons in rat hippocampu®(ba et al., 201¢% This  from information accumulation to decision commitment.¢
suggests classifying our Class H (and perhaps Class M) unitsasd \Wang, 2006 This is distinct from the single-population
pyramidal cells and Class L as interneurons. story we present here, instead hypothesizing that infornmatio
accumulation and consensus happen in di erent brain regions.
. . Generally, these studies have not explicitly addressed the
5.3. Relationship to Other Models of distributedness of neural information, but we expect the misd
Decision-Making may display similar phenomena with respect to population
In Table 2 we compare the model of Equation (1) to relateddynamics, coding, and redundancy. It will be useful in future
binary decision-making models that vary in their level ofale  work to con rm this.
The equations shown here use a single population, but an The model presented in Equation (1) captures the details
equivalent formulation can be found in each case consisting necessary to describe the distributed nature of the compuriati
two competing populationsl{sher and McClelland, 2001; Gold but abstracts away most details of neurobiology. It can beed
and Shadlen, 200.7We do not include models using discrete as a distributed implementation of an Ornstein-Uhlenbeck
neural ring rate states (e.glatimer et al., 2015 which we model Busemeyer and Townsend, 1993; Bogacz et al., 2006;
expect to have equivalent behavior at the collective level. Zhang and Bogacz, 20)l@hat includes biologically realistic
The simplest models are most analytically tractablesaturation of ring rates.
abstracting away both the distributed nature of the compiotat
and mechanisms for saturation and persistent memoryd.4. Outlook
beginning with the simplest drift di usion modelfogacz et al., The results we nd here in the specic case of the random
2008. These models assume that a separate mechanism makigds task in prefrontal cortex hint at more general design
and stores the decision once a stochastic process reache@riaciples for decision-making and collective computatioor F
given threshold. This simple process successfully explains thstance, much attention has been paid to the idea that it may
integration of sensory information, the distribution ofaetion ~be bene cial for collective information processing systetos
times, and accuracy as a function of input coherence. exist near a symmetry breaking transition, or critical point
However, models that do not include decay or saturatior(Langton, 1990; Mora and Bialek, 2011; Plenz and Niebur,)2014
of ring rates cannot explain the loss of information about We can come to a similar but more subtle conclusion in our
the coherence of the input late in the trialFigure 64). dynamic model: a system near a transition (our Phase I) isédde
Di usive models constrained to stay within specied bounds successful in producing distributed, collective states téaain
could potentially alleviate this problem, as could so-calledky ~Mmore sensitive to exogenous inputs (as has been emphasized
integrators' with a state that decays back to a startingav@diani  in “criticality” research; e.g.Shew et al., 2009but reaching
et al., 2008 Such models have been ruled out because thegpnsensus (in Phase Il) requires moving away from the ttansi
predict persistent susceptibility to sensory evidence presenttoward a collectively boring but useful “frozen” state. Laugy
late in the trial, which is not seen in experimentsigni et al., managing, and controlling dynamics with respect to such
2009. transitions and collective states is certainly importamtfot only
Instead, the loss of information about coherence and th@ brain involved in cognition and learning, but in contraity
loss of susceptibility can be parsimoniously explained if th€ollective behavior across many biological and sociaégyst
decision process involves approaching stable attractorsthes
the decision during the delay period. Including feedbackieo 6. METHODS
way to produce multiple attractors. In the simplest case, this . Lo
leads to the Omnstein-Uhlenbeck (OU) modet(semeyer and 6-1. Measuring Association: Mutual
Townsend, 1993; Bogacz et al., 2)®¢hich produces multiple Information
attractors when combining positive feedback with saturatio ~ Mutual information is the information shared by any two strea
boundednessdhang and Bogacz, 20)L0 of dataA andB. This can be thought of in information theoretic
None of these low-dimensional models, however, addregerms as the average number of bits that are revealed a@Bout
the issue of how the computation is distributed over multipleupon measuring. For instance, with representing a ring rate
cells. The noisiness of individual neurons likely necass#t andB the behavioral output (a choice of either left or right), the
larger populations of neurons in order to accumulate persistenmutual information | (A, B) represents how much information
information over longer timescales. the neuron's rate provides about the decision variable. The
Existing models that incorporate collections of cells imgu mutual information betweer and B is the sum of the marginal
those with populations of spiking neurong\fang, 2002; Lo and entropies (the maximum potential information content of the
Wang, 2006; Wimmer et al., 20)1&r of neurons with continuous paired system) minus the joint entropy (the amount of noise in
states governed by noisy dynamic&/qng and Wang, 2006 the paired system); see Appendix.
As in our model, these studies have emphasized the importance In these analyses, we employ rates of neural ring averaged
of recurrent interactions to slow the e ective timescalengsi over time bins of length 200 ms (assuming rate encoding and
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FIGURE 10 | The physical locations of measured neural units. Colored miles indicate units that have signi cant mutual informatio with the decision sometime
before the go cue (Class H, left) and only after the go cue (QGla M, right). Stacked circles indicate multiple neural ursitdetected by a single electrode.

FIGURE 11 | Mutual information with respect to the output decision, anriformation theoretic measure of the predictive power curv&@ Here we plot the mutual
information with respect to the output decision(A,B) and motion coherence(C,D). Note the different vertical scale if{C,D). Trials are split into two equal and randomly
selected halves, with one half treated as in-sample data ugkto calculate quantities for LDA classi cation, and the secad half treated as out-of-sample data whose
ring rates are used to make predictions.

ignoring details about the precise timing of spikes) in order6.2. Linear Discriminant Analysis for

to calculate dependencies among neural and behavioralsstapopulation Encoding

using mutual information. Entropies are estimated using’t®B  To combine neural ring rates into a collective encoding, use
method (Nemenman et al., 2004, 2003e consider a mutual | pA. Given neural rate data from many trials and classi catio
information to be signi cant if itis greater than 0.01 biteughly  of those trials as left decisions and right decisions, LDAms
the resolution of entropy estimation for the amount of data wetg nd the linear combination of neural rates that is most
have, which is also estimated using the NSB method. informative of the class (left or right).
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TABLE 2 | Related perceptual binary decision-making models.

Model Input Noise Decay Feedback Decision mechanism Equilibria
Drift diffusion Bogacz et al., %% = s C Threshold
2006)

Leaky integrator Kiani et al., d—’t‘ = s C X Threshold
2008)
Ornstein-Uhlenbeck (OU) %% = s C X Ccx Threshold
(Usher and McClelland,
2001)

. P
Distributed saturating OU % = s C X Cc i r(x;) Attractor
[Equation (1)]
Distributed spiking models Detailed spiking dynamics Attractor

(Wang, 2002)

In the Equilibria column, we schematically represent equilibria algrthe dimension of the decision variable, assuming ¢ 1. T, threshold; S.E., stable equilibrium; U.E., unstable
equilibrium.

LDA makes the simplifying assumption that data from eachThus, positiveL(E corresponds to a (maximum likelihood)
class is produced by a multidimensional Gaussian speci ed byrediction thatEcame from a left trial, and negative to prediction
the observed meale and covariance matriC for each class of aright trial.

. In this case, projecting any given data vedatong the LDA

vector, de ned as 6.3. Dynamic, Stochastic, Distributed

ED (C.CC) ! (B E o), ) Decision-Making Model
Equation (1) describes a dynamic Hop eld networkip eld,

produces a number designed to be informative about the class’®9 that includes Gaussian noise on neuron states and is

from which the data vector came (with maximal performancereStriCted to uniform positive interactions among all cells.
We imagine that we measure some subNgfeasureqdOf N

guaranteed whe; D Cy). That is, the LDA vectof provides - - ure X
gneurons that are collectively responsible for the decisioth no

a weighting of individual neural rates that, when summe . -
approximately maximally separates the two classes. input from other areas of the brain except for a temporary signal

LDA simultaneously provides a framework for predicting theS Which is proportional to the signed coherence of the visual
output given rate data. Looking at any given set of rdethe  Stimulus.

LDAs estimate of the relative log-likelihood of left vgghit can Although .this simplli ?d picture does not include spiki.ng.,
be written as: models that include spiking have been shown to produce similar

behavior {Vang, 200. Our model can be mapped onto a model

likelihood Ecame from left trial with separate populations that are positively selective for leftwa
L(B D log likelinood Ecame from right trial ®)  and rightward §timu|i by assuming thgt (1) the variablgs
2 represent the di erence from a typical ring rate, (2) oppositely
1 (EEq. B : : e :
D ZlogE C ® ——F—2 selective cells are mapped ontp with opposite sign while
2 28 G & ) simultaneously changing the sign gfand the sign ofg; when
1 (E E2 B i andj are oppositely selective cells, corresponding to mutual
Célog(E G Be 26 C; £ “) inhibition between opposite populations.
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7. APPENDIX As the strengtltof recurrent excitatory interactions increases,
. there is a transition from one stable stateraD O to two stable
7.1. Experimental Data

. | d ided b beh Kiani statesati D r . Without noise 0 D 0) and assuming identical
Experimental data were provided by Roozbeh Kiani angqqiiqualsr; D r, the dynamics becomes one-dimensional:
William Newsome. Data were gathered in accordance with the

recommendations of the National Institutes of Health Gusde
for the Care and Use of Laboratory Animals. The protocol

was approved by the Stanford University Animal Care and . o
Use Committee (IACUC number 9720). The data is a subsé%‘S can b_e seen .by measuring t_he stat_)mty of thel .0
state (taking a derivative of Equation 8 with respecijpthis

of that described in Kiani et al. (2014, 201} Details of the { it bif " . trolled by the d ; ¢
stimulus and eye monitoring method are explained in those 2nstion (bifurcation) is controlled by the degree of teten

references. Neural spiking data consists of spike times megsu excitationdl D C(N. 1)’.W'th the_t_ransmon oceurring at;l D
8l D 1. Above the instability transition and neglecting noise, the

at a resolution of 1/30 ms for 169 neural units using a 4 mm o ) .

4 mm multielectrode array (seBigure 10. Data includes nal state retains inde nitely a perfect memory of the signtoge
1,778 trials taken from one animal in one recording sessidth input s. Furthermore, the characteristic timescale of moving away
the signed coherence of the stimulus for each trial chosen Ljﬁom x D 0, which sets th.e timescale for_the de(_;|_3|o.n Process, 1s
random from the sef 0.32 0.16. 0.08. 0.04 002 001 inversely related to the distance from this transitiogecision D

. : ' ¥ ’ ' =(d 1). When noise is addedd( > 0), the attractors are

0,0.01,0.02,0.04, 0.08,0.16,0.82her task data for each trial destabilized. but ¢ ivalent stability to b b
include the direction of the decision saccade as well asithest  °©° .a fiized, but we gxpec equivaient sta ”.y 0 be reghby
moving to largeml This dependence @ on O is demonstrated

of the onset of the stimulus, end of stimulus, go cue, and respo

% Ds xCcdN 1)tanhx. (8)

in Figure 7.
saccade. The remaining parameters of the model can be set
7.2. Dynamic, Stochastic, Distributed by matching the qualitative characteristics of informatibn

dynamics observed in the data (§&gures 3 4). First, the degree
of recurrent excitation is set to roughly match the timessakith
which information increases in Phases | and Il: with no noise,
& D 1.1 corresponds to accumulation on the scale of 100 ms in
Phase |, an@D 1.5 to a faster timescale of 20 ms in Phase II.
Second, because the dynamics is only slightly perturbedeéoy th
input (Figure 110, we next ses D 0 and match the behavior of
information redundancy Figure 4A) solely by varying the total

Decision-Making Model

In a continuous-time model of neural activityd1pp eld, 1984;
Beer, 199 the time derivative of the state of synapse is the
sum of external inpus, leak current proportional ta, and input
from other neurons in the system. Input from each other neuron
is assumed to be proportional to its current ring ratg which is
asigmoidal function of its current statg:D g(xj). This produces:

dx; X number of model neurondl, the number of measured neurons
gt Ds xiC gg(x), (5)  Nmeasured @and the amount of nois®. As N becomes larger,
joD we expect that a largdr will produce the same dynamics and

variance along the decision dimensi&while corresponding to

where the timescale of the cell returning to equilibrium ireth 5561 nojse and thus less information carried by indivitifwe
absence of other signals is set hyFor simplicity, we assume {'that N D 500,NmeasuredD 5, and0 D 0.16 reproduces the

complete homogeneity, with all-to-all synaptic connectiarfs qualitative features of the two phases. We do not attempt here to
strengthc, constant individual timescales D, andg(x) D ggtimate the number of neurons truly involved in the decision

ri D tanh(x): making process; this will require a more sophisticated model
dx; X than presented here. Speci cally, this model does not capture
m Ds xCc tanh(x). (6) the strong heterogeneity that exists even within the de ned ¢
j 6D classes, which will be important to estimating the actual nemb
] ) ) ) ) of required cells.
Adding a Gaussian noise term, with h(to) (t2)i D Finally, we set the form of the external inpstrepresenting
(1 to)N(0,0%), we obtain Equation (1): transient sensory information. We assume that each celivese
dx X input that is proportional to the signed coherence of the visual
I Ds xiC Cc 1 (7) stimulus (with sign determined by the dominant direction of
j 6D motion): s D & for coherence . The signal is applied for

the duration of the visual stimulus, 810 ms, after which it is
The timescale is set at 10 ms to match the order of magnitude ofset to zero. The proportionality constast is set by roughly

the characteristic timescales of synaptic receptioisr¢no-Bote  matching the proportion of correct decisions as a function of

and Parga, 2030 coherence Figure 8. The values of all model parameters are
Importantly, we expect the qualitative features of theisted inTable 3
relationship between timescales and redundancy to be sitea We emphasize that there are very likely other sets of

to the exact form of the dynamics. These features are producgshrameters that equally well match the qualitative featofeke
near any collective transition displaying critical slowthgwn, as
described below. 3The exact scaling witN is not obvious in this strongly interacting system.
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TABLE 3 | Stochastic dynamic model parameters used throughout the pper,
unless otherwise speci ed.

10 ms
N 500
Nmeasured 5
Sc 0.03
c(N 1) 11
cyiN 1) 15
0 0.16

In Figure 7, Nmeasured D 25.

data, so the values of the individual parameters are not meant
represent best choices to be used in other contexts. Fomosta
moving along the transition line irFigure 7 produces largely
equivalent behavior, demonstrating that distance from ploat

of instability is most important. We use the model not to infer
speci ¢ parameters for individual level behavior, but ratii&yto

PP
SA,B) D i jP(ai,by)logP(a;,bj), and the mutual
information is given by the dierence of the total possible
entropy of the paired data and its actual entropy:
I(A,B)D SA)C§B) SAB). 9)
Intuitively, 1 (A, B) measures the reduction of uncertainty about
the state oB when given the state &, and vice versa.

7.4. Lower Bound on Mutual Information
via LDA

Estimating the mutual information between the collectivéng
pattern of the measured neurons and a behavioral variable
requires estimating the entropy of each (Equation 9). Thecgpt
of the neural ring is di cult to calculate because it has mgn
dimensions and thus many possible stafes.

If we hypothesize a speci ¢ encoding, however, we can use
the Data Processing Inequality to produce a lower bound on

show that it is possible to reproduce the behavior seen in botH'®€ mutual information. LDA constitutes such a hypothesis; by
temporal phases using a simple model, and (2) to demonstratgansforming the neural rate dafaat a given time into a single

the close relationships among distance from instabilipegscale
of accumulation, and redundancy of representation.

The model simulation recapitulates the timing of trials.
In Phase |, withtl D Bl and initial conditionsr; D 0 8i, the

continuous variablesr D E E(with #Zgiven by Equation 2), the
mutual information ofv with the variable in question provides a
lower bound on the true mutual information.

In Figure 11, to estimate the entropy of the LDA projectian

stimulus is presented for 810 ms, followed by an 810 ms deléﬁrged to calculate the lower bound on the CMI, we bin values for

period* during whichs D 0. The signed coherence takes valued N0 Ne equally-spaced bins (witNg

f 0.32, 0.16, 0.08, 0.04, 0.02, 0.01, 0,0.01,0.02,0.04,
0.08, 0.16, 0.3Rwith each signed coherence simulated 140 time
for a total of 1820 simulation trial%.Phase Il consists of two
more 810 ms time periods with increasétD b, with initial
conditions given by the nal timestep of Phase I. Integratio
is performed using straightforward Euler timesteps, with 50
timesteps per 810 ms time period. Decreasing the step size b
factor of two does not qualitatively a ect the results.

7.3. Details about Mutual Information

Ns) and use the NSB
method (Nemenman et al., 2004, 2Q@h this reduced space. We
ghooseNg D 30 by increasindNg until the mutual informations
shown inFigure 11saturate.

7.5. Details about Figure 3

d\leural rates are calculated using a bin width of 200 ms for

measuring information about the decisioRigure 3) and 500 ms

Xet measuring information about the coherence of the stioul

(Figure 6). “Best unit in Phase I” refers to the unit with largest
average mutual information in 200 ms time bins in Phase I (ia t

The mutual information is a standard measure of dependencé000 ms before the go cue). Data is split randomly into an equal

in information theory. Calculating mutual information
between random variabled and B begins with estimating
the probabilities of all possible pairs of states Af (with
states aj,ap,...) and B (with states by, bp,...). Call these
probabilities P(ag,b1), P(a1,b2),P(az,b1),.... The marginal
entropy §B) measures the number of bftsnecessary to
communicate the state d8 without IJ;nowing the state ofA.
This m?_,rginal entropy§B) D J-P(bj)logP(bj), where
P(b) D P(@,bj)sums over the unknown stateg Similarly,
SA) D i P(a)logP(a) with P(a) D  ;P(a,b).
Finally, the joint entropy measures the number of bits
necessary to describe the combined state fofand B:

4 The duration of this delay period was randomized in the experimentingk
values between 300 and 1500 ms, in order to avoid anticipatioheofio cue. We
do not include this variation in our simulations as we do not exgetd a ect the
results—the behavior of the model during the delay period is largatjcst

5In the experiment, the coherence level was chosen at random fronsétifor
each trial, so the number of trials per coherence was not preciselyromifo
6Measuring entropy in bits corresponds to taking logarithms with bage the
following formulas.

number of in- and out-of-sample trials; we plot the resulting
mean (line) and standard deviation (shaded area) over 20asfe
random partitions in the case of predicting the output decision,
and 100 partitions in the case of predicting motion coherence.
To test the amount of information present about coherence
of the input, we split the trials into “strong coherence” tgal
(coherence value equal to 0.08, 0.16, or 0.32; 820 triadsiviee!
frequency 0.461) and “weak coherence” trials (coherenteva
equal to 0, 0.01, 0.02, or 0.04; 958 trials; relative frequenc
0.539). Mutual information and out-of-sample prediction are
measured with respect to the binary classi cation of strong
vs. weak, leading to a maximum possible mutual information
of 0.46110og0.461 0.53910g0.539D 0.996 bits. Previous
studies have found that variation in ring rates is opposite in
sign depending on the output directiorsfadlen and Newsome,

7Even if we bin the spikes into time intervals and create binary datguarantee

a gooﬁ estimate of the entropy, we need a number of sanfles 2N (or perhaps

Ns 2N using a method such as NSB). With 1778 trials, we can reliably estimat
the entropy only ifN < log, Ns D 10.8 (or perhap®l < 2log,Ns D 21.6), so
using all units, even restricted to one of our de ned classespipassible.
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FIGURE 12 | Informational redundancy decreases during Phase | and incases during Phase Il. Redundancy is measured by Equation 10, thisimilar dynamics
displayed in(A) the neural data and(B) the simple rate model.

FIGURE 13 | Changes to distributedness happen prior to saccade. The I¢fplot is the same asFigure 4A , and the right half shows the same calculation using data
aligned at the saccade start instead of the go cue (and usingd0 ms time bins). Note that the decrease in the number of uniteeeded to saturate predictive power
begins before the saccade.

200). For this reason, without knowing the eventual output,ideal for future experiments in that we expect it to become
di erences in ring rates due to stimulus coherence tend to beuninformative for largeN when individual neural behavior is
invisible using the linear LDA encoding. The coherence LDAheterogeneous. If there is some small fraction of neurorsd th
calculations and predictions are thus performed separately iare individually very informative (as was found #hadlen and
the two output direction conditions and then averaged; thisNewsome, 2001then the number of units needed to reach the
corresponds to the task of predicting the coherence of theasigncollective performance will always approach 1Necomes

given both neural ring rates and the eventual output directi large. Alternatively, we can use an information theoretiaswee
In Figure 11, we plot the mutual information measures of redundancy that also takes into account the number of very
corresponding to the predictive power plottedkigure 3. informative units. We use here the relative redundancy:

| @ll units, decision)

i 1(ri, decision) ' (10)

7.6. Details about Figure 4 RD1
To measure the number of units needed to reach a certain
predictive performance, we add neurons one at a time ordereéstimating the collective and individual mutual informaitis in
by their individual mutual information with the output at the the same way as ifigure 11 This redundancy is plotted as
given time (calculated with bin width 200 ms). Plotted linesa function of trial time in Figure 12 The story is the same
indicate means and shaded regions indicate standard dengat as that told byFigure 4 Units become more redundant in the
over 20 realizations of in-sample and out-of-sample partiti@yi  information they encode about the output near the time of the
as described above with regardRigure 3 saccade in Phase Il.

Thoughitis intuitive, our measure of the number of individlu Finally, we would like to test directly the extent to which
units needed to reach the collective performance may not bihe change in redundancy happens before or after the saccade.
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Aligning by the saccade time instead of the go cue, and usingads to worse performance (as ifeanne et al., 2013
a smaller time window of 100 ms for ner temporal resolution, originally explored in Abbott and Dayan, 1999 Yet
produces the right half oFigure 13 We see that the abrupt this is not easily connected to optimizing interactions
increase in collective information and decrease in disitéloiness  for decision-making, because changing interactions in a
begins before the saccade. This rules out an interpretation idynamical context does not typically leave means and vaggnc
which the change is caused only by visual feedback cominged.
from the execution of the eye movement. The datapoint at
t D 0 corresponds to a time window from 50 ms before tog ETHICS STATEMENT
50 ms after the saccade, during which it is unlikely that any
visual feedback signal has reached the measured neuro@s. E\his study was carried out in accordance with the
ignoring this datapoint, however, the number of units neededecommendations of the National Institutes of Health Guides
to saturate predictive power decreases signi cantly befbe t for the Care and Use of Laboratory Animals. The protocol was
saccade: Saturation using rates in the 100 ms prior to the go capproved by the Stanford University Animal Care and Use
requires 23 5 units, whereas the 100 ms prior to the saccad€ommittee (IACUC number 9720).
requires 11 2 units (and a 100 ms window 250 ms after the
saccade requires 2.80.4 units, in each case averaged over 20 inA UTHOR CONTRIBUTIONS
and out-of-sample shu es, as ifrigure 4).
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7.7. “Wisdom of the Crowd” Argument performed the data analysis.
Besides avoiding premature saturation, another argument fo
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