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Self-driving cars are posing a new challenge to our ethics. By using algorithms to make
decisions in situations where harming humans is possible, probable, or even unavoidable,
a self-driving car's ethical behavior comes pre-de�ned.Ad hoc decisions are made in
milliseconds, but can be based on extensive research and debates. The same algorithms
are also likely to be used in millions of cars at a time, increasing the impact of any inherent
biases, and increasing the importance of getting it right. Previous research has shown
that moral judgment and behavior are highly context-dependent, and comprehensive
and nuanced models of the underlying cognitive processes are out of reach to date.
Models of ethics for self-driving cars should thus aim to match human decisions made
in the same context. We employed immersive virtual reality to assess ethical behavior
in simulated road traf�c scenarios, and used the collected data to train and evaluate a
range of decision models. In the study, participants controlled a virtual car and had to
choose which of two given obstacles they would sacri�ce in order to spare the other. We
randomly sampled obstacles from a variety of inanimate objects, animals and humans.
Our model comparison shows that simple models based on one-dimensional value-of-life
scales are suited to describe human ethical behavior in these situations. Furthermore,
we examined the in�uence of severe time pressure on the decision-making process. We
found that it decreases consistency in the decision patterns, thus providing an argument
for algorithmic decision-making in road traf�c. This studydemonstrates the suitability
of virtual reality for the assessment of ethical behavior inhumans, delivering consistent
results across subjects, while closely matching the experimental settings to the real world
scenarios in question.

Keywords: self-driving cars, moral judgment, ethical decisio ns, modeling, virtual reality, value-of-life scale, time
pressure

INTRODUCTION

Privately owned cars with autopilots �rst became a reality with a software update which Tesla
Motors released to its �eet in October 2015, and many comparable systems will be on the market
soon. While initially, these systems are likely to be restricted to highway use, they will eventually
make their way into cities, with estimates predicting autonomous vehicles (AVs) dominating road
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tra�c by the 2040s (Marcus, 2012; Litman, 2014). The new
technology is expected to reduce the number of car accidents
signi�cantly: The German Federal Statistics Agency reportsthat
in 2015, 67% of all accidents with injuries to people were
caused by driver misconduct. A 2008 survey by the National
Highway Tra�c Safety Administration (NHTSA) even showed
that human error played a crucial role in 93% of tra�c accidents
in the US. These numbers outline the enormous potential of
self-driving cars regarding road safety. In fact,Johansson and
Nilsson (2016)claim that self-driving cars will adjust their driving
style and speed such that safe handling of any unexpected
event is guaranteed at all times. However, this approach appears
unrealistic for many mixed tra�c (human and AVs) and inner
city scenarios. To ensure absolute safety even in very unlikely
events, the car would have to drive in an overly cautious manner,
and as a result may be switched o� by many drivers, or tempt
other drivers to engage in risky overtaking. Other rare events,
such as a distracted human driver swerving into the opposite lane,
seem very hard to evade altogether under any circumstances.
Even when completely taking human drivers out of the equation,
we are left with a considerable number of accidents, caused,for
instance, by technical or engineering failure (Goodall, 2014b).
Altogether, with over a billion cars in operation worldwide, the
sheer amount of tra�c virtually guarantees that, in spite of the
overall expected reduction of accidents, critical situations will
occur on a daily basis.

With accidents involving autonomous cars being and
becoming a reality, ethical considerations will inevitablycome
into play. Any decision that involves risk of harm to a human
or even an animal is considered to be an ethical decision.
This includes everyday decisions, e.g., deciding if and when to
take a minor risk in overtaking a cyclist. But it also includes
quite rare situations in which a collision is unavoidable, but a
decision can be made as to which obstacle to collide with. By
relying on algorithms to make these decisions, a self-driving car's
ethics come pre-de�ned by the engineer, whether it's done with
sophisticated ethical systems or simple rules such as “alwaysstay
in the lane.” This development poses a new challenge to the
way we handle ethics. If human drivers are in an accident and
make a bad decision from an ethical standpoint, we count in
their favor that they had incomplete knowledge of the situation
and only fractions of a second to make a decision. Therefore,
we typically refrain from assigning any blame to them, morally
or legally (Gogoll and Müller, 2017). Algorithms in self-driving
cars, on the other hand, can estimate the potential outcome of
various options within milliseconds, and make a decision that
factors in an extensive body of research, debates, and legislations
(Lin, 2013). Moreover, the same algorithms are likely to be used in
thousands or millions of cars at a time. Situations that are highly
unlikely for an individual car become highly probable over the
whole �eet. This enhances the importance of getting it right,and
unpreparedness to handle this type of situation may result in a
signi�cant number of bad decisions overall.

Ultimately, moral decision-making systems should be
considered a necessity for self-driving cars (Goodall, 2014a). The
present study addresses the question of how to assess and how
to model human moral decision-making in situations in which

a collision is unavoidable and a decision has to be made as to
which obstacle to collide with. We conducted a virtual reality
(VR) study in which participants had to make exactly this type
of decision for varying combinations of obstacles, and used the
obtained data to train and evaluate a number of di�erent ethical
decision-making models. In the next section, we will review the
current state of psychological research with respect to moral
judgment and decision-making, and derive the outline for the
present experiment.

The Psychology of Moral Judgment
The scenario in this study can be seen as an adaptation of
the trolley dilemma, a thought experiment commonly used in
research on moral judgment and decision-making, in which a
runaway trolley is heading toward a group of �ve people. The
only way to save these �ve is to pull a lever and divert the trolley
onto a di�erent track, killing a single person instead (Thomson,
1985). The utilitarian choice here is to pull the lever and sacri�ce
one person in order to save �ve. By contrast, deontologism
focuses on the rights of individuals, often putting these ahead
of utilitarian considerations. From this perspective, the act of
killing a person would be considered morally wrong, even if
it means saving �ve other lives. In a popular alteration of the
trolley problem, called the footbridge dilemma, the subject �nds
themself on a bridge over the tracks with a stranger. Pushing
the stranger o� the bridge in front of the oncoming train
would stop the train and save the �ve people standing on the
track. Interestingly, most people say they would pull the lever
in the original trolley dilemma, but only a minority also says
they would push the stranger o� the bridge in the footbridge
dilemma (Greene et al., 2001). An extensive body of psychological
research is concerned with the a�ective, cognitive and social
mechanisms underlying this judgment, our ethical intuitions and
behavior (Huebner et al., 2009; Christensen and Gomila, 2012;
Cushman and Greene, 2012; Waldmann et al., 2012; Avramova
and Inbar, 2013). Most prominently, the dual process theory, put
forward byGreene et al. (2004), proposes two distinct cognitive
systems in competition. The �rst is an intuitive, emotionally
rooted system, eliciting negative a�ect when behavioral rules
are violated, favoring decisions in line with deontologicalethics.
The second one is a controlled, reasoning-based system, favoring
decisions corresponding with utilitarian ethics. Greene'sdual-
process theory thus explains the di�erent endorsement rates of
utilitarian behavior in the trolley and footbridge dilemmaby
the more emotionally engaging nature of the latter. Pushinga
stranger o� a bridge instead of pulling a lever requires personal
force and uses harm as a means to an end, rather than as a side
e�ect, both increasing the emotionality of the situation, andthus
shifting focus to the system favoring deontological ethics (Greene
et al., 2001). Similarly, framing a dilemma as more personal (“I
would do...” instead of “it is acceptable to...”) and increasing
the emotional proximity to the potential victim will also result
in fewer utilitarian choices (Greene et al., 2001; Tassy et al.,
2013). Neuroscienti�c evidence is provided byTassy et al. (2012),
showing that disrupting the right dorsolateral prefrontal cortex,
associated with emotional processing, increases the likelihood
of utilitarian responses.Valdesolo and DeSteno (2006)found
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an increased probability of utilitarian responses when inducing
positive a�ect, arguing that the positive a�ect may cancel out the
negative a�ect connected to rule violations.

However, the dual-process theory, based on the emotion-
cognition distinction is not undisputed.Cushman (2013)
argues that while a distinction between competing processes is
necessary, the distinction between a�ective and non-a�ective
processing is inadequate, since both processes must involve
cognition, as well as a�ective content. Instead, he proposes a
distinction based on two cognitive mechanisms borrowed from
the �eld of reinforcement learning. The �rst is an action-based
system, assigning reward values to possible actions in a given
situation. These reward values are learned from experience and
statically assigned to a given situation-action-pair. The second
mechanism is outcome-based and relies on an underlying world
model. In simpli�ed terms, it predicts the consequences of the
possible actions in a given situation and reassigns the valueof
the consequence to the action that leads to it. In the trolley
dilemma, the outcome-based system would favor utilitarian
behavior, and the action-based system would not intervene
because the action of pulling a lever is not generally associated
with negative reward. Conversely, the action of pushing a person
o� a bridge is associated with negative reward, thus explaining the
lower endorsement rates of utilitarian behavior in the footbridge
dilemma. Further evidence in favor of the action vs. outcome
distinction in dual-process models is given, e.g., inCushman et al.
(2012)andFrancis et al. (2016).

In another theory in the realm of moral judgment,Haidt
and Graham (2007)aim to explain di�erent views of opposing
political camps (liberals and conservatives) with a model of
morality based on �ve factors, and the relative importance ofeach
of these factors to members of the political camps. Finally, based
on a large body of neuroscienti�c evidence,Moll et al. (2008)
propose a detailed account of moral emotions as the foundation
of our moral judgment. While none of the two entail concrete
predictions with respect to moral decision-making in the trolley
dilemma and similar scenarios, they demonstrate that the scope
of the dual-process theories is limited, and that we are a longway
from a comprehensive theory about the cognitive mechanisms
governing our moral judgment and behavior.

Virtual Reality Assessment and Effects of
Time Contraints
While most of the aforementioned research relies on abstract,
text-based presentations of dilemma situations, a growing
number of studies makes use of the possibilities provided by
virtual reality (VR) technology. VR, and in particular immersive
VR using head-mounted displays (HMDs) and head-tracking,
allows assessing moral behavior in a naturalistic way, immersing
the subject in the situation, providing much richer contextual
information, and allowing for more physical input methods. In
an immersive VR version of the trolley dilemma,Navarrete et al.
(2012)were able to con�rm the utilitarian choice's approval rate
of 90%, previously found in text-based studies. Further, they
found a negative correlation between emotional arousal and
utilitarian choices, in line with the predictions of the dualprocess

theory. In contrast to this,Patil et al. (2014)found both emotional
arousal and endorsements of utilitarian choices to be higher in a
desktop-VR setting with 3D graphics on a desktop screen than in
a text-based setting. While hinting toward a possible distinction
between moral judgment and behavior, the results also suggest
that features other than emotional arousal play a major role
in our moral judgment. The authors argue that the contextual
saliency (including a depiction of the train running over the
virtual humans) may have shifted the subjects' focus from the
action itself toward the outcome of their decision. The tendency
to favor utilitarian judgment would then �t Cushman's account of
the dual-process theory. In a similar study byFrancis et al. (2016),
participants were confronted with the footbridge dilemma, either
in an immersive VR environment or in a text-based scenario. In
the text-based condition, endorsement of the utilitarian choice
was low at around 10%, in line with expectations based on
previous assessments. In the VR condition, however, subjects
opted to push the stranger o� the bridge in up to 70% of the
trials. These results are again in line with Cushman's account of
the dual-process theory, and make a strong case for the notion
of moral judgment and moral behavior being distinct constructs.
In a di�erent approach,Skulmowski et al. (2014)varied the
standard design of the trolley dilemma in multiple ways. First,
they virtually placed participants in the trolley's cockpit instead
of a bystanders' perspective. Second, they designed the trackto
split into three and blocked the middle track with a stationary
trolley, which had to be avoided. Participants were thus forced to
choose between the outside tracks, precluding the deontological
option of not intervening in the situation. Third, the subjects
had to react within 2.5 s after the obstacles became visible.
Finally, in addition to varying the number of people on the
available tracks, the authors added a number of trials with only
one person standing on either of the available tracks. These
di�ered in gender, ethnicity, and whether the person was facing
toward the trolley or away from it. Unsurprisingly, the group
was saved in 96% of the the one-vs.-many trials. In the single
obstacle trials, signi�cant di�erences were only found in the
gender condition (deciding between a man and a woman), with
men being sacri�ced in around 58% of the cases.

The natural passing of time is a feature inherent to VR studies
of this kind. While in principle, it would be possible to pause
time in the virtual world, doing so might break immersion
and would likely lessen the ecological validity of the obtained
results. The previously mentioned studies all imposed some
time constraints, but no systematic variation of response time
windows was performed. Nevertheless, the dual-process theories
would predict time pressure to in�uence our moral judgment.
The action-based system in Cushman's account of the dual-
process theory is thought to be simple and quick, while the
outcome-based system involves higher cognitive load and is
ultimately slower. Greene's account of the dual-process theory
suggests that in emotionally engaging dilemmas, the controlled
cognitive system needs to override the initial emotional response
before making a utilitarian judgment (Greene, 2009). Indeed,
increased cognitive load during decision time was shown to
increase response times in personal dilemmas, when a utilitarian
response was given (Greene et al., 2008). Paxton et al. (2012)
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showed that moral judgments can be changed with persuasive
arguments, but additional time for deliberation was required
for the change to occur. To the best of our knowledge, so far
only one study systematically varied the length of response time
windows. InSuter and Hertwig (2011), participants were either
restricted to give a response within 8 s, or they had to �rst
deliberate for 3 min. For high-con�ict scenarios, such as the
footbridge dilemma, higher time pressure led to fewer utilitarian
responses. A second experiment in the same study supports this
�nding. When no time limitations were given, but one group
was instructed to respond intuitively, and the other group was
instructed to deliberate before entering a reaction, the intuitive
group's response times were a lot shorter than the deliberate
group's, and they gave fewer utilitarian responses.

In conclusion, VR studies have shown the importance of
contextual cues for our decision-making and provide intriguing
evidence for a distinction of moral judgment and behavior.
Moreover, time constraints, as an inherent feature to VR setups,
have been recognized as a factor in our moral decision-making.
There is evidence suggesting that longer deliberation may
facilitate utilitarian decisions in certain complex scenarios, but
we still lack a systematic analysis of the in�uence of time pressure
on moral judgment.

Modeling of Human Moral Behavior
An important criterion that an ethical decision-making system
for self-driving cars or other applications of machine ethics
should meet is to make decisions in line with those made by
humans. While complex and nuanced ethical models capable
of replicating our cognitive processes are out of reach to date,
simpler models may deliver adequate approximations of human
moral behavior, when the scope of the model is con�ned to a
small and speci�c set of scenarios. Value-of-life-based models
stand to reason as a possible solution for any situation in which
a decision has to be made as to which one of two or more
people, animals, other obstacles, or groups thereof to collide
with. An account of a value-of-life model that is focused on
a person's age is given byJohansson-Stenman and Martinsson
(2008). The authors conducted a large-scale survey in which
people had to indicate in several instances, on which of two
road-safety-improvement measures they would rather spend a
given budget. The available measures di�ered with respect to
the age and expected number of people that would be saved,
as well as whether the ones saved would be pedestrians or car
drivers. The authors used a standard probit regression modelto
�t the observed data, and found that not the number of saved
lives, but rather the number of saved life-years to be the most
important factor in the subjects' decision, allowing for speci�c
values of life to be assigned to each age group. Beyond this,
they found pedestrians to be valued higher than car drivers of
the same age, indicating consent as a factor in the valuation.
While discriminating between potential human crash victims
based on age, or possibly gender, is unlikely to gain general public
acceptance,Goodall (2014a)suggests using value-of-life scales
in cases where higher-level rules fail to provide the system with
clear instructions. Furthermore, if we take animals into account,
value-of-life scales stand to reason as a way of dealing withvastly

di�ering probabilities. When a decision has to be made between
killing a dog with near certainty and taking a 5% risk of injuring
a human, how should the algorithm decide? We don't seem to
take much issue with assigning di�erent values of life to di�erent
species, and a system favoring pets over game or birds might be
acceptable in the public eye. While this makes the case for at least
some form of value-of-life model, it remains to be seen to what
extent such models are able to capture the complexity of human
ethical decision-making.

Deriving and Outlining the Experiment
As discussed in previous sections, our moral judgment is highly
dependent on a wide variety of contextual factors, and there is
no ground truth in our ethical intuitions that holds irrespective
of context. We thus argue that any implementation of an
ethical decision-making system for a speci�c context shouldbe
based on human decisions made in the same context. To date,
our limited understanding of the cognitive processes involved
prevents us from constructing a comprehensive ethical model
for use in critical real-world scenarios. In the context of self-
driving cars, value-of-life scales stand to reason as simplemodels
of human ethical behavior when a collision is unavoidable, and an
evaluation of their applicability in this context is the main focus
of this study.

To this end, participants were placed in the driver's seat of a
virtual car heading down a road in a suburban setting. Immersive
VR technology was used to achieve a maximum in perceived
presence in the virtual world. A wide variety of di�erent
obstacles, both animate and inanimate, were randomly paired
and presented in the two lanes ahead of the driver. Participants
had to decide which of the two they would save, and which
they would run over. Since prolonged sessions in immersive
VR can cause nausea and discomfort, we opted for a pooled
experimental design with short sessions of 9 trials per condition
and participant. We thus pooled the trials of all participants,
and used this data set to train three di�erent logistic regression
models to predict the lane choice for a given combination of
obstacles. (1) The pairing model uses each possible pairing of
obstacles as a predictor. Here, a given prediction re�ects the
frequency with which one obstacle was chosen over the other in
the direct comparisons. Since an obstacle is not represented with
a single numerical value, the pairing model is not a value-of-life
model, but serves as a frame of reference. (2) The obstacle model
assigns one coe�cient to each obstacle and uses the obstacles'
occurrences as predictors. We interpret these coe�cients as the
obstacle's value of life. (3) The cluster model uses only one
coe�cient per category of obstacles, as they resulted from a
clustering based on the frequency with which each obstacle
was hit.

We compare the three di�erent models to test a set of
hypotheses. Our �rst hypothesis was that a one-dimensional
value-of-life-based model (i.e., the obstacle model) fullycaptures
the complexities of pairwise comparisons. The obstacle model
should thus be as accurate as the pairing model. This would
mean that our ethical decisions can be described by a simple
model in which each possible obstacle is represented by a single
value, and the decision which obstacle to save is based only on
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these respective values. We further hypothesized (Hypothesis2)
that within-category distinctions, for example, between humans
of di�erent age, are an important factor in the decisions.
Speci�cally, the obstacle model should prove to be superior
to the cluster model. Furthermore, since a certain amount of
time pressure is inherent to naturalistic representations ofthis
scenario, we investigated its in�uence on the decisions by varying
the time to respond in two steps, giving participants a response
window of either 1 or 4 s. We found 4 s of decision time to induce
relatively little time pressure in the used scenario, while one
second still left a su�cient amount of time to comprehend and
react. We hypothesized (Hypothesis 3) that more errors would
be made under increased time pressure, and that ethical decisions
would thus be less consistent across subjects in these trials. The
dual-process theories would predict a higher endorsement of
utilitarian choices with more time to deliberate (i.e., in the slow
condition). However, for comparisons of single obstacles, there
is no clearly de�ned utilitarian choice. If anything, basing the
decision in human vs. human trials on a person's expected years
to live could be considered utilitarian, and is partly coveredin
Hypothesis 2. Moreover, the omission of a lane change, despite
running over the more valuable obstacle, could be interpreted as
a deontological choice, but we didn't formulate any directional
hypothesis regarding this factor prior to the study.

METHODS

The experiment ran in a 3D virtual reality application,
implemented with the Unity game engine, using the Oculus Rift
DK2 as the head-mounted display. The audio was played through
Bose QC25 and Sennheiser HD215 headphones throughout the
experiment. The participants were sitting in the driver's seatof
a virtual car heading down a suburban road. Eventually, two
obstacles, one on either lane, blocked the car's path and the
participants had to choose which of the two obstacles to hit.
Using the arrow keys on the keyboard, the participants were
able to switch between the two lanes at all times, up to a point
approximately 15 m before impact. This way, we provided a high
level of agency, intended to closely resemble manual car driving,
while making sure the decision could not be avoided by zig-
zagging in the middle of the road or crashing the car before
reaching the obstacles. We used 17 di�erent obstacles from three
di�erent categories, i.e., inanimate objects, animals, andhumans
as single obstacles, as well as composite obstacles. An empty lane
was additionally used as a control. For each trial, two of the
17C1 obstacles were pseudo-randomly chosen and allocated to
the two lanes, as was the starting lane of the participant's car. A
wall of fog at a �xed distance from the participant's point of view
controlled the exact time of the obstacle's onset. We variedthe
length of the reaction time window by varying the fog distance
and car speed, resulting in a window of 4 s for the slow, and
one second for the fast condition. To indicate how much time
was left to make a decision at each point in time, a low-to-high
sweep sound was played as an acoustic cue. The sound started
and ended on the same respective frequencies in both conditions,
thus sweeping through the frequency band quicker in the fast
condition. After the decision time window had ended around

15 meters before impact, the car kept moving, completing any
last instant lane changes. Right before impact, all movement
was frozen, all sounds stopped, and the screen faded to black,
marking the end of a trial.Figure 1 illustrates the chronological
progression of the trials in the fast and slow condition, and
gives an overview of all obstacles. The fast and slow trials were
presented in separate blocks of 9 trials each. Two more blocks of
trials were presented but not analyzed in the current study, and
all four blocks were presented in randomized order. We chose
obstacle pairings such that each obstacle typically appeared once
per subject and block. The frequency of appearance of all 153
possible pairings, as well as the lane allocations and startinglanes,
were balanced over all subjects.

Sample and Timeline
Our sample consists of 105 participants (76 male, 29 female)
between the age of 18 and 60 (mean: 31) years. We excluded one
subject who reported a partial misunderstanding of the task, as
well as three outliers whose decisions were the opposite of the
model prediction (see below) in more than 50% of their respective
trials. Most of the participants were university students or visitors
of the GAP9 philosophy conference. Before participating, we
informed all subjects about the study, potential risks and the
option to abort the experiment at any time. They were also
informed that the external screens would be turned o� during
the experiment, so that others could not observe their decisions.
After signing a consent form, they were asked to put on the
HMD and headphones, and then received all further information
within the application. As a �rst task, they had to complete
a training trial, avoiding three pylons by alternating between
the lanes. Upon hitting a pylon, the training trial was repeated
until completed without error. This procedure gave participants
a chance to familiarize themselves with the VR environment,and
it made sure they had understood the controls before entering the
experimental trials. The study conformed to the Code of Ethics
of the American Psychological Association, as well as to national
guidelines, and was approved by the Osnabrück University's
ethics committee.

RESULTS

We pooled all data and did not consider between-subject
di�erences in the analysis. In the experimental trials, the mean
number of lane switches per trial was 0.816 in the slow and
1.037 in the fast condition. We estimated error rates for both
conditions, using trials in which one of the lanes was empty.
Hitting the only obstacle in such a trial was considered an error,
as we �nd it safe to assume that the outcome in these trials is
a result of inadvertently pressing the wrong button, instead of
a meaningful decision. This event occurred in 2.8% of all trials
containing an empty lane in the slow condition, and in 12.0% of
the relevant trials in the fast condition. As a frame of reference,
the chance level for this was at 50%.

Behavioral Models
All models used in the present study were logistic regression
models, using the occurrence of obstacle pairings, individual
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FIGURE 1 | (Left) Overview of the experimental setting.(Middle) Timelines of the slow and fast conditions.(Right) Overview of all obstacles used. Colors indicate
cluster assignments.

obstacles or clusters, i.e., obstacle categories (see below) in a
particular trial as predictors for the lane choice. Furthermore, we
added a constant o�set and the trial's starting lane as predictors
to all models. The constant o�set allowed us to detect potential
biases in the overall lane preference (left or right). Such a bias
could occur, for example, when participants are used to right-
hand tra�c and feel that using the right-hand lane is generally
more acceptable. Including the starting lane as a predictor
allowed us to detect a bias to stay in the respective trials' starting
lane—we would label this an omission bias—or to move away
from the starting lane, i.e., a panic reaction bias.

A model's predicted probability of choosing to drive in the left
lane is given byp(Y D leftjX) D 1

1Cexp(� X) , with X being the
model-speci�c representation of a particular trial.

In the pairing model, a trial is represented asXp D c! i C
s! s C ! b, where! i is the coe�cient for obstacle pairingi (e.g.,
{boy, woman}),c 2 f� 1, 1g is the lane con�guration in the
respective trial (e.g., 1 if the boy is in the left lane,� 1 if the
woman is in the left lane),! s is the starting lane coe�cient,
s 2 f� 1, 1g is the starting lane� 1 if the starting lane is right,
and ! b is the coe�cient for the lane bias. The model is thus
making a prediction based on a general preference for one of
the lanes, the starting lane of the respective trial, and which
of the 153 possible pairings is presented in the trial, resulting
in 155 parameters in total.Figure 2 left shows the predictions
of the pairing model. Since each pairing of obstacles has its
own free parameter, the model allows for intransitive and other
complex relations between the obstacles. For example, in the slow
condition, the pairing model deems the goat to be more valuable
than the boar, and the boar to be more valuable than the deer,
but the goat to belessvaluable than the deer. Consequentially,
there is no single value of life for an obstacle in the pairing model.
An obstacle's value is only de�ned relative to each of the other
obstacles.

In the obstacle model, a trial is represented asXo D ! ro �
! lo C s! s C ! b, with ! ro and ! lo being the coe�cients for the
right and left obstacle in the respective trial. Each obstacle is
thus represented by a single characteristic value or value oflife.
All pairwise comparisons result directly from a subtraction of

the respective two values of life. Thus, when sorting all obstacles
according to their value of life on the abscissa and ordinate,
the order in the vertical and horizontal direction is strictly
monotonous (Figure 2, middle). Since there are 18 individual
obstacles, the model has a total of 20 parameters, including the
lane bias and starting lane coe�cients.

Similarly, in the cluster model, a trial is represented asXc D
! rc � ! lc C s! sC ! b, with ! rc and! lc being the coe�cients of the
clusters that the obstacles are assigned to. We performed bottom-
up clustering and subsequent model selection to derive the
ideal number of clusters and cluster allocations of all presented
obstacles for the cluster model (seeFigure 3). Logistic regression
models were �rst constructed and �tted for all possible numbers
of clusters, ranging from 17 to 1. We then performed the model
comparison via the Bayesian Information Criterion (BIC). In
the slow condition, the �ve clusters model was found to be
the best of the cluster models. Notably, its cluster allocations
are perfectly in line with a categorization in none, inanimate
objects, animals, humans, and groups of humans and animals.
In the fast condition, a four cluster solution was found to be
ideal, and its cluster allocations don't align perfectly with the
aforementioned semantic categorization. This is likely theresult
of the higher error rate in the fast condition. In order to still allow
for a comparison between both conditions, we chose to use the
aforementioned semantic categorization in �ve clusters forthe
fast condition, as well. For both conditions, the cluster model thus
has �ve parameters for the obstacle clusters, resulting in a total
of only seven parameters, including the lane bias and starting
lane coe�cients.Figure 2right shows its predictions in the slow
condition. The model uses only one free parameter per cluster of
obstacles, resulting in a block structure. Since all obstacles within
a cluster are considered equal in value of life, the di�erencein the
value of life is always exactly zero for within-cluster comparisons.
Those decisions, therefore, depend entirely on the startinglane
and overall lane preference.

All models were �tted using the logistic regression algorithm
in the scikit-learn (version 0.17.1) toolbox for Python. We
set the regularization strength to a very low value of 10� 9

and based the model selection on prediction accuracy via
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FIGURE 2 | Model predictions. (Top) Slow condition, (Bottom) fast condition, (Left) pairing model,(Middle) obstacle model, (Right) cluster model. Colors indicate
the probability of saving the row-obstacle (y-axis) and sacri�cing the column-obstacle (x-axis). Pink, green, blue, and black bars indicate cluster assignments based on
agglomerative clustering in the slow condition (seeFigure 3 ). For means of comparability, the cluster model in the fast condition was �t with the semantic cluster
assignments from the slow condition.

10-fold cross-validation, as well as the Bayesian Information
Criterion.

Pairing Model vs. Obstacle Model
In a �rst step, we compare the pairing and the obstacle models.
When modeling the training data set, models with a (much)
higher number of free parameters can describe the data better.
However, in cross-validation, potential over�tting can lead to a
reduced performance of the more detailed model. Indeed, with a
prediction accuracy of 91.64% in the slow condition and 80.75%
in the fast condition, the obstacle model is slightly superior to
the detailed pairing model, with prediction accuracies of 89.33%
and 78.77%, respectively. Despite our extensive data set with
909 trials per condition, the large number of parameters in the
pairing model causes over�tting. This �nd translates to a much
larger BIC value for the pairing model (seeTable 1). Thus, our

results strongly favor the obstacle model for its lower complexity
and reduced risk of over�tting. This result, in combinationwith
the high prediction accuracy of the obstacle model in the slow
condition, con�rms our �rst hypothesis, i.e., one-dimensional
value-of-life-based models can adequately capture the ethical
decisions we make in real life scenarios.

Obstacle Model vs. Cluster Model
In the slow condition, the obstacle model's rankings of coe�cient
values within the categories mostly make sense, intuitively. For
example, children are assigned higher values than adults (boy:
2.76, male adult: 2.12, corresponding to a 65.5% chance of saving
the boy in a direct comparison with a male adult). Further, the
dog is consistently found to be the most valuable of the animals.
The prediction accuracies, however, are essentially even between
the obstacle model (91.64%) and the cluster model (91.20%),
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FIGURE 3 | Dendrogram of bottom-up clustering, based on the observed frequencies with which each obstacle was spared (saved), forthe slow and fast condition
separately.

with the cluster model scoring the lower BIC value, due to the
reduced number of parameters (seeTable 1). These �ndings
are repeated in the fast condition. Prediction accuracies ofthe
obstacle and cluster models are very close to each other (80.75
and 80.53%), and in terms of BIC values the cluster model is

superior. We thus have to reject our second hypothesis, because
the cluster model with �ve clusters is selected as superior to the
obstacle model. In other words, we found no particular advantage
of using obstacle-based predictors instead of category-based
predictors.
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TABLE 1 | BIC-values and prediction accuracy based on 10-fold cross-validation for the three models in the slow and fast condition.

Model SL LB Parameters Slow Fast

BIC Accuracy BIC Accuracy

Pairing x x 155 1349.122 0.8933 1563.629 0.7877

Obstacle x x 20 556.845 0.9164 770.827 0.8075

Cluster x x 7 497.198 0.9120 691.389 0.8053

Cluster x 6 505.816 0.8922 685.797 0.8118

Cluster x 6 491.852 0.9120 684.656 0.8053

Cluster 5 499.809 0.8636 679.053 0.8229

SL, including the starting lane as predictor; LB, including a constant offset as predictor to model a lane bias. Bold values indicate the best model in thelist.

Biases
To assess the two bias predictors' importance for the model,
we ran another model comparison for three additional versions
of the cluster model. All three additional versions were based
on the above model, but the �rst variant dropped the starting
lane predictor, the second variant dropped the lane bias, and
the third variant dropped both predictors. In the slow condition,
the cluster model omitting the lane bias, but including the
starting lane predictor, scored the lowest BIC value of all models.
Its prediction accuracy is the same as that of the previously
assessed cluster model with both additional predictors (91.20%),
making it the best explanatory model for the observations made
in the slow condition (seeTable 1). This is also re�ected in
the respective coe�cients. When including the predictor of the
lane bias, it was �t to a value of 0.15. The low value indicates
only a very weak tendency to the left lane, which makes no
signi�cant contribution to the model �t. Thus, even in this rather
realistic scenario, participants treated both lanes as equally valid
driving lanes. The starting lane predictor was �tted to -0.47,
indicating a reluctance to switch lanes in the face of a decision,
constituting an omission bias. We can roughly quantify the
extent of this reluctancy as being rather small, since coe�cient
di�erences between categories are in all cases magnitudes higher.
The speci�c starting lane in a trial would therefore not a�ect
the decisions in between category comparisons. It does, however,
play a role in within-category decisions, as evidenced by the4.8%
gap in overall prediction accuracy between the cluster models
with and without the starting lane as a predictor. In the fast
condition, the best model, both in terms of prediction accuracy
as well as BIC score, is the one omitting both bias predictors (see
Table 1). By omitting the bias predictors, the prediction accuracy
increases from 80.53 to 82.29%, exposing an over�t in the more
complex model. In conclusion, the analysis of the bias predictors
found lane preference to have no substantial in�uence on the
decisions made in this paradigm, but did reveal an omission bias
when facing similarly valued obstacles in the slow condition.

In�uence of Increased Time Pressure
We will now turn to a direct comparison of the slow and fast
condition, to evaluate the e�ects of increased time pressure.
The most notable di�erence between the two conditions is the
(estimated) error rate of 12.0% in the fast condition, marking a
four-fold increase from the slow condition. As for the causeof

the errors, we would expect an increased omission bias if the
errors were caused by a mere failure to react in time. Interestingly,
this was not the case. Instead, we found an omission bias only
in the slow and not in the fast condition, indicating that errors
in the fast condition were equally a result of staying in and
switching into the lane of the more valuable obstacle. A major
increase in error rate also substantially decreases the expected
prediction accuracy even for a perfect model. This is re�ectedin
the prediction accuracies for models in the fast condition, which
are on average roughly 10% below those for the corresponding
models in the slow condition.

In the cluster analysis, we found a four cluster model to
yield the lowest BIC values in the fast condition, instead of
the �ve cluster model found to be ideal in the slow condition.
Moreover, the cluster assignments for some of the obstacles are
also di�erent, and do no longer match the semantic categories
perfectly (seeFigure 2). These �ndings are consistent with the
in�uence of increased noise in the data, and can therefore
also be ascribed to the increased error rates. Since there isno
matching cluster model for both the slow and fast condition,
we included a comparison of the cluster models based on the
semantically de�ned categorizations inFigure 4, but decided
to focus on the obstacle model in the remainder of this
comparison. In the obstacle model, the coe�cient range in the
fast condition was reduced to 50% of that in the slow condition
(seeFigure 4). Speci�cally, the obstacles on the extreme sides
of the spectrum—the empty lane and the groups of humans
and animals—aren't separated well from the adjacent obstacle
categories. To statistically con�rm this observed di�erence, we
used a nested model approach with log-likelihood ratio tests.
For the nested model, we �tted the joint dataset of fast and
slow conditions to the obstacle model using 19 predictors, i.e.,
the 18 obstacles plus the starting lane. For the larger nesting
model, we added a second set of 19 predictors. These 19 were
duplicates of the �rst 19 predictors, but were �tted only on
the slow condition trials. Together, these two sets formed a
model with 38 predictors in total. The log-likelihood ratio
test between the nesting and nested model was signi�cant
(p D 0.037), showing that the reduction in parameters between
the two signi�cantly reduces model accuracy. In other words, the
di�erence between the two conditions is large enough to justify
the use of two completely separate sets of parameters to describe
them. This con�rms our third hypothesis, i.e., increased time
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FIGURE 4 | (Left) Value-of-life coef�cients by condition. Pictograms and colors indicate the categories empty lane, inanimate objects,animals, humans, and groups
of humans and animals (left to right). Starting lane coef�cients depicted as gray bars.(Right) Relative frequency of “saving” the empty lane object, used as error rate
estimates, for fast and slow condition separately.

pressure signi�cantly decreases the consistency in the answering
patterns.

Another notable di�erence between the two conditions is that
we no longer observe a bias toward sacri�cing the male adultsin
direct stand-o�s with female adults. Instead, participants saved
males in 4 out of 7 cases in the fast condition. The previously
speculated tendency toward social desirability would likely rely
on slower cognitive processes, and thus not come into e�ect in
fast-paced intuitive decisions.

DISCUSSION

We investigated the capability of logistic regression-based value-
of-life models to predict human ethical decisions in road
tra�c scenarios with forced choice decisions, juxtaposing a
variety of possible obstacles, including humans, animals, and
inanimate objects. The analysis incorporated various contextual
and psychological factors in�uencing our moral decision-making
in these situations, and examined in particular the e�ects of
severe time pressure.

Our �rst hypothesis was that a one-dimensional value-of-
life-based model fully captures the complexities of pairwise
comparisons. With prediction accuracies well above 90% in the
slow condition, and clearly outperforming the more complex
pairing model, the obstacle model proved to be capable of
accurately predicting the moral decisions made in the pairwise
comparisons. The �rst hypothesis was thus con�rmed. Note that
since we used a wide range of obstacles, we cannot preclude
some more complex e�ects happening on a more detailed level.
One possible example of such an e�ect is the following: In
the slow condition, the obstacle model shows male and female
adults to have comparable value-of-life coe�cients with a slight
advantage for the males (2.12 vs. 1.79), predicting a 41.8%
chance of sacri�cing the male adult in a direct comparison. This
prediction is based on all the trials it has seen, i.e., the full
dataset including all possible combinations of the 18 obstacles.
Still, adult males were actually sacri�ced in 4 out of the 5
cases (80%) of direct comparisons between male and female
adults. This observation is in line withSkulmowski et al. (2014),

who also found males to be sacri�ced more often in a direct
comparison. Interestingly, the authors found the tendency to
sacri�ce males to be correlated with a general tendency to answer
according to social desirability. In our study, the tendency to
sacri�ce males only pertains to the slow and not to the fast
condition, which makes sense, if we assume that the e�ect is
rooted in a tendency toward social desirability. Considerations
of social desirability could be construed as part of the outcome-
based system in Cushman's account of the dual-process theory,
which is thought to be the slower one of the two processes.
However, the low number of direct comparisons this �gure
is based on, and the exploratory nature of this �nd, dictate
caution with respect to its interpretation. We consider it a
leverage point for future research, but not a major result of this
study.

Our second hypothesis was that within-category distinctions,
for example between humans of di�erent age, are an important
factor in the decisions. This hypothesis could not be con�rmed
in this study, as the obstacle model failed to show an advantage
over the cluster model in describing the collected data. However,
there are hints at a meaningful structure within the clusters.
For example, the obstacle model found children to have
higher values than adults, and the dog, as the only common
pet among the animals shown, to have the highest value
within the animal cluster. Thus, given a larger data basis,
we would still expect within-category distinctions to improve
the predictions made by value-of-life models. In particular,
we would expect age to play a role in human vs. human
comparisons. Surveys byCropper et al. (1994)and Johansson-
Stenman and Martinsson (2008)have previously shown that the
value we assign to someone's life decreases considerably with
the person's age. To what degree these judgment-based �ndings
would also be re�ected in assessments of behavior is unclear,
since judgment and behavior can yield dramatically di�erent
outcomes (Patil et al., 2014; Francis et al., 2016). Based on
our �ndings, we speculate that the di�erence in value-of-life
between people of di�erent ages may be less pronounced in
behavioral assessments, but more data is needed to clarify this
point.
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Irrespective of the exact outcome of such assessments, systems
discriminating based on age, gender or other factors may be
considered unacceptable by the public, as well as by lawmakers.
Nevertheless, the idea of weighing lives against one another isn't
generally rejected. AsBonnefon et al. (2016)showed, a majority
of people would prefer a self-driving car acting in a utilitarian
manner, at least when it isn't themselves, who are being sacri�ced
for the greater good. Independent of whether or not human lives
should be weighed against one another, assigning di�erent values
of life to animals even seems to be the logical choice, judging
from how di�erently we treat di�erent species of animals in other
aspects of life. Value-of-life models based on species would allow
us to di�erentiate between common pets and other animals, and
would give us a tool to deal with situations in which the deathof
an animal could be avoided by taking a minor risk of harm to a
human.

Our third hypothesis was that ethical decisions would be less
consistent across and within subjects when the time to react
is reduced. This hypothesis was con�rmed. The error rate was
drastically increased, the cluster analysis revealed fewer clusters
with slightly di�erent cluster assignments, and the range ofvalue-
of-life coe�cients was signi�cantly reduced. However, we cannot
deduct from our data whether the decisions made under time-
pressure are in fact less clear-cut than decisions formed with
more time for deliberation, or if the e�ect can be fully explained
by the increased error rate. Still, a full second of time to react is a
lot more than we typically encounter in real-life scenarios ofthis
kind, and the weak consistency in the decision patterns is a sign
that we are ill-equipped to make moral decisions quickly, even
when the situation comes expectedly. We therefore argue that,
under high time pressure, algorithmic decisions can be largely
preferable to those made by humans.

Another noteworthy di�erence between the fast and slow
condition concerns the omission bias, which we only found
in the slow, but not in the fast condition. Participants were
thus less likely to switch lanes and interfere in the situation
when given more time to decide. This fact can be interpreted
as a sign of a more deontological reasoning—choosing not
to interfere in the situation, and possibly trying to reduce
one's own guilt despite causing greater damage as a result.
A tendency toward deontological reasoning with more time,
however, con�icts with both Greene's and Cushman's accounts
of the dual-process theory, as well as, e.g.,Suter and Hertwig
(2011), who found that more time to decide will cause a shift
toward utilitarian responses. One possibly decisive di�erence
between the present study, and most other studies touching
on the aspect of time in moral decision-making, is the type
of scenario used and the corresponding absolute response
times. Typically, the scenarios used are relatively complex moral
dilemmas, and response times lie in the 8–10 s range for short,
and up to several minutes in the longer or unconstrained
conditions (Greene et al., 2008; Suter and Hertwig, 2011;
Paxton et al., 2012). In contrast, the reaction time windows
of 4 and 1 s used in the present study rather represent a
distinction between short deliberation and pure intuition.The
fast condition may thus fall out of the dual-process theories
scope.

In this study, we purposefully constructed a simple scenario
with clearly de�ned outcomes, featuring the variables necessary
to �t value-of-life models. With the general applicability of
these value-of-life models established, a number of ensuing
questions arise. For example, what in�uence a person's emotional
and cognitive features have on their decision, how di�erent
probabilities of a collision or di�erent expected crash severities
a�ect our judgment, and how groups of multiple people or
animals should be treated in such models. Moreover, the option
of self-sacri�ce has been prominently discussed in literature
(Lin, 2014; Greene, 2016; Gogoll and Müller, 2017; Spitzer,
2016), and was assessed via questionnaire inBonnefon et al.
(2016), but hasn't been included in behavioral studies so far.
We speculate that immersion and perceived presence may have
a particularly strong in�uence on decisions that touch upon
one's own well-being. Beyond this, considerations of fairness
need to be addressed as well—for example, if one person is
standing on a sidewalk and another has carelessly stepped onto
the street. While the choice of a wide range of obstacles has
proven helpful in understanding the big picture, more researchis
needed to answer open questions about e�ects happening within
the categories. The design choices we made allowed us to focus
on the applicability of value-of-life models, but the present study
does not provide a �eshed-out model for implementation in self-
driving cars. Instead, it constitutes a starting point from which
to investigate systematically, how a variety of other factors may
in�uence our moral decisions in this type of scenario and how
they could be implemented.

A limiting factor for this study is the use of only one instance
of each of the presented obstacles. We tried to select and create
3D models that are as prototypical as possible for their respective
classes, but we cannot rule out that the speci�c appearance of
the obstacles may have had an impact on the decisions, and
by extension, the coe�cient values assigned to the obstacles.
Future studies or assessments that put more emphasis on the
interpretation of single value-of-life coe�cients, should include
a variety of instances of each obstacle. Furthermore, largerand
explicitly balanced samples would be needed to obtain models
su�ciently representative of a society's moral judgment. Another
fair point of criticism concerns the plausibility of the presented
scenario. There was no option of braking during up to 4 s of
decision time, and the car was keyboard-controlled and could
only perform full lane switches. While there were good reasons
for these design choices, namely to allow for enough decision
time and to enforce a clear decision based on an unambiguous
scenario, they limit the virtual world's authenticity and may
hinder the subjects' immersion. Unfortunately, this issue seems
unavoidable in controlled experimental settings. We believe that
the virtual world implemented for this study nevertheless ful�lls
a high standard of authenticity overall, and, under the given
constraints, illustrates the scenarios in question as close to reality
as currently possible.

Future studies should further investigate the role of the
presentation mode in this speci�c context. We argue that based
on moral dilemma studies, a distinction between judgment and
behavior may be justi�ed. However, it remains to be seen if
there is a seizable di�erence for speci�cally the kind of situations
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used in this study that justi�es the special e�ort that goes into
the design of a virtual reality environment. Finally, basedon
our �ndings, the in�uence of time pressure could be assessed in
greater detail, expanding the considered time frames beyondthe
1-4 s range.

CONCLUSION

We argue that the high contextual dependency of moral decisions
and the large number of ethically relevant decisions that self-
driving cars will have to make, call for ethical models based on
human decisions made in comparable situations. We showed
that in the con�ned scope of unavoidable collisions in road
tra�c, simple value-of-life models approximate human moral
decisions well. We thus argue that these models are a viable
solution for real world applications in self-driving cars. With
respect to trust in the public eye, their simplicity could constitute
a key advantage over more sophisticated models, such as
neural networks. Furthermore, regression models can include
additional factors such as probabilities of injuries for theparties
involved, and help to make reasonable decisions in situations
where these di�er greatly. They also provide an easy option
to deal with a vast number of possible obstacles, by testing a
few and making reasonable interpolations, e.g., for people of
di�erent age, taking away the requirement of assessing each
conceivable obstacle individually. That being said, the modeling
of within-cluster di�erences, e.g., between humans of di�erent
ages or between di�erent species of animals, failed to improve
upon the rather coarse cluster models. We further found time
pressure, as an inherent feature to naturalistic portraits ofthe
scenario in question, to considerably decrease the consistency

in the decision patterns and call for more investigation of
the e�ect of time pressure on moral decision-making. Overall,
we argue that this line of research, despite being met with
some skepticism (Johansson and Nilsson, 2016), is important
to manufacturers and lawmakers. The sheer expected number
of incidents where moral judgment comes into play creates
a necessity for ethical decision-making systems in self-driving
cars (Goodall, 2014a). We therefore hope to see more e�orts
toward establishing a sound basis for the methodology of
empirically assessing human ethics in the future, as the topic
is becoming increasingly important with more advances in
technology.
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