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Ethylene has long been known to be a critical signal controlling the ripening of climacteric

fruits; however, the signaling mechanism underlying ethylene production during fruit

development is unknown. Here, we report that two FERONIA-like receptor kinases

(FERLs) regulate fruit ripening by modulating ethylene production in the climacteric

fruit, apple (Malus×domestica). Bioinformatic analysis indicated that the apple genome

contains 14 members of the FER family (MdFERL1–17), of these 17 FERLs, MdFERL6

was expressed at the highest level in fruit. Heterologous expression of MdFERL6 or

MdFERL1, the apple homolog of Arabidopsis FER, in another climacteric fruit, tomato

(Solanum lycopersicum) fruit delayed ripening and suppressed ethylene production.

Overexpression and antisense expression of MdFERL6 in apple fruit calli inhibited and

promoted ethylene production, respectively. Additionally, virus-induced gene silencing

(VIGS) of SlFERL1, the tomato homolog of FER, promoted tomato fruit ripening and

ethylene production. Both MdFERL6 and MdFERL1 physically interacted with MdSAMS

(S-adenosylmethionine synthase), a key enzyme in the ethylene biosynthesis pathway.

MdFERL6 was expressed at high levels during early fruit development, but dramatically

declined when fruit ripening commenced, implying that MdFERL6 might limit ethylene

production prior to fruit development and the ethylene production burst during fruit

ripening. These results indicate that FERLs regulate apple and tomato fruit ripening,

shedding light on the molecular mechanisms underlying ripening in climacteric fruit.

Keywords: apple, ethylene production, fruit ripening, FERONIA-like receptor kinase, tomato, VIGS

INTRODUCTION

Fleshy fruits are physiologically classified as climacteric or non-climacteric. Climacteric fruits
exhibit an increase in respiration at the onset of ripening (Nitsch, 1953; Coombe, 1976; Brady,
1987). Studies of the mechanisms regulating fruit ripening began in the 1920s (Brady, 1987) and
a major focus has been identifying the critical internal factors or signals governing this process.
Ethylene has long been known to be a critical signal controlling the ripening of climacteric fruit
(Biale, 1964; Burg and Burg, 1965; Alexander and Grierson, 2002), which exhibit a large increase
in ethylene production at the onset of ripening. Exposure to exogenous ethylene can initiate the
ripening of climacteric fruits (Seymour et al., 2013), and its effect is so great that limiting ethylene
production in fruits or ethylene exposure for harvested fruit has become a major concern in the
commercial cultivation industry (Brady, 1987).
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FIGURE 7 | Subcellular localization of MdFERL6 and its physical interaction with proteins involved in ethylene production and signal transduction. (A) Subcellular

localization of MdFERL6. pMDC83-MdFERL6 was transformed into maize (Zea mays) protoplasts, and fluorescence was observed by confocal microscopy. Bars =

10 µm. (B) Bimolecular fluorescence complementation (BiFC) analysis of the physical interaction between MdFERL1 or MdFERL6 and MdSAMS, fused with the C-,

C-, and N-terminus, respectively, of yellow fluorescent protein (YFP; designated as YFPc or YFPn, respectively). Different combinations of the fused constructs were

co-transformed into tobacco (Nicotiana tabacum) cells, and visualized using confocal microscopy. YFP and bright-field were excited at 488 nm and 543 nm,

respectively. Bars = 20 µm. (C) BiFC analysis of the physical interaction between MdFERL6 and MdACS3, MdACS5, MdETR2, and MdETR5. MdFERL6 was fused to

the C-terminus of YFP, while the other proteins were fused to the N-terminus of YFP. (D) Co-immunoprecipitation (Co-IP) assay of the interaction between MdFERL6

and MdSAMS in apple calli. MdFERL6 was fused with GFP/His using the pMDC83 vector, and MdSAMS was fused with Myc using the pCambia1300 vector. (The

molecular weight of Myc-MdSAMS is 43 kD, Myc is 1.2 kD, His-MdFERL6 is 98 kD, and 6 × His is 0.6 kD).

generates the large increase in ethylene production during fruit
ripening (McMurchie et al., 1972; Hoffman and Yang, 1980;
Brady, 1987). Given that both MdFERL1 andMdFERL6 suppress
ethylene production, it is reasonable to propose that MdFERL1
and MdFERL6 are implicated in the first system, acting to inhibit
ethylene biosynthesis before fruit ripening occurs. Nevertheless,
the transcript levels of both MdFERL1 and MdFERL6 declined
as apple fruit growth and ripening progressed, suggesting that
MdFERL1 andMdFERL6 are likely associated with the regulation
of the ethylene production spike during ripening. Notably,
in contrast to the continual decline in MdFERL1 expression
throughout the process of fruit set to ripening, the transcript level
of MdFERL6 remained high until about 100 DPA, after which
it decreased dramatically. Compared with MdFERL1, MdFERL6
had a stronger effect on fruit ripening in transgenic tomatoes,

suggesting that it is the decline of the MdFERL transcripts at the
later development stages that is most important for the regulation
of fruit ripening. On the other hand, the different patterns
of MdFERL1 and MdFERL6 expression implies that ethylene
production is tightly modulated throughout the process, from
fruit set to ripening; individualMdFERLs may play different roles
in the two phases of ethylene production, and they collectively or
synergistically determine the spatio-temporal changes in ethylene
content.

In summary, we found that FERLs in apple can be categorized
into two groups; some share a relatively high level of amino acid
sequence identity with the FERLs in both Arabidopsis and rice,
while others are less similar and appear to be specific to the
apple genome. MdFERL1 and MdFERL6 belong to the first and
second of these groups, respectively, and were the most highly
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FIGURE 8 | Ethionine activity assay. (A) Ethionine altered the growth status of apple calli. Apple calli transfected with empty vector (1); MdFERL6-AS (2); and

MdFERL6-OE (3). (B) Measurement of calli weight. Transfected apple calli were weighed before treatment (0 day, and were then cultivated with ethionine for 7 days.

The increase in weight between 0 and 7 days is indicated on the y-axis. Values are means + SD of three biological replicates. Single asterisks denote a significant

difference at P < 0.05 using Student’s t-test; double asterisks denote a significant difference at P < 0.01 using Student’s t-test. (C) Gene expression of MdFERL6 and

MdSAMS were detected in apple calli cultivated in 200 µM ethionine for 7 days. Values are means + SD of three biological replicates. Single asterisks denote a

significant difference at P < 0.05 using Student’s t-test; double asterisks denote a significant difference at P < 0.01 using Student’s t-test.

expressed of all the MdFERLs in developing fruit. The following
four findings support the notion that MdFERL1 and MdFERL6
regulate fruit ripening: (1) heterologous expression of MdFERL1
and MdFERL6 delayed fruit ripening and suppressed ethylene
production in tomato; (2) overexpression and antisense silencing
of MdFERL6 suppressed and promoted ethylene production,
respectively; (3) VIGS ofSlFERL1 promoted fruit ripening
and ethylene production; and (4) MdFERL1 and MdFERL6
were capable of physically interacting with the key ethylene
biosynthesis enzyme, SAMS. As MdFERL6 and MdFERL1
suppress ethylene production during fruit development and
ripening, their high transcription levels in the early stages of

fruit growth followed by their dramatic decreases (especially for
MdFERL6) during fruit ripening imply that they contribute to
the regulation of ethylene production throughout development;
i.e., they maintain ethylene at relatively low levels during the
early developmental stages, and boost ethylene levels when
fruit ripening commences. MdFERL1 and MdFERL6 therefore
function as negative regulators of climacteric fruit ripening.
This work has, for the first time, demonstrated that FER-like
protein kinases are implicated in fleshy fruit development and
ripening, providing new insights into the molecular basis of
these processes. Nevertheless, this is a preliminary study; more
research is required to elucidate the molecular recognition and
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signaling cascades of MdFERLs during fruit development and
ripening.
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