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Forecasting Ocean Chlorophyll in the
Equatorial Paci c

Cecile S. Rousseaux »* and Watson W. Gregg *

1 Global Modeling and Assimilation Of ce, NASA Goddard Space light Center, Greenbelt, MD, United States? Universities
Space Research Association, Columbia, MD, United States

Using a global ocean biogeochemical model combined with a fiecast of physical

oceanic and atmospheric variables from the NASA Global Modimg and Assimilation
Of ce, we assess the skill of a chlorophyll concentrationsdrecast in the Equatorial Paci ¢

for the period 2012—-2015 with a focus on the forecast of the oset of the 2015 EIl Nifio

event. Using a series of retrospective 9-month hindcasts, & assess the uncertainties
of the forecasted chlorophyll by comparing the monthly tothchlorophyll concentration

from the forecast with the corresponding monthly ocean chloophyll data from the

Suomi-National Polar-orbiting Partnership Visible Infrad Imaging Radiometer Suite (S-
NPP VIIRS) satellite. The forecast was able to reproduce thghasing of the variability
in chlorophyll concentration in the Equatorial Pacic, inleding the beginning of the
2015-2016 El Nifio. The anomaly correlation coef cient (ACPwas signi cant (p < 0.05)

for forecast at 1-month R D 0.33), 8-month R D 0.42) and 9-month R D 0.41) lead

times. The root mean square error (RMSE) increased from 0.98 mg chl L ! for the

1-month lead forecast to a maximum of 0.0472mg chl L 1 for the 9-month lead forecast

indicating that the forecast of the amplitude of chlorophylconcentration variability was
getting worse. Forecasts with a 3-month lead time were on aveage the closest to the

S-NPP VIIRS data (23% or 0.033mg chl L 1) while the forecast with a 9-month lead
time were the furthest (31% or 0.042mg chl L 1). These results indicate the potential for
forecasting chlorophyll concentration in this region butlao highlights various de ciencies
and suggestions for improvements to the current biogeocherital forecasting system.

This system provides an initial basis for future applicatis including the effects of El
Nifio events on sheries and other ocean resources given immvements identi ed in the

analysis of these results.

Keywords: enso, chlorophyll, phytoplankton, forecast, bio geochemical modeling

INTRODUCTION

Forecast models of atmospheric conditions have considenaiglyoved over the past few decades
and are routinely used to predict weather patterns includingttanes, winds and other potentially
threatening conditions. Natural processes in the atmospherean and land can each in uence
climate in sometimes predictable ways. Developing foremasiystems for ocean biogeochemical
processes is a scienti ¢ challenge that has important impbeatin the management of marine
ecosystems and resources. One of the challenges of imprswbsgasonal to seasonal forecasting
skill is to identify and characterize sources of subsedgorseasonal natural modes of variability
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(e.g., El Nifio Southern Oscillation), slowly varying preass MATERIALS AND METHODS
(e.g. ocean biogeochemistry), and external forcing (evigds,
radiation). The NASA Ocean Biogeochemical Model (NOBM) is a three
Most oceanographic forecasts emphasize physical conditiogémensional biogeochemical model of the global ocean coupled
(e.g., temperature, mixing), ocean biogeochemical fotege With a circulation and radiative modelQregg et al., 2003;
less common and have mostly focused on the prediction of alg&t'egg and Casey, 2007NOBM has a near-global domain
blooms and hypoxia (e_gWynne et al., 2005; Greene et a|.’that spans from 84 to 72 latitude at a 1.25 resolution
2009; Stumpf et al., 2009; Evans and Scavia,)2Mabious N water deeper than 200 m. NOBM is coupled with the
approaches have been developed to predict biogeochemi(&ﬂ)SEidon ocean general circulation model. The Poseidon
variables from statistical relationships with temperatusénd ~ model (Schopf and Loughe, 19pis a reduced gravity ocean
speed and other variables to the use of more complex numericBlodel with 14 layers in quasi-isopycnal coordinates forced by
models. A typical application of these biogeochemical fotscaswind stress, sea surface temperature, and shortwave aaliati
is the prediction of Harmful Algal Blooms (e.gStumpf (Gregg and Casey, 2007The NOBM contains 4 explicit
et al.,, 2009; Raine et al., 2)10@ne example is the Eastern Phytoplankton taxonomic groups (diatoms, cyanobacteria,
Gulf of Mexico Harmful Algal Bloom Operational Forecastchlorophytes and coccolithophores), 3 detritus components
System (GOMX HAB-OFS) developed by NOAA to follow (silicate, nitrate/carbon and iron), 4 nutrients (nitratsilicate,
the development of a toxic dino agellateKarenia brevis iron and ammonium) and one zooplankton group. The growth
that produces Neurotoxic Shell sh Poisoning, kills shesdan of phytoplankton is dependent on total irradiance, nitrogen
marine mammals and leads to health and economical losséBitrate C ammonium), silicate (for diatoms only), iron and
resulting from respiratory irritation in the waters o Flodia. temperature (se&ousseaux and Gregg, 20fos more details).
This forecasting system relies on satellite ocean color andurface photosynthetically available radiation is deriveth the
transport direction data from satellite imagery combinedtwi Ocean-Atmosphere Spectral Irradiance Model (OASIMpgg
in situ samples. They issue semi-weekly bulletins that sasve and Casey, 2009
decision support tools for coastal resource managers, federa A spin-up run of 100 years has been shown to produce stable
and state agencies, public o cials, and academic institagio initial conditions for biological variablesXregg and Rousseausx,
(Ka\/anaugh et al, 20)_6 The forecast was expanded to 2014 The NOBM model is then run for 14 years USing ocean
other regions and the system is described in several papet§d atmospheric variables as forcing from the Modern-Era
(e.g., Stumpf et al., 2003, 2009; Tomlinson et al., 9004 Retrospective analysis for Research and Applications (MERRA,
Other examples of biogeochemical forecast e orts include th&ienecker et al., 20)%and ocean chlorophyll data from Sea-
forecast of hypoxia zone in the Gulf of Mexic8davia et al., Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate-
2003, net primary production in the tropical Paci c§éférian resolution imaging spectroradiometer (MODIS)-Aqua in data

et al., 201} annual salmon yieldsScheuerell and Williams, assimilation mode Gregg and Rousseaux, 2Q1&tarting in
2009, sardines distribution Kaplan et al., 2096 seasonal 2012, the model assimilates chlorophyll data from S-NPP VIIRS

distributions of southern Blue n tuna Kobday et al., 2011; and uses transient MERRA data to force the circulation model.
Eveson et al., 20)5nd coral bleachingGoreau and Hayes, The assimilation of satellite chlorophyll uses a multivariate
2009. methodology where the nutrients are adjusted corresponding

While some of these forecasting systems rely on satellite the chlorophyll assimilation using nutrient-to-chloropttyl
ocean color data, others rely on biochemical variables thdftios embedded in the modeRpusseaux and Gregg, 2012
cannot be directly derived from ocean color data or that dol'he di erence between the chlorophyll assimilation resultsia
not have statistical relationship with variables that cae bthe prior chlorophyll produced by the model (the analysis
derived from satellite data (e_g_, nutrient’ oxygen Commmn)_ ianementS) are used to adeSt the nutrient concentratiorse
Furthermore, satellite data can have large gaps (e.g., sloudnultivariate assimilation is applied to silica and dissolvemhj
aerosols, interorbital gaps, high solar zenith angles) doabot as well as nitrate. These conditions are used as initial ¢iomdi
allow for a systematic and complete coverage of the area B each forecast (using the month prior to the start of the
interest. Here we combine an established biogeochemicdeimo forecast). The forcing data used for the forecast includezand
with a seasonal forecast of atmospheric and ocean conditiorigeridional wind stress, sea surface temperature and sheetwa
to provide a 9-month forecast of total chlorophyll in the radiation. These forecast les are produced by the NASA Global
Equatorial Paci c for the period 2012-2015. The assimitatio Modeling and Assimilation O ce (GMAO) using the GEOS-5
of satellite ocean color to provide the initial conditionsrfo system (https://gmao.gsfc.nasa.gov/weather_predigtidiiese
the forecast ensures the best use of the data availablee wHiprecasted atmospheric and ocean variables are currently
the forecast provides a complete coverage of the chlorophyirovided to the North American Multi-Model Ensemble
concentration (among other variables) for a 9-month forstca (NMME) prediction project, as well as to other national
The skill of the forecasting system is assessed by comparifigternational Research Institute for Climate and Society,
the total chlorophyll to those from the satellite Suomi-Nat& IRI) and international (Asia-Pacic Climate Center, APCC)
Polar-orbiting Partnership Visible Infrared Imaging Radieter ~€nsemble seasonal forecasting e orts (Borovikov et al., in
Suite (S-NPP VIIRS). review).
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The bias and uncertainties in the system are assessed by {fi¢ root mean square error (RMSE). The anomaly correlation
comparing the satellite ocean chlorophyll used for validatio coe cient provides information on the linear association
and data assimilation to in situ data, (2) comparing thebetween forecast and observations but is insensitive teebias
chlorophyll concentration from a free-run model (without and error in variances. It is calculated as between the model
data assimilation) to satellite ocean color and (3) comparin prediction (p) and satellite observation (o) of chlorophyll ove
the chlorophyll concentration from a run assimilating séitel N months (N D 38) and computed as:

chlorophyll with those from the satelliteF{gure 1). The in =)
situ data used to evaluate the bias and uncertainties in the ACCD 6 (PP N
S-NPP VIIRS chlorophyll include data collected from the P ® p)z'“ © N2

National Oceanographic Data Centeiegg and Conkright,

2003, NASA in situ databaseWerdell and Bailey, 2002; 1he RMSE measures the magnitude of the error, is sensitive to

Werdell et al., 2003 and Atlantic Meridional transectAlken |4rq6 values but does not indicate the direction of the ertois
et al., 200p archives Gregg et al., 2009 The quality of the .- 1ated as:

biogeochemical system used is then assessed using a lindcas

from 2012 to 2015 forced using MERRA data (procedure 2a, 1 2

b on Figure 1). The uncertainties in this system are evaluated RMSED N (P B0 N

by comparing the chlorophyll concentration in the Equatorial

Pacic from this run with those from S-NPP VIIRS. To Whereplanddlare the temporal averages of chlorophyill.

evaluate the e ects of the forcing data on the chlorophyll A total of 38 retrospective forecasts were run, each for a 9-

concentration estimates, we then compare a free-run modéhonth period. The rst forecast started in March 2012 and the

forced by transient MERRA forcing data with one forced bylast forecast started in April 2015. The percent di erence letw

climatological MERRA data. Finally we compare the monthlythe satellite and the forecast chlorophyll quanti es the meanor

chlorophyll concentration from the assimilation run to the in the forecast. It allows us to assess whether the foreeaspin

monthly concentration from S-NPP VIIRS (procedure 3 onaverage a positive or a negative bias.

Figure 1). Bias is quanti ed by averaging the monthly percent

di erence between the chlorophyll concentration fromthe nedd RESULTS AND DISCUSSION

free-run and assimilating run) and the satellite chlorophyl . .

f:oncentration for the perigd 20)12—2015 and the standard?er);oAsseSS'ng the Skill of the Model System

is calculated. The uncertainty is quanti ed using a cortiela The 'rst source of uncertainty re ects. the |nh§rent bias of

coe cient. A statistically signi cant correlation coe cent is  Satellite-derived chlorophyll concentration and is assedsed

de ned as one with g-value smaller than 0.05. comparing the S-NPP VIIRS chlorophyll to in situ uorometric
The skill of the various forecasts is assessed using thréBlorophyll data. For the period from 2012 to 2014, the global

metrics: (1) the percent dierence between the NPP-vIIRsChlorophyll from S-NPP VIIRS compared favorably to in situ

chlorophyll data and the forecast (bias) (procedure 4 orfhlorophyll (biasD 11.8%, semi-interquartile rang®27.9% and

Figure 1), (2) the anomaly correlation coe cient (ACC) and (3) RD 0.86:Table 1). o
The second source of uncertainty lies in how well the model

simulates chlorophyll concentration. This source of unagrtty
is assessed by comparing the chlorophyll concentration
SYSTEM (Toggweiler et al., 1991from the free-run model (no data

o
In Situ Data <> NPP-VIIRS Data

TABLE 1 | Summary table of bias and uncertainties of the various elenmés of the

system used to forecast.
@a,b
@ Type of bias/uncertainties Bias Uncertainties
Chlorophyll from , ,,
Chlorophyll from satellite versus in situ 11.8% RD 0.86, P < 0.05
Free-run model Chlorophyll from data (Global)
Assimilation model Chlorophyll from free-run model 2787 1.72% RD 0.72, p < 0.05

versus satellite chlorophyll (transient

forcing data, Equatorial Paci c,

2012-2015)

FORECASTS @ Chlorophyll from free-run model 85.67 2.77% RD 0.47,p < 0.05
‘S-NPP VIIRS versus satellite chlorophyll

o (climatological forcing data, Equatorial

Data Paci c, 2012-2015)

Chlorophyll concentration from 12.34 0.52% RD 0.95, P < 0.05

. o . . assimilating run versus satellite
FIGURE 1 | Diagram describing the different procedures used to charaerize chlorophyll (Equatorial Paci ¢

bias and uncertainties in the system and forecasts descrilgin this study. 2012-2015)

Forecast <
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assimilation but uses transient forcing conditions from MERR
with the corresponding satellite ocean color data. For théquer
from 2012 until 2015, monthly chlorophyll concentration fro
the free-run model were signi cantly correlated to thoserfrthe
satellite ocean color (S-NPP VIIRSD 0.72,p < 0.05;Table 1).

The chlorophyll from the free-run model was on average In

region of the Costa Rica Dome, the chlorophyll concentration
from the free-run model was underestimated. This is mos#liik
due to the nature of the reduced gravity circulation modeieT
model therefore does not include topographic e ects, nor does i
allow the representation of cross-shelf advection and coinwe.

the Equatorial Pacic, the monthly chlorophyll

within 27.87 1.72% (average standard error) of the S-NPP concentration from a run assimilating S-NPP VIIRS chlorophyl
VIIRS chlorophyll. Chlorophyll elds in the Equatorial Paci ¢ data was signi cantly correlated®D 0.95P < 0.01;Table ) and

showed agreement with satellite datigure 2). The model

on average within 12.34 0.52% of the S-NPP VIIRS chlorophyll

reproduces the main features observed by the satellite oceaancentration. The assimilation of satellite chlorophyth t

color. The consistent positive bias in chlorophyll concetitra
in the Equatorial Paci c in the free-run model suggest thiaét
upwelling in the Equatorial Paci c in the model is overestit@a

provide the initial conditions used for the forecast is theref
an improvement over using the initial conditions provided by
the free-run model without data assimilation. We therefoise

and therefore leads to higher chlorophyll concentrationrtha this set-up to provide the initial conditions for the foretiag
those observed. The overprediction of the upwelling in thesystems.

Equatorial Paci c in models has been suggested for some time Finally the data used to force the model have their own
(e.g.,Toggweiler et al., 1991; Zheng et al., 20112 some other inherent bias and uncertainties. While this is beyond the
areas, such as along the South America coastline as welltas in scope of this paper, we note that the bias in the forcing data

A Free-run

120" W

S-NPP VIIRS

free-run model and S-NPP VIIRS in the Equatorial Paci c.

30°s= :
120'E 180° W 120°W
c Difference (Free-run — S-NPP VIIRS)
30°N7 - ARy g Y 0.5
@ = % - \“'
15N ?;,
.
0 ﬁﬁ’ LR 0
“"'*:'?";P' ’ ,
15°S 24 L
| S
A 'L S
30°s— . . . N5
120'E 180° W 120'W 60" W

FIGURE 2 | Climatology of chlorophyll concentrationrfg chl L 1 2012-2015) map of (A) the free-run model,(B) S-NPP VIIRS, and(C) the difference between the
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used here have been assessed in other papersRegegcker and R D 0.41 respectivelyJable 2. This indicates that for

et al., 201). By comparing the chlorophyll concentration these leads, the forecast chlorophyll had statistically tneect
from the free-run model using climatological MERRA forcing phasing when compared to those from S-NPP VIIRS. The spatial
data compared to using transient MERRA data we canlistribution of the anomaly correlation coe cient furthera ects
assess the improvements that such transient forcing data cdine overprediction of the upwelling in this Equatorial Pacic
provide to the system. The chlorophyll concentration from(Figure 6. While the forecasted chlorophyll concentrations at
the free-run model using transient MERRA forcing data werel-month lead are signi cantly correlated with those from S-
considerably closer to the chlorophyll concentration frohet NPP VIIRS for the majority of the Equatorial Pacic, some
S-NPP VIIRS (27.87 1.72%) than the free-run model using areas in the upwelling tongue are not signi cant. The second
climatological MERRA data (85.67 2.77%,Figure 3. This  skill metric, RMSE, increased from 0.04@y chl L ! at 1-
indicates the advantage of using transient forcing data tononth lead to 0.047mg chl L 1 at 9-month lead forecast.
further improve the initial conditions used for the forecegt These results suggest that while the phasing may have been
system. reasonable at 8- and 9-month lag forecast, the amplitude of
the signal was getting worse. Regardless, RMSE of 0947
chl L 1 is still very acceptable for a 9-month lag forecast.

General Skill of the Forecasts h | il in ¢ ina the chiefboh
We assess the skill of our forecast by comparing each J ese results suggest some skill in forecasting the chigibp

month forecast to the observed chlorophyll concentration inv"’;]”ab'tlr:[y K‘C::he Eguqtorlatl P%C'tﬁ eslg\)ﬂcast:llza!ly at1t_t1-lm OWP IE
the Equatorial Paci c from S-NPP VIIRS for the correspondingW en the IS signi cant and the IS at Its lowest. -or

: o P Il forecasts, the chlorophyll concentrations were alwaysimvi
month. There was a consistent positive bias in the chlorophy . .
forecasted, as in the hindcast from the free-run model coragar @0.7% of the chlorophyll concentration from S-NPP VIIRS. This

: . is similar to the uncertainties reported for this instrumesemi-
with S-NPP VIIRS Figure 2). Of the 38 forecasts, the average, . o
Kigure 2) g nterquartile range of S-NPP VIIRS versus in situ chloroptiyll

percent di erence between the forecasted chlorophyll and the s 0

NPP VIIRS chlorophyll varied between 23% (3 months lead time2,7'9 ).

the equivalent of 0.038yg chl L 1) and 30.7% (9 months lead

time, the equivalent of 0.04@g chl L 1, Figures 4 5). Except Prediction of the 2015 EI Nifio

for the monthly chlorophyll concentration at 5 and 6-month In the Equatorial Pacic, the El Nifio Southern Oscillation i

lead time, the chlorophyll concentration from the forecastye the dominant source of interannual variability and has been

always signi cantly correlated to those from S-NPP VIIRStéda shown to have a considerable impact of the biogeochemistry,

not shown). The highest correlation coe cient was obsenad including chlorophyll concentration and recruitment of Higr

8-month lead time RD 0.53p< 0.01). trophic levels, in this region (e.gStrutton and Chavez, 2000;
To assess the uncertainties in our forecast, we utilize twblartinez et al., 2009 Forecasting El Nifio events is the focus

deterministic skill metrics: ACC and RMSE. The ACC for theof many prediction centers. While the focus of assessmerts su

forecast was signi cant for the 1-month lead timB D 0.33,P  as the North American Multi-Model Ensemble home has been

< 0.05) as well as for the 8- and 9-month lag forec&D(0.42 on the skills in forecasting sea surface temperature, thase h

- //\\ '—VIIRS
= \ | —Free-run-transient MERRA
~0.28 \\ ~—Free-run-Climatology MERRA
VN S /
0.26- ' BN b 4 \ ]
= 4 / o oy -
Y el

o
N
F

e
N
[N

Chlorophyll concentration (ug chl L
o o
L 4 o 3
o =] h‘>

e
o
a

0.12-

201201 201206 201211 201304 201309 201402 201407 201412 201505 201510

FIGURE 3 | Time series of chlorophyll concentrationnfg chl L l) for NPP-VIIRS (black), free-run model with transient MERR#r€ing data (red) and free-run model
with a climatological MERRA forcing data (green).
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been very little work on forecasting biogeochemical vdeésb month later in June 2015 (0.18g chl L 1). The chlorophyll
such as chlorophyll using a dynamical system. The temporaoncentration from S-NPP VIIRS then increased to reach a peak
evolution of the various forecasts in this study highlighite  in August 2015 (0.14ng chl L 1). This increase in chlorophyll
variability between the forecasts and our skills in predigtthe was also re ected in the various forecasts although it was
decline in chlorophyll concentration that was observed i th overestimated. After August 2015, chlorophyll concentnati
Equatorial Pacic during the 2015 El Nifio evenFigure 4). declined re ecting the onset of the 2015 El Nifio and the
Starting in January 2015 the forecast suggested a decline soppression of the upwelling in the Equatorial Pacic. This
chlorophyll concentration that would reach a minimum in May decline was also observed in the chlorophyll concentratiomf
2015 (average of the 8 forecasts available for this monthl®f 0 S-NPP VIIRS. Of the four forecasts available for Septembés,201
mg chl L 1). The S-NPP VIIRS data observed this minimum lonly one had predicted this decline. The other three forecasts

FIGURE 4 | Chlorophyll concentration in the Equatorial Paci ¢ (10S—10 N) for the period 2012—-2015 from S-NPP VIIRS (black), individuforecasts (gray) and the
1-month lead chlorophyll concentration of every forecastijue). The last forecast is highlighted in red.

FIGURE 5 | Average difference between forecasted chlorophyll and cbtophyll from S-NPP VIIRS for corresponding month (left axisnd Anomaly Correlation
Coef cient (ACC; right axis).
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TABLE 2 | Anomaly Correlation Coef cient (ACC) and RMSE between the coe cient from the forecast in the tropical Pacic has a
chlorophyll concentration in the Equatorial Paci ¢ from thdorecast at 1- to high correlation coe cient R > 0.8) with the Reynolds SST
9-month lead time and the corresponding monthly chlorophylconcentration from for lead month 1-3 and remained above 0.6 by Iag month

SNPPVIRS. 9 indicating signicant p < 0.05) skill. A case study of
No. ACC RMSE  the EI Nifio event of 2015/2016 in (Borovikov et al., in
EZQ‘:;G review) suggested an overprediction of the magnitude in SST
anomalies observed during the 2015/2016 El Nifio event but
1 0.320% 00399 Was overall in good agreement with the conditions that were
2 0.272 00397  Observed.
3 0.318 0.0411 The forecast of chlorophyll concentration presented here
4 0.267 00427 I based on one single set of forecasting data while the
5 0121 oo43s forecasting system used at GMAO provides forecasts for devera
6 0.153 0.0450 ensembles. Using ensemble forecasting instead of a single
; 0.263 0.0470 forecast might further improve our skill. Initial conditiancan
be perturbed in various ways to account for initial condition
8 0.417* 0.0471 . . . .
0 0.400" 0.0472 uncertainty. The uncertainty in the forecasted forcing alat

provided by GMAO could be accounted for by running
*indicates that the anomaly correlation coef cient was signi cat (p < 0.05). with the various ensembles they provide for the variables
used to force the biogeochemical forecast. Finally the rmode
uncertainty could be accounted for using some stochastic
arametrization at the sub-grid level such as the one used by
e European Centre for Medium Range Weather Forecasts
Buizza et al., 1999

predicted a decline but delayed by 1 month (chlorophyll strte
to decline in October 2015). For the four forecasts, Septemb
2015 was their 6- to 9-month lead forecast which we previousl
showed had relatively low skills compared to the 1-month lea Another source of uncertainty in our forecast is the
forecasts. In the last forecast (highlighted in redFiigure 3, assimilation methodology, the Conditional Relaxation Arsay
September 2015 corresponded to its 6-month lead forecast a'i@ethod used for bias co}rection for SST productegnolds
thisforeca§t predicted particularly well the decline in cblahyll 1989 and applied here for chlorophyllGregg, 2008 This’
goncentratlon that occqrregl between Augustand Deg(fmbmﬁzo method does not utilize ensembles which can potentially improv
in the Equatqna! P"’.IC'C In response to the El Nifio evem‘the initial conditions for the forecast. It would also exterfiet
'I[;he spgualzgisstnbzulc\)ﬂn OL tzhoelé:r(llorophyllhal}oLna:y b?tweenmemory of the assimilation, which appears to surviv2months
ecember and Marc rst month of the last foreca e o
available) coincides well with that from S-NPP VIIRS for th;ﬁere and assist in the skill of the 1-month forecast. However

corresponding month Figure 7). The area of negative anomal there is little evidence that the 2-9 month forecasts could
ponding Rigure 7). gatv Y pene t substantially from improved initial conditions, whic

in chlorophyll concentration along the South American coast . ) ;
is distinguishable in both the forecast and the S-NPP VIIR ;(Elguite close to the S-NPP VIIRS chlorophyll as suggested in

chlorophyll data. The overestimation of the upwelling system

in the forecast is also visible on this spatial representatibn Future Improvements and Applications

the. chiorophyll anqma!ies. The .temporal evolution of thes‘.:WhiIe these results suggest some skill in our ability to dewst
various forecasts highlights the impacts that the atmoslmhenchlorophyll concentration in the Equatorial Pacic, theysal

forcing data have on the forecast of chlorophyll. As the fasts highlight potential weaknesses and avenues for improvements.

get closer to the_ El N|n_o event_, the forecasted atmo_spherlfhe skill of the forecasting system relies as previously roeatl
and oceanographic physical forcing data have more skills angl

. . n the bias in the models representation of physical and
therefore lead o a better foregast n chlor.ophyll concemna biogeochemical processes in the oceans, and the uncertaintie
The forecast of chlorophyll in this region therefore relies

. . in the forcing and assimilation data used. To further improve
heavily on the existence of accurate forecast of atmospher{ﬁe forecasting system, each of these sources of bias and
forcing data. The initial conditions seem to play a more minor '

role in the forecasting skill for predicting chlorophyll in igh uncertam_tlg;_needs_ to be assessed individually for wesslase
region and pOSS|b|I|t|e§ for improvements. The range of applications of
' such a forecasting system, once properly set, can be extended f
other variables. Applications include but are not limited twet
Uncertainties of the Approach prediction of Harmful Algal Blooms, sheries, hypoxia/anaxi
The uncertainties in the forecast of atmospheric and oceanievents, oil spills or the dispersal of pollutants. Prediction of
variables used to force the model play a critical role intemperature, ocean currents and velocities have for example be
our ability to provide a successful forecast. The skill of theised for monitoring sheries success, transport and spread of
variables produced by the GMAO forecasting system andsh larvae, as well as seasonal sh migratioipiinson et al.,
that are used to force the model in forecast mode car2005; Hobday and Hartmann, 2006; Bonhommeau et al., 2009
also be a source of uncertainties and have been assessedMhile the use of physical variables such as temperature jtyalin
(Borovikov et al., in review). The SST anomaly correlatiorand currents have been successfully used as covariates anexpl
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FIGURE 6 | Anomaly correlation coef cient between the forecasted chloophyll at 1-month lead and S-NPP VIIRS chlorophyll for the ped 2012-2015. White
indicates that the correlation was not signi cant |y > 0.05).

FIGURE 7 | (A) Chlorophyll concentration anomaly (December 2015 minus Mah 2015, mg chl L 1) from the March 2015 forecast for December 2015 and
(B) chlorophyll concentration from S-NPP VIIRS(g chl L 1).

distribution and catch rates of various species (etgefron  detect and manage most e ciently these events to minimize
et al.,, 1989; Cole, 1999; Zagaglia et al., 2004; Bigelow athe& repercussion on the human population and the associated
Maunder, 2007; Kaplan et al., 2Qlé&hese relationships can economy.

be limited since the behavior and recruitment of sh relies o

changes in their prey concentration and composition. Accerat AUTHOR CONTRIBUTIONS

forecasts of the resources on which sh populations rely could

provide the potential for strategic rather than reactive mari CR: Lead the research, analysis of the data and writing of the
resource management during El Nifio events for example. Imanuscript. WG: Provided support in the analysis and writing
the Equatorial Pacic, forecast of the e ects of ENSO eventsf the paper.

on the physical conditions have been the subject of several

studies starting in the 1980<Cane et al., 19961In the last FUNDING

two decades we have witnessed the development of two major

El Nifio events that had considerable impacts on both landNASA EXPORTS (NNH15ZDA001N-OBB), MAP
and ocean conditions. The 1997-98 El Nifio was particularlyNNH16ZDA001N-MAP), PACE (NNH13ZDA001N-PACEST)
devastating for the ocean resources and led to the collapse afid S-NPP (NNH13ZDA001N-SNPP) Programs.

several sheries and dramatic socio-economical reperounssi

for countries such as Peru. Anchovies, as well as other isker ACKNOWLEDGMENTS

collapsed during both the 1982-83 and 1997-98 El Nifio events.

Forecasts such as the one presented here could therefor@proviye thank the NASA Ocean Ecology Laboratory for providing
a framework to improve our management of resources duringhe satellite chlorophyll data and the NASA Center for
these events. Furthermore, the forecasting system presentglimate Simulation for computational support. The GEOS-5
here may provide a basis to expand the forecast from totalata used in this study/project have been provided by the
chlorophyll to speci ¢ species including Harmful Algal Blooms Global Modeling and Assimilation O ce (GMAO) at NASA
This could provide support for the management of many areagoddard Space Flight Center through the online data portal
that need to monitor closely any development of harmful speciein the NASA Center for Climate Simulation. This paper was
in their waters. In the regions prone to Harmful Algal Blooms,funded by the NASA EXPORTS, MAP, PACE and S-NPP
such a forecast could also be used to improve the strategies pgograms.
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