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Some eukaryotes are able to gain access to well-protected carbon sources in plant
biomass by exploiting microorganisms in the environment or harbored in their digestive
system. One is the land pulmonate Arion ater, which takes advantage of a gut microbial
consortium that can break down the widely available, but difficult to digest, carbohydrate
polymers in lignocellulose, enabling them to digest a broad range of fresh and partially
degraded plant material efficiently. This ability is considered one of the major factors
that have enabled A. ater to become one of the most widespread plant pest species
in Western Europe and North America. Using metagenomic techniques we have
characterized the bacterial diversity and functional capability of the gut microbiome of
this notorious agricultural pest. Analysis of gut metagenomic community sequences
identified abundant populations of known lignocellulose-degrading bacteria, along with
well-characterized bacterial plant pathogens. This also revealed a repertoire of more than
3,383 carbohydrate active enzymes (CAZymes) including multiple enzymes associated
with lignin degradation, demonstrating a microbial consortium capable of degradation
of all components of lignocellulose. This would allow A. ater to make extensive use of
plant biomass as a source of nutrients through exploitation of the enzymatic capabilities
of the gut microbial consortia. From this metagenome assembly we also demonstrate
the successful amplification of multiple predicted gene sequences from metagenomic
DNA subjected to whole genome amplification and expression of functional proteins,
facilitating the low cost acquisition and biochemical testing of the many thousands
of novel genes identified in metagenomics studies. These findings demonstrate the
importance of studying Gastropod microbial communities. Firstly, with respect to
understanding links between feeding and evolutionary success and, secondly, as sources
of novel enzymes with biotechnological potential, such as, CAZYmes that could be used
in the production of biofuel.

Keywords: CAZymes, lignocellulose, Arion ater, biofuel, shotgun metagenomics, whole genome amplification,
cellulase
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corresponding to abundance observed (created in MEGAN4).

FIGURE 2 | A KEGG diagram showing the phosphotransferase system (PTS), genes identified in the gut metagenome are highlighted in green with color intensity

of plant cell wall superstructure, including lignin, which is widely
considered to be the most difficult of these compounds to degrade
enzymatically (Sanderson, 2011).

In total, Gammaproteobacteria accounted for the vast majority
of the community metagenome, with 82% relative abundance;
this included identification of 84 species in this class. The most
abundant genera identified include Enterobacter, Citrobacter,
Pseudomonas, Eschericia, Acinetobacter, and an unclassified
genus belonging to the Sphingobacteriaceae family. These genera
alone accounted for almost three quarters of the sequenced
component of the gut metagenome (Table 2). Previous studies
have shown dominance of the phylum Proteobacteria in gut
microbiomes of various gastropod species, including freshwater
planorbid snails (Biomphalaria pfeifferi) and terrestrial snails
such as, the giant African land snail (A. fulica) (Cardoso et al.,
2012b). Proteobacteria have also been seen to dominate other
insect gut microbiomes whose diets are largely or entirely
comprised of lignocellulose (Dillon and Dillon, 2004; Russell
et al., 2009), which suggests a general association of this phylum
not only with herbivorous insects but also with plant-eating
gastropods. Furthermore, two studies of microbial consortia
in fungal gardens used by leaf cutter ants (Atta colombica)

to degrade lignocellulose both report dominance of the family
Enterobacteriaceae (which account for ~65% of the A. ater
community metagenome) and predict this family to be directly
involved in the efficient breakdown of plant material in these
gardens (Suen et al., 2010; Aylward et al., 2012). A large number
of genera were also detected in much lower abundances with
over 200 genera account for only ~27% of the microbiome,
these may comprise transient elements of the gut microbiome
that are ingested during proximal feeding or suppressed by
nutritional cycling in the gut at a particular time. Our findings
are also consistent with previous culture dependent identification
of cellulolytic microbes from the A. ater gut, where almost all
identifications made were in the Gammaproteobacteria class,
and included many of the more abundant genera noted in
this study (Joynson et al,, 2014). These findings suggest that
the gut environment of A. ater contains a consortium that
is reflective of many highly efficient lignocellulose degrading
environments.

Mining of the phylogenetic data associated with the gut
microbiome identified several bacterial plant pathogens. These
included six species recently ranked among the top 10 most
important species of plant pathogen (Mansfield et al., 2012;
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FIGURE 3 | Extended error bar percentage representation plots of SEED functional groups in the A. ater gut compared to other gut metagenomes. Pair-wise
comparisons were made for the A. ater metagenome against (A) giant snail, (B) termite, (C) cow, and (D) long horn Asian beetle gut metagenomes.
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Table 3). Many of these pathogens are known to cause necrosis
and eventual development of soft rot, blight, or blackleg in
tuber based crops such as, potatoes, but also in ornamental
plants and other crops. These include the three relatively closely
related Enterobacteria Dickeya dadantii, P. carotovorum, and
E. amylovora (Toth et al., 2011) with the latter two being
identified previously in A. ater gut from samples taken in 2012
from the same area as this study (Joynson et al., 2014). If both
of these pathogen species are commensally present in the slug
gut, this would suggest that A. ater may act as a perpetual
vector species through which they could be spread from field
to field, and persist between growing seasons by overwintering
in the slug gut. The role of insects in the transmission and
overwintering of plant pathogens is now quite well established,
the squash bug, flea beetle, and cucumber beetle are known

to spread plant pathogens as well as sustaining populations
of the pathogens they harbor during dormant winter months
(Nadarasah and Stavrinides, 2011). However, more indepth
study over multiple seasons would be required to confirm this
hypothesis.

Functional analysis of the A. ater metagenome has yielded
identification of 3,383 genes involved in the degradation of
plant biomass, including all of the major components of the
plant cell wall superstructure, cellulose, hemicellulose, and lignin
supporting previous work that has implicated the slug gut
microbiome in the facilitation of lignocellulose degradation
(James et al., 1997). The largest proportion of these (641)
breakdown oligosaccharides, including 204 B-glucosidases, 80
B-galactosidases, and 279 B-xylosidases. Numbers of long chain
carbohydrate degrading enzymes were lower in comparison,
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1.5Kbp

FIGURE 4 | Recombinant expression and activity testing of gene 9459: (A) Amplification of gene 9459 (B) A Western blot showing successful expression of
recombinant protein lanes 1 and 3 showing duplicate induced samples and lanes 2 and 4 showing duplicate negative controls (C) An esculin hydrate- ferric
ammonium citrate activity plate showing the gene 9459 clone B-glucosidase activity.

TABLE 2 | A selection of the most abundant phylogenetic groups present in the
gut microbial community down to genus level.

Classification Percentage abundance (%)

k__Bacteria 99.99
k__Archaea 0.01
p__Proteobacteria 88.15
¢__Gammaproteobacteria 82.16
o__Enterobacteriales 64.56
f__Enterobacteriaceae 64.56
g__Enterobacter 26.86
g__Citrobacter 19.86
g__Escherichia 3.91
o__Pseudomonadales 14.25
f__Pseudomonadaceae 10.66
g__Pseudomonas 10.54
f__Moraxellaceae 3.69
g__Acinetobacter 3.68
p__Bacteroidetes 10.53
¢__Sphingobacteria 8.57
0__Sphingobacteriales 8.57
f__Sphingobacteriaceae 8.56
g__Sphingobacteriaceae_unclassified 8.10
p__Firmicutes 0.59
p__Actinobacteria 0.28
p__Chlamydiae 0.21
p__Chloroflexi 0.16

Phylogenetic classifications and microbial abundance estimations were made using
MetaPhlAn to compare sequences to a clade specific marker database.

with only 26 cellulase enzymes being identified in total. The
dominance of oligosaccharide degrading enzymes appears in all
of the other comparator gut environments shown in Table 4,
including wallabies, termites, and also in the gut microbiomes
of reindeer and cattle (Pope et al., 2012) with similar patterns

TABLE 3 | Microbiome abundance of plant pathogens present in the A. ater gut
microbiome, as ranked by a survey of experts carried out by Mansfield et al.
(2012).

Ranking Pathogenic species Microbiome abundance (%)
1 Pseudomonas syringae 0.08264
3 Agrobacterium tumefaciens 0.06987
5 Xanthomonas campestris 0.0144
7 Erwinia amylovora 0.03587
9 Dickeya dadantii 0.04896
10 Pectobacterium carotovorum 0.04215

also observed in environmental microbiomes such as, leaf cutter
ant fungus gardens (Aylward et al., 2012). This could support the
hypothesis that gut microbes are predominantly involved in the
breakdown of partially degraded plant material (be it partially
rotten when ingested or chemically pre-processed in a stomach)
across the board. However, there is still the possibility that
some groups of microbial lignocellulose degrading enzymes that
are unknown and may be undetectable using homology-based
methods. Enzyme groups that are involved in the degradation
of hemicellulose are seen in especially high numbers in the
A. ater gut when compared with other gut microbiomes, with
larger numbers for both the degradation long chain hemicellulose
(321) and its derived oligosaccharides (437). Further indications
that sugars in plant cell walls are utilized by gut microbes
come from the identification of numerous sugar transporter
proteins. These include a large number of components of the
cellobiose-specific PTS that facilitate the uptake of cellulose
degradation products (Figure 2). The KEGG diagram in Figure 2
also shows the presence of membrane transport system
components specific to mannose and B-glucosides. Together,
the identification of multiple enzymes that break down plant
cell walls and the transport systems that facilitate the uptake
of the resulting oligosaccharides provide a strong indication
that the microbial population has an active role in the
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TABLE 4 | Comparison of the glycoside hydrolase (GH) profiles of human, termite, wallaby, giant panda, snail, and slug gut metagenomes as classified by Cardoso et al.
(2012a) and Allgaier et al. (2010), showing GH groups that are involved in the breakdown/modification of plant cell wall polysaccharides.

Pfam group Predominant activity Human Termite Wallaby Panda Snail Slug
GH5 Cellulases 7 125 27 1 36 15
GH6 Endoglucanases 0 0 0 0 4

GH7 Endoglucanases 0 0 0 0 0
GH9 Endoglucanases 0 43 5 0 15 11
GH44 Endoglucanases 0 0 0 0
GH45 Endoglucanases 0 0 0 0 0
GH48 Cellobiohydrolases 0 0 0 0 2 0
Total 7 174 32 1 57 26
ENDOHEMICELLULASES

GH8 Endoxylanases 2 21 2 1 46 11
GH10 Endo-1,4-B-xylanase 2 102 19 1 25 16
GH11 Xylanase 0 19 0 0 1 0
GH12 Endoglucanase & xyloglucanase 0 0 0 0 0 12
GH26 B-mannanase & xylanase 1 20 8 0 11 0
GH28 Galacturonases 3 15 10 0 69 6
GH53 Endo-1,4-B-galactanase 11 20 1 4 9 276
Total 19 197 50 6 161 321
XYLOGLUCANASES

GH16 Xyloglucanases 1 6 6 6 12 17
GH17 1,3-B-glucosidases 0 0 0 0 60
GH81 1,3-B-glucanases 0 0 0 0 1 0
Total 1 6 6 6 15 177
DEBRANCHING ENZYMES

GH51 a-L-arabinofuranosidases 15 13 19 2 22 3
GHe62 a-L-arabinofuranosidases 0 2 0
GH67 a-glucuronidase 1 1 2 5 1
GH78 a-L-rhmnosidase 13 7 46 1 73 8
Total 29 26 66 5 102 12
OLIGOSACCHARIDE DEGRADING ENZYMES

GH1 Mainly B-glucosidases 54 27 94 41 294 118
GH2 Mainly B-galactosidases 29 32 39 4 66 60
GH3 Mainly B-glucosidases 55 109 101 11 219 86
GH29 a-L-fucosidases 7 12 5 0 70 1
GH35 B-galactosidase 7 8 1 32 14
GH38 a-mannosidase 18 3 8 18 39
GH39 B-xylosidase 2 13 3 8 6 279
GH42 B-galactosidases 15 33 17 7 54 6
GH43 Arabinases & xylosidases 34 63 72 13 185 28
GH52 B-xylosidase 0 3 0 0 0 0
Total 206 317 342 93 944 641

extracellular breakdown of plant cell wall components in the
A. ater gut.

Several predicted genes from this metagenome were
successfully amplified from whole genome amplified gut
metagenomic DNA, confirmed by Sanger sequencing. This
validates the assembly and the predictions made thereof,
showing that it is very likely that the predicted sequences do
exist in nature. We then successfully expressed a full length
predicted p-glucosidase gene and observed the enzymatic
function using growth plate assays. To our knowledge we are

the first to succeed in amplifying novel, functioning genes
from a whole genome amplified metagenomic sample.
The use of whole genome amplified samples enables
studies of a far greater number of predicted genes by
sidestepping the problem of small sample size often seen
with environmental samples, which limits the scope for
genes of interest to be studied using expensive gene synthesis
methods.

The use of metagenomics in the study of environmental DNA
offers a new means to advance our knowledge of microbial
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communities. Here we use metagenomics to gain an insight
into both the phylogeny and the functional capability of
the gut microbiome of the common black slug. This work
demonstrates that the microbial community is dominated by
a relatively low number of genera with the Enterobacter genus
being observed in especially high numbers. This study also
implicates the slug gut microbiome in the degradation of
lignocellulose. Here we identified a large repertoire of genes
that offer potential for lignocellulose not only to be degraded
but also for the resulting sugars to be taken up by members of
the microbiome itself. We have also validated our predictions
through amplification of selected glycoside hydrolase genes along
with observing predicted functional activity in of an amplified
pB-glucosidase gene. Our work therefore begins to shed light
on how the black slug can process the large quantities of
plant biomass it consumes and provides a further example
of a herbivore gut microbiome which is well equipped to
breakdown plant matter. In addition, by identifying plant
pathogen species harbored in the gut we raise questions as
to the potential role of the slug in the transmission and
wintering of pathogen species. This knowledge is of considerable
potential relevance following the 2014 European Union wide
ban on the use of some traditional molluscicide pellets in
agriculture.

DATA AVAILABILITY

Sequence data from this project has been uploaded to EBI
under project number PRJEB21599 (http://www.ebi.ac.uk/ena/
data/view/PRJEB21599).
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