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Cassava is the third largest source of carbohydrates for huan food in the world but is
vulnerable to virus diseases, which threaten to destabikzfood security in sub-Saharan
Africa. Novel methods of cassava disease detection are neextl to support improved
control which will prevent this crisis. Image recognition ffers both a cost effective and
scalable technology for disease detection. New deep learng models offer an avenue
for this technology to be easily deployed on mobile devicedJsing a dataset of cassava
disease images taken in the eld in Tanzania, we applied trafer learning to train a deep
convolutional neural network to identify three diseases ahtwo types of pest damage
(or lack thereof). The best trained model accuracies were 98 for brown leaf spot (BLS),
96% for red mite damage (RMD), 95% for green mite damage (GMP98% for cassava
brown streak disease (CBSD), and 96% for cassava mosaic disese (CMD). The best
model achieved an overall accuracy of 93% for data not used ithe training process.
Our results show that the transfer learning approach for inge recognition of eld images
offers a fast, affordable, and easily deployable strategyf digital plant disease detection.

Keywords: cassava disease detection, deep learning, convo
epidemiology, Inception v3 model

lutional neural networks, transfer learning, mobile

1. INTRODUCTION

CassavaNanihot esculent&rantz) is the most widely grown root crop in the world and ajora
source of calories for roughly two out of every ve Africaméieke et al., 2002In 2014, over 145
million tonnes of cassava were harvested on 17 million lrestaf land on the African continent
(FAOSTAT, 201Y. It is considered a food security crop for smallholder farrspecially in low-
income, food-de cit areasBellotti et al., 199Pas it provides su cient yields in low soil fertility
conditions and where there are irregular rainfall patterbe Bruijn and Fresco, 1989
Smallholder farmers, representing 85% of the world's farmse faumerous risks to their
agricultural production such as climate change, market kepand pest and disease outbreaks
(Nagayet, 2005 Cassava, an exotic species introduced to Africa from Sduiterica in the
16th century, initially had few pest and disease constraimighe continent. In the 1970s two
arthropod pests, the cassava mealytRlgghacoccus manih@att.-Ferr.)] and the cassava green
mite [Mononychellus tanajoéBond.)] were accidentally introduced from the neotropicsg,
1999, becoming the most economically threatening pests. Casgaus diseases, in particular
cassava mosaic disease (CMD) and cassava brown strealediS8&D), have a longer history on
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the continent. Mosaic disease was the rst to be recorded isymptoms for each given disease to the deep learning model.
Tanzania towards the end of the 19th centus/drburg, 189)%  Each of the diseases or types of pest damage was distinctive and
In East Africa, the outbreak of a severe form of the virus ia th the variation of symptom expression between varieties wasmin
1990s, termeé&ast African cassava mosaic vilHACMV-UG or  in comparison to the contrasts between diseases.
UgV), coupled with the sensitivity of local cultivars, raedlin a Images were then screened for co-infections to limit the
threat to food security in the region as farmers' only sauativas  number of images with multiple diseases. This dataset, cdiked t
to abandon cultivationThresh et al., 1994Thresh et al. (1997) “original cassava dataset,” comprised 2,756 images. Thetzspho
estimated annual yield losses to CMD at 15-24%, or 21.8-34u&re then manually cropped into individual lea ets to buildeth
million tons, at 1994 production levels. CBSD was reportetiént second dataset. This dataset, called the “lea et cassasaedA
1930s Gtorey, 1936 With limited success in controlling CMD comprised 15,000 images of cassava lea ets (2,500 images per
and CBSD, the two diseases have become the largest cotsstrariass)Figure 1shows an example from both datasets: (a) original
to cassava production and food security in sub-Saharan @friccassava dataset and (b) lea et cassava dataset and Figures S
resulting in losses of over US$1 billion every yeagdg et al., S5 show examples from both datasets for each cassava disease.
20049. Both datasets were tested to shed light on model performance
In order to manage the detection and spread of cassawaith images of full leaves but fewer images versus cropped
diseases, early identi cation in the eld is a crucial rstep. leaves with more images. The underlying assumption was that
Traditional disease identi cation approaches rely on the suppo the cropped leaf images (lea et cassava dataset) would improve
of agricultural extension organizations, but these appreacre model performance to correctly identify a disease as the datas
limited in countries with low logistical and human infrasicture ~ was larger. Additionally, we suspected the end users trying to
capacity, and are expensive to scale up. In such areas, interigett a diagnosis for a disease would focus in on lea ets showing
penetration, smartphone and unmanned aerial vehicle (UAVsymptoms. Both datasets comprised six class labels assigned
technologies o er new tools for in- eld plant disease deteati manually based on in- eld diagnoses by cassava disease experts
based on automated image recognition that can aid in earlfrom IITA. For all datasets, we used the images as is, in color,
detection at a large scale. Previous research has demimustraand with varied backgrounds from the eld in order to assdss t
automated image recognition of crop diseases in whe&gifon model performance (Figure S6).
et al., 2015; Siricharoen et al., 2pl@pples DPubey and The six class labels for the datasets included three disease
Jalal, 2014and on datasets of healthy and diseased plantslasses, two mite damage classes, and one healthy classj de ne
(Mohanty et al., 201} this technology was also demonstratedas a lack of disease or mite damage on the leaf. The disease
on UAVs (Puig et al., 2015 Cassava disease detection basedlasses and the number of images in the original dataset: were
on automated image recognition through feature extractims cassava brown streak disease (CBSD) (398 images), cassava
shown promising results’duwo et al., 2010; Abdullakasim et al., mosaic disease (CMD) (388 images), brown leaf spot (BLS) (386
2011; Mwebaze and Owomugisha, 20hét extracting features images), and the mite damage classes were: cassava green mite
is computationally intensive and requires expert knowledgelamage (GMD) (309 images) and red mite damage (RMD) (415
for robust performance. In order to capitalize on smartphoneimages)Figure 2 illustrates examples of the class labels for the
technology, models must be fast and adapted to limiteadriginal cassava dataset. Within these classes, sevesalvaas
processing power. Transfer learning, where a model that hexs bevarieties were photographed at di erent stages of plant magurit
trained on a large image dataset is retrained for new class€3able S1).
o ers a shortcut to training deep learning models because of The ve disease and pest class symptoms are as follows:
lower computational requirements. This would have a didtinc CBSD is a result of infection with cassava brown streak
advantage for eld settings. Here we investigated the paaéfdr ~ ipomoviruses (CBSIs) (familfPotyviridae genusipomoviru3.
adapting an already trained deep learning convolutionalrabu There are two species associated with the dise@sssava
network model to detect incidence of cassava disease using a brown streak viru§CBSV) andUgandan cassava brown streak
eld dataset of 2,756 images comprising 3 cassava disead@s arvirus (UCBSV) (Mbanzibwa et al., 20)1Both cause the same

types of pest damage (or lack thereof). symptoms. These two virus species are vectored by white ies
[Bemisia tabac{Genn.)] in a semi-persistent manner. When

2. METHODS infected, cassava leaves show a mottled yellowing pattern
typically beginning from the secondary veins and progressing

2.1. The Cassava Image Datasets to tertiary veins as the infection gets more sevekéclfols,

The cassava leaf images were taken with a commonly availalil@5(). This yellowish chlorosis spreads along the veins until
Sony Cybershot 20.2-megapixel digital camera in experinhentaeverely infected leaves are mostly yellow. Disease symptoms
elds belonging to the International Institute of Tropical can vary by variety, age of the plant and weather conditions.
Agriculture (IITA), outside of Bagamoyo, Tanzania. Theient Tolerant varieties and plants at a young age may be infected but
cassava leaf roughly centered in the frame was photographedymptomatic. The two viruses may also cause brown streaks on
to build the rst dataset (Figure S6). Over a four-week period stems of infected plants and brown necrotic rotting in tubeso
11,670 images were taken. Images of cassava diseases wats which may render them inedible.

taken using several cassava genotypes and stages of maturityCMD is a result of infection with cassava mosaic
(as described in Table S1) in order to provide the full range obegomoviruses (CMBs) (family Geminiviridag genus
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FIGURE 1 | Healthy cassava leaf images from th€A) original cassava dataset andB) lea et dataset.

FIGURE 2 | Examples of images with in eld backgrounds from 6 classes inhe original cassava dataset(A) Cassava brown streak disease (CBSD)B) Healthy,
(C) Green mite damage (GMD)(D) Cassava mosaic disease (CMD)E) Brown leaf spot (BLS),(F) Red mite damage (RMD).

Begomovirds There are many species and recombinant strainbrown. The circular spots can become dry and crack depending
associated with this group of viruses, although the commormn the environment.
form in coastal East Africa, where sampling was undertaken, i GMD is caused by cassava green mitdsorfonychellus
East African cassava mosaic Vi(ERNCMV) (Ndunguru et al., tanajoa (Bondar)]. This is a widespread pest in Africa and
2009. The virus species are vectored Bytabaci(Genn.) in a South America. The mites cause small white, scratch-likésspo
persistent manner, contrasting to CBSIs. Newly-infectedahfsla where they have fed and in severe cases cause the whole leaf
begin to express symptoms from the top, while plants infectetb be covered with the pattern. There is such a reduction in
through the planted cutting often show symptoms in all leaveschlorophyll that the leaf may become stunted in a manner simil
Symptoms of CMD are a typical mosaic in which there is a mix oto that caused by CMD. Depending on variety and environment,
yellow/pale green chlorotic patches and green arEagi(e 2D).  infestations can lead to losses in tuberous root yield ofapd%
Unlike CBSD, leaves are usually distorted in shape, and whe(8kovgard et al., 1993
symptoms are severe the size of leaves is greatly reduced andRMD is caused by cassava red spider mi@idgonychus
the plant is stunted. Stunting and the damage to chlorophylbiharensis(Hirst)], which is widely distributed across Africa.
resulting from chlorosis results in the quantitative dae in  Their feeding damage also causes small scratch-like sgaitin
yield. the leaf but typically produces a distinct reddish-brown rust
BLS is caused by the funguslycosphaerella henningsii color. Feeding is also focused around the main vein but sever
(Sivan)]. This fungus is distributed worldwide and typigadloes infestations can cause the whole leaf to turn orange.
not cause greatyield loss. The disease manifests in broeuian Although GMD and RMD are not strictly diseases, for
leaf spots with some varieties expressing a chlorotic haloreto simplicity, we refer to all of the conditions a ecting the plant
the spots. Severe infections can cause the leaves to turwyello that were considered in this study as diseases.
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FIGURE 3 | Overall accuracy for transfer learning using three machirlearning methods.

2.2. Approach networks to improve performance with a modest increase in
We evaluated the applicability of transfer learning from amlee computational cost; a signi cant benet for scenarios where
convolutional neural network (CNN) model for the cassavamemory or computational power is limited, such as mobile or
image datasets. Convolutional neural networks are leathieg drone devices. Beginning with the GoogLeNet model, Inceptio
state-of-the-art in computer vision task§{egedy et al., 2016 v3 factorizes the traditional 7 7 convolution into three 3
As opposed to traditional approaches of training classi ershwit 3 convolutions, grid reduction is applied to three traditional
hand-designed feature extraction, CNNs learn featuredn@rty inception modules to reduce to a 17 17 grid with 768 lIters,
from pixels to classi er and train layers jointly. Due to mdde then grid reduction is applied again to ve factorized inceptio
complexity CNNs can take weeks to fully train, therefore sf@n  modulestoreducetoa8 8 1,280 grid. A detailed description
learning is applied to shortcut model training by taking aof the design principles implemented to create the Inception
fully-trained model for a set of classes and retraining thes3 model from GoogleNet is provided ifizegedy et al. (2016)
existing weights for new classes. Our approach retrains thEhe model parameters implemented in this study included the
existing weights of the Inception v3 CNN model to classifynumber of training steps (4,000), the learning rate (0.088)n
the cassava image datasets by exploiting the large amount lmdtch size (100), test batch sizel(, the entire test set), and the
visual knowledge already learned from the Imagenet databasralidation batch size (100).
Previous research has shown that transfer learning is evecti
for diverse applicationsi@arpathy et al., 2014; Yosinski et al.,2.3. Performance Measurements
2014; Mohanty et al., 20¥@nd has much lower computational In order to perform a robust validation and test for any inheten
requirements than learning from scratch, which is a benet t bias in the datasets, experiments were run for a range ofitrgin
mobile applications. testing data splits. During model training, 10% of the datase
We analyzed the performance of training the nal layer ofwas used to validate training steps, thus 90% of the dataset was
the CNN model Inception v3 for the new cassava image datasesglit into di erent training and testing dataset con gurati.
with three di erent architectures: the original inceptionfsmax ~ The training-test splits were as follows: 80-10 (80% of ddtas
layer, support vector machines (SVM), and knn nearest neighbder training, 10% for testing respectively), 60-30 (60% dasdat
(knn). The latest version of the Inception model (based orfor training, 30% for testing respectively), 50-40, (50%aifdet
GoogLeNet), Inception v3, was implemented in TensorFlowfor training, 40% for testing respectively), 40-50 (40% déasdat
Inception v3 was trained from the ImageNet Large Visualfor training, 50% for testing respectively), and 20-70 (2006 o
Recognition Challenge using the data from 2012, where it wegataset for training, 70% for testing respectively). Forheac
tasked with classifying images into 1,000 classes. The esmpb experiment the overall accuracy is reported as the number of
rate of Inception v3 was 3.46%, compared to 6.67 and 4.9%amples in all classes that were similar.
for Inception (GoogLeNet) and BN-Inception v2 respectively
(Szegedy et al., 201dnception v3 is 42 layers deep, but the3 RESULTS
computation costis only 2.5 times higher than that of GoogeeN
with 22 layers. Beginning with the GoogLeNet model, InceptiorFor the original cassava dataset (i.e., the whole leaf)pvbeall
v3 implements several design principles to scale up convalatio accuracy in classifying a leaf as belonging to the corraegoay
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FIGURE 4 | Confusion matrices for 10% test dataset using originalA,C,E) and lea et (B,D,F) datasets.

ranged from 73% (20-70 split, knn) to 91% (80-10 split, SVM)features. Results also suggest the models were not overheto t
For the lea et cassava dataset, the overall accuracy wasrhig datasets as the training-testing data split had a small e ect o
and ranged from 80% (20-70 split, knn) to 93.0% (80-10 splithe overall accuracies reported. Support vector machinestand t
SVM). Figure 3 and Table S2 show the overall accuracies fomal Inception v3 softmax layer, both based on achieving éine
the datasets. It is worth noting that all models performed muchseparability of the classes, had similar model performanmes f
better than randomly guessing, even with varied backgreund both original and lea et datasets, while the knn modkI¥ 3),
the images such as human hands, feet, soil or other distigcti based on similarity with its neighbors, performed the worst.
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The confusion matrices from the original and lea et datasetused, and results showed the SVM model to be have the highest
allow a more detailed analysis by shedding light on how modeirediction accuracies for four out of six disease classes. With
performance changes with di erent disease representations irespect to specic cassava diseases, the SVM model had the
the images. On the confusion matrix plots for the 80-10 (80%ighest accuracies for cassava mosaic disease (CMD) (96%) and
of dataset for training, 10% for testing respectively) datét,spl red mite damage (RMD) (96%) using the original dataset, and
the rows correspond to the true class, and the columns show th@% and 98% for healthy and brown leaf spot (BLS) using the
predicted class. The diagonal cells show the proportion (randea et dataset. The Inception v3 model had the highest aaiasa
0-1) of the examples the trained network correctly predicts thfor the cassava brown streak disease (CBSD) (98%) and 95%
classes of observations i.e., this is the proportion of thengk&s  accuracy for green mite damage (GMD) with the lea et dataset.
in which the true and predicted classes match. The o -diagonal In a practical eld setting where the goal is smartphone
cells show where the network made mistakes. assisted disease diagnosis, our results show that diagnosti

Using the confusion matrix for the Inception v3 model in accuracy improved only slightly when the leaet was used
Figure 4A (original dataset, 80-10 data split) as an examplerather than the whole leaf for some diseases (CBSD, BLS,
the Healthy class diagonal cell shows the Inception v3 mod&MD), while whole leaf images gave higher accuracies forothe
correctly identi ed 0.78 or 78% of the healthy leaf imagelsisT diseases (CMD and RMD). This was not expected. Rather,
increased to 0.83 for the lea et data sBtdure 4B). Overall the the larger image lea et dataset was expected to perform better
target and output class predictions were within a similar @fgy  for all disease classes compared to the original dataseseThe
all classes and datasets suggesting the overall reportathagc results indicate that datasets needed to build transfemiag
is indicative of the model performance for all cassava deseasnodels for plant disease diagnosis do not require very large
classes. training datasets (<500 images per class). The high accaracie

Comparing proportions in the o -diagonal cells for the reported suggest that variations in background had littlect e
models showed that the proportion of correct predictionson the prediction accuracies of the model. Portions of images
between the lea et dataset and the original dataset did notontained the sky, hands, shoes, and other vegetation, yet
signi cantly increase even though the lea et dataset wasoat  predictions in all image classes were greatly above the piliipab
7 times as large as the original dataset. Looking into speci of randomly guessing (16.7%). In the eld it is also likely
diseases irFigure 4, the highest reported prediction accuracythat an extension worker would use more than one picture
was 0.98 for CBSD (Inception v3-lea et) and BLS (SVM- lea et)to predict the disease, thus improving the diagnostic accuracy
diseases. The Inception v3 model had the highest accuracigsther. This study therefore shows that transfer learnapgplied
of 0.98 and 0.95 with the lea et dataset for CBSD and GMDto the Inception v3 deep learning model o ers a promising
respectively. Healthy and BLS classes also had highesta@sur avenue for in- eld disease detection using convolutionaliras
with the lea et dataset for the SVM model (0.90 and 0.98networks with relatively small image datasets. Work todatk
respectively). The slight improvement in accuracies usirg ththe method in the eld with mobile devices has begun through
lea et dataset over the original dataset could be due to thevork with TensorFlow Android Inference Interface. Models
increase in sample size for the disease classes providing mekeveloped in this study are available on Android devices,
images for the models to learn from. Alternatively, the k& shown in the youtube link https://www.youtube.com/watch?
dataset could reduce the accuracy of the model as all lea ets&=479p-PEubzk&feature=youtu.be, and are currently being
on a cassava leaf may not show signs of a disease, which woukkd by researchers in Tanzania to rapidly monitor disease
confuse the model. For CMD and RMD, the SVM model withprevalence.
the original dataset had the highest accuracies of 0.96 &6 0
respectively. These results suggest the size of the dataset i AUTHOR CONTRIBUTIONS
as important in improving prediction accuracy as previously
assumed. AR, KB, BA, JL, and DH conceived the study and wrote the
paper. BA, KB, and JL collected and processed data. PM and AR
implemented the algorithms described and prepared results.

4. DISCUSSION AND CONCLUSION

The results of this study show that image recognition withFUI\IDING

transfer learning from the convolutional neural network . . .
Inception v3 is agpowerful method for high accuracy automate()Ne thank the Huck Institutes at Penn State University for
cassava disease detection. This method avoids the complex a§nu(§)port.

labor-intensive step of feature extraction from images ides

to train models, and the model can be easily trained on SUPPLEMENTARY MATERIAL

desktop and deployed on a mobile device. Transfer learning is

also capable of applying common machine learning methods bjhe Supplementary Material for this article can be found
retraining the vectors produced by the trained model on newonline at: https://www.frontiersin.org/articles/10.388ls.2017.
class data. In this study, three machine learning methods we 01852/full#supplementary-material
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