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Salinity is an important abiotic factor controlling the distribution and abundance of
Nodularia spumigena, the dominating diazotrophic and toxic phototroph, in the brackish
water cyanobacterial blooms of the Baltic Sea. To expand theavailable genomic
information for brackish water cyanobacteria, we sequenced the isolate Nodularia
spumigenaUHCC 0039 using an Illumina-SMRT hybrid sequencing approach, revealing
a chromosome of 5,294,286 base pairs (bp) and a single plasmid of 92,326 bp.
Comparative genomics in Nostocales showed pronounced genetic similarity among
Nodularia spumigenastrains evidencing their short evolutionary history. The studied
Baltic Sea strains share similar sets of CRISPR-Cas cassettes and a higher number of
insertion sequence (IS) elements compared toNodularia spumigenaCENA596 isolated
from a shrimp production pond in Brazil.Nodularia spumigenaUHCC 0039 proliferated
similarly at three tested salinities, whereas the lack of salt inhibited its growth and
triggered transcriptome remodeling, including the up-regulation of �ve sigma factors and
the down-regulation of two other sigma factors, one of whichis speci�c for strain UHCC
0039. Down-regulated genes additionally included a large genetic region for the synthesis
of two yet unidenti�ed natural products. Our results indicate a remarkable plasticity of
the Nodularia salinity acclimation, and thus salinity strongly impacts the intensity and
distribution of cyanobacterial blooms in the Baltic Sea.

Keywords: Baltic Sea, cyanobacteria, Nodularia spumigena , comparative genomics, RNA sequencing, salinity

INTRODUCTION

Photoautotrophic cyanobacteria have adapted to life in a widerange of aquatic and terrestrial
habitats. In aquatic environments, salinity (referring here to the concentration of dissolved NaCl)
is an important abiotic factor in�uencing prevailing cyanobacterial species distribution (Sivonen
et al., 2007; Pade and Hagemann, 2014; Celepli et al., 2017). Proper strain-speci�c concentrations of
inorganic salts have a crucial role in maintaining constantturgor pressure, while �uctuating salinity
changes the water potential and inorganic ion concentrationin cells (Hagemann, 2011). A rapid
salinity shift triggers complex acclimation processes that keep osmotic equilibrium and inorganic
ion concentrations suitable for proper cellular function and growth. Response to salt shock is
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well-understood in the model cyanobacteriumSynechocystissp.
strain PCC 6803 (Kanesaki et al., 2002; Marin et al., 2002,
2003, 2004; Huang et al., 2006; Nikkinen et al., 2012; Qiao
et al., 2013). Early-stage adaptation (< 1 h) is based mainly
on the activation/inactivation of existing transporters and the
expression of numerous salt stress-related genes, such as genes
for the synthesis of compatible solutes to diminish cellular
damage, occurs within 24 h (Hagemann and Marin, 1999; Marin
et al., 2003; Fulda et al., 2006). Increased salt concentration
additionally induces general stress responses such as the synthesis
of chaperones and the arrest of photosynthetic activity and cell
division (Kanesaki et al., 2002; Fulda et al., 2006; Qiao et al.,
2013; Billis et al., 2014; Rai et al., 2014). Much less is known of
how lower salinity a�ects cyanobacterial molecular responses and
adaptation.

The semi-enclosed Baltic Sea is one of the largest brackish
water ecosystems in the world. The salinity gradient in
the Baltic Sea basins is dynamic due to the mixture of
in�owing freshwater from the large catchment area and saline
water pulses via the Danish Straits. The Baltic Sea is well-
known for the toxic cyanobacterial blooms appearing each
summer, causing not only health risks for humans and
animals, but also substantial economic losses (e.g., recreation
and tourism). Increased temperature, nutrient bioavailability,
and thermal strati�cation are generally agreed to promote
the formation and intensity of cyanobacterial blooms (Paerl
and Huisman, 2008; Conley et al., 2009). Cyanobacterial
blooms in the Baltic Sea are dominated by �lamentous and
nitrogen-�xing (diazotrophic) generaNodularia spumigena,
Aphanizomenonand, to a lesser extent,Dolichospermumsp.
(previously Anabaena) (Halinen et al., 2007; Sivonen et al.,
2007; Fewer et al., 2009), of which Nodularia spumigena
and Dolichospermummay produce toxins, such as nodularin
and microcystins (Sivonen et al., 1989; Halinen et al., 2007).
Climate-change models indicate that salinity in the Baltic
Sea will decrease due to rarer saline pulses and elevated
riverine runo� ( Kjellström and Ruosteenoja, 2007; von Storch
et al., 2015; Graham, 2016). Decreased salinity may shift the
distribution of freshwater species further south and promote
the formation of freshwater originDolichospermumblooms
(Brutemark et al., 2015; Vuorinen et al., 2015). Despite the
intensive research on Baltic Sea cyanobacterial blooms, only
one draft genome of a Baltic Sea cyanobacterial isolate has
been sequenced and the availability of genomic informationfor
brackish water cyanobacteria has remained scarce (Voß et al.,
2013; Celepli et al., 2017). The previously studiedNodularia
spumigenaCCY9414 was isolated from the surface water near
Bornholm, in the southern Baltic. In our study we sequenced
the genome ofNodularia spumigenastrain UHCC 0039, isolated
from the open Gulf of Finland (Sivonen et al., 1989) in the
northern Baltic, to gain better genomic coverage of Baltic Sea
phototrophs and to increase understanding of the cyanobacterial
acclimation strategies in a dynamic brackish water environment
(salinity range 0–9 mg/L). An RNA-Seq based transcriptomic
study was conducted to unravel transcriptional responses of
Nodularia spumigenato salinity changes relevant in the Gulf of
Finland.

MATERIALS AND METHODS

Strains and Toxin Analysis
The nodularin-producingNodularia spumigenastrain UHCC
0039 (hereafterNodulariaUHCC 0039) belongs to the University
of Helsinki culture collection (HAMBI, UHCC).Nodularia
UHCC 0039 (former nameNodularia spumigenaAV1) was
isolated from the open Gulf of Finland (Sivonen et al., 1989).
The strain was puri�ed to axenicity, and has been cultivated in
Z8 medium without nitrogen (Kotai, 1972) under continuous
illumination since isolation. Three replicates ofNodulariaUHCC
0039 were inoculated to separate cell culture �asks (TC Flask
T175, Sarsted AG & Co) with 115 mL of Z8X medium containing
0.321; 3.023; 6.047 or 9.071 g L� 1 NaCl. Salinities corresponded
to conductivities of 0.83; 5.55; 10.10; 14.37 mS/cm, and will
further be referred as 0, 3, 6 and 9 g L� 1 NaCl, respectively.
Cultures were grown at 20� C under continuous illumination
of 3.2–3.7 mmol photons m� 2s� 1 for 24 days. To follow
the growth of the cultures chlorophylla concentration was
determined in every fourth day during the experiment. 1 mL of
cell culture was collected on glass micro�ber �lters (GF/F, Glass
Micro�ber Binder Free, GE Healthcare) and stored at� 80 � C.
Chlorophyll a was extracted for 24 h at� 20 � C with acetone
and absorptions of the extracts were measured at 664, 630, and
647 nm. Chlorophylla concentration was calculated using the
equation of Je�rey and Humphrey (Je�rey and Humphrey, 1975).
In addition, number of cells was estimated from the cultures
containing 0 and 6 g L� 1 NaCl every fourth day. Cells were �xed
in 5% of Lugol's solution and stored atC4 � C. Total length of
cellular �laments in 0.5ml droplet was measured and divided by
average cell size.

Toxin Analysis
Combined intra- and extracellular concentrations of nodularin
were determined by extracting toxins from freeze-dried samples
to 70% methanol at 80� C for 1 hour. Samples were injected
into Acquity ultra performance liquid chromatography (UPLC)
system (Waters, Manchester, UK), equipped with KinetexR

1.7mm C8 100 Å, 50� 2.1 mm LC Column. The UPLC was
operated with a �ow-rate of 0.3 ml/min in gradient mode, at
a temperature of 40� C. Solvents used in the gradient were A:
0.1% formic acid in water and B: 0.1% formic acid in 1 to 1
mixture of acetonitrile and isopropanol. The initial conditions of
the linear gradient were A: 25% and B: 75% and the conditions
were changed to A: 35% and B: 65% in 5 min. Injection volume
was 1mL. Mass spectra were recorded with Waters SynaptG2-
Si mass spectrometer (Waters, Manchester, UK). Measurements
were performed using negative electrospray ionization (ESI)
in resolution mode and ions were scanned in the range from
500 to 1,300 m/z. MS analyses were performed with scan
time of 0.1 s. Capillary voltage was 2.0 kV, source temperature
120 � C, sampling cone 40.0, source o�set 80.0, desolvation
temperature 600� C, desolvation gas �ow 1,000 L/h and nebulizer
gas �ow 6.5 Bar. Leucine-encephalin was used as a lock mass
and calibration was done with mixture of sodium formate and
ultramarkR 1621. Standard curve containing dilution series
of known nodularin concentrations was run alongside toxin
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samples. All the samples, including standards, were spiked
by nostophycin to ensure successful extraction and device
functioning.

Comparative Genomics
Genomic DNA of Nodularia UHCC 0039 was extracted
using a NucleoBondR AXG kit (Macherey Nagel) following
the manufacturer's instructions. DNA libraries, PacBio RS
II sequencing with P6-C4 chemistry and genome assembly
using HGAP3 protocol with Quiver polishing (Chin et al.,
2013) were conducted in the DNA Sequencing and Genomics
Laboratory, Institute of Biotechnology, University of Helsinki.
To reinforce genome assembly, paired-end Illumina HiSeq2500
reads (Macrogen, Inc.) were used to correct PacBio assemblies
using Pilon v1.20 software (Walker et al., 2014). Genomes
were annotated using Prokka v1.12 (Seemann, 2014). A total
of 28 complete and draft cyanobacteria genomes were included
in the comparative genomics study. Detailed information of
the bioinformatics work�ow is provided in the Supporting
information.

Transcriptome Sequencing and Analysis
Total RNA from the cultures containing 0 or 6 g L� 1 NaCl was
isolated on day 16 using the RNeasy mini kit (Qiagen) and
genomic DNA was degraded using the TURBO DNA-freeTM kit
(Life Technologies). Paired-end cDNA libraries were analyzed
with an Illumina HiSeq sequencer at the Institute for Molecular
Medicine Finland (FIMM). RNA-Seq data analysis was mainly
performed on a 64-cores local Unix server and computation-
intensive read alignment steps were performed on the Galaxy
instance of Freiburg University (Cock et al., 2013; Afgan et al.,
2016). In short, the quality of the raw reads was checked using
FastQC v0.11.4 (Andrews, 2010), and reads were demultiplexed
with Trimmomatic (Bolger et al., 2014). Clean reads were aligned
to reference genomes using BWA-MEM v0.7.7 (Li, 2013) in
paired-end mode with default parameters. The read count per
gene were calculated using featureCounts v1.4.6.p5 (Liao et al.,
2014). The di�erentially expressed genes (false discovery rate
(FDR) < 0.01) between control (6 g L� 1 NaCl) and treatment
(0 g L� 1 NaCl), were called using both edgeR (Robinson et al.,
2010) and DESeq (Anders and Huber, 2010) following the simple
design protocol (Anders et al., 2013). Detailed descriptions of
the work�ow and parameters are provided in the Supporting
information.

Data Deposition
Raw reads, genome assemblies, and annotations were
deposited in NCBI under the BioProject accession number
of PRJNA352241.

RESULTS

Genomic Characteristics of Nodularia
spumigena UHCC 0039
The whole-genome assembly ofNodulariaUHCC 0039 resulted
in two circular contigs, corresponding to the chromosome (5.29
Mbp) and one plasmid (0.92 Mbp) (Table S1). The average

coverage of PacBio reads was 368� for the chromosome and
384 � for the plasmid. The PacBio assembly was polished by
Illumina sequencing, yielding an average coverage of 252� for
the chromosome and 255� for the plasmid, which corrected
14 single nucleotide polymorphisms (SNP), 5 insertions, and
241 deletions on the chromosome and 2 insertions and 19
deletions on the plasmid, respectively. The �nal genome size
of Nodularia UHCC 0039 is 5.38 Mbp. We modeled 5,108
protein-coding genes, 2,699 of which were annotated encoding
hypothetical proteins. This relatively high share of genes lacking
functional annotation illustrates the uniqueness of theNodularia
group.

A phylogenomic tree was constructed for 120 selected
cyanobacteria genomes based on 31 conserved marker genes
(Figure 1A; Wu and Eisen, 2008). We additionally calculated
the Average Nucleotide Identity (ANI) (Table S2) and Average
Amino Acid Identity (AAI) (Table S3). Twenty-eightNostocales
genomes formed seven di�erent clusters (Figures 1B,C),
partitioning the Nostocalesbranch into seven corresponding
subgroups (Ia–d; IIa–c) in the phylogenomic tree (Figure 1A).
All Nodularia spumigenastrains clustered tightly together within
subgroup Id, indicating the congruent evolutionary history
of these brackish-water specialists. The largest subgroup Ia
consisted of Dolichospermum/Anabaena species, for which
larger within-group variation was observed, indicating their
faster divergent evolution. Despite the high within-group
similarity of the threeNodularia strains, speci�c di�erences
were observed when collinear blocks were compared for local
synteny (Figure 2). Synteny at contig level was more pronounced
betweenNodularia spumigenaUHCC 0039 and its Baltic Sea
counterpartNodularia spumigenaCCY9414, including a region
for the metabolism of phosphonates (Teikari et al., 2018).
Moreover, sequences homologous to plasmid pUHCC0039a
were detected in strain CCY9414 but not CENA596 (Figure 2).
This is consistent with their close geographical and evolutionary
relationship, compared toNodularia spumigenaCENA596,
which was isolated from a shrimp production pond in Brazil
(Popin et al., 2016). However, synteny cannot be considered
at total genome level because only the UHCC 0039 genome
sequence was �nished.

The detailed comparison ofNodularia spumigenagenomes
revealed several strain-speci�c insertions into the UHCC 0039
genome among otherwise syntenic regions that are likely of
ecological relevance. The four-gene cassette BMF81_01278
to BMF81_01281 contains the genesbtuB and btuF, which
constitute an outer membrane vitamin B12 receptor and ligand-
gated transport channel (Figure 3). This cassette is immediately
upstream of the conservedcobH-cbiC gene BMF81_01282
encoding precorrin-8X methylmutase, an enzyme in the
(pseudo)cobalamin (vitamin B12) synthesis pathway. Numerous
marine microbes depend on certain other microbes to meet
their vitamin B12 demand, consistent with the presence of
secretion and uptake systems in many of these species (Bonnet
et al., 2010; Heal et al., 2017). Marine cyanobacteria appear to
synthesize pseudocobalamin, a form not commonly bioactive in
eukaryotic algae, but certain species can remodel it to the active
cobalamin form (Helliwell et al., 2016). Therefore, the addition
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FIGURE 1 | Phylogenomic placement(A), average nucleotide(B), and amino acid(C) identities within sequencedNostocales. The maximum-likelihood phylogenomic
tree was constructed based on the concatenated alignment of31 universal marker genes (Wu and Eisen, 2008) and was rooted by using CandidatusPelagibacter
ubique HTCC1062 as the outgroup. For simplicity and clarity, branches with a bootstrap value of 100 were collapsed except forNostocales. The Average Nucleotide
Identity (ANI) and Average Amino Acid Identity (AAI) were clustered using average linkage hierarchical clustering based onpairwise Euclidean distances. Seven
clusters were determined by cutting the dendrograms at a tree height of 3.2, the corresponding phylogenetic relationship and cluster memberships are shown on the
phylogenomic tree.

of an import system for vitamin B12 in strain UHCC 0039
adds complexity to this topic, as it can release the requirement
to synthesize B12 vitamin for itself. Other interesting gene
insertions include the BMF81_03816 to BMF81_03843 cassette
for surface-modifying enzymes (including several glycosyl
transferases, epimerases, and acetylglucosamine-modifying
enzymes) and the genes BMF81_01521 to BMF81_01525
encoding a distinct set of chaperones, co-chaperones, and
peptidases (Figure S1).

Insertion sequences (IS) are a driving force for genome
evolution (Mahillon and Chandler, 1998). A genome-wide search
of IS elements in the threeNodularia strains unraveled that
Baltic SeaNodularia spumigenacarry more candidates (181
for CCY9414 and 148 for UHCC 0039) than their Brazilian
counterpart CENA596 (71) (Figure S2a). A PCA analysis of
the IS elements among threeNodularia strains showed that
the Baltic Sea strains were well separated from the Brazilian
strain on the �rst component, which explained 80.3% of
the variance. The most frequent IS family is IS200/IS605

(64/55/21 for CCY9414, UHCC 0039, and CENA596), followed
by IS4 (25/22/6), IS607 (19/20/2), IS5 (13/11/6), and IS630
(24/2/7). The BrazilianNodularia spumigenastrain encodes
two IS1, three IS982, and one ISH3 that were not found
in the Baltic Sea isolate. Together with IS630, IS701 (3/8/3)
and IS91 (0/2/0) were the driving families that separated the
two Baltic Sea strains on the second principal component
(Figure S2b).

Speci�c and Shared Proteins in the Genus
Nodularia
The comparison of the predicted proteomes revealed 3627 gene
clusters shared by the three strains (Figure 4). In total, 5439
protein clusters were determined, 4375 clusters of which were
shared by at least two species (Table S4). Pangenome analysis
revealed that 730 clusters were shared by twoNodulariastrains,
82.54% of them belonging toNodulariaCCY9414 andNodularia
UHCC 0039, indicating close gene composition between these
two strains. Among the 1,082 orphan clusters,Nodularia
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FIGURE 2 | Similarities among genomic contigs ofNodularia spumigenastrains. Previously de�ned contigs of CCY9414 and CENA596 were aligned and reordered
according to the UHCC 0039 genome assembly. Contigs were colored in alternating red and cyan colors. Similar regions within contigs inferred by BlastN are
connected by blue lines. Plasmid pUHCC0039a is indicated bythe green box. The asterisks (*) indicate the location of aphn gene cluster located at 535,027–547,520
bp for the metabolism of phosphonates (Teikari et al., 2018), that is highly similar to a region in strain CCY9414. The visualization is only valid for the respective contigs
and cannot be taken for total genome comparison because onlythe UHCC 0039 genome sequence is �nished whereas the other genome assemblies consist of
multiple contigs (cf. Table S1).

FIGURE 3 | Gene cassette encoding vitamin B12 receptor and ligand-gated transport channel.

CENA596 took up of 44.8%, followed byNodularia CCY9414
(29.5%), and only 278 orphan clusters were detected inNodularia
UHCC 0039. Previously, 1,098 potentially unique proteins were
found in Nodularia spumigenaCCY9414 that were not present
in other Nostocales(Voß et al., 2013). Many of these putative
proteins are smaller than 80 amino acids, a systematically
underestimated class of gene products in bacteria. However,
several studies revealed the involvement of small proteins in
essential regulatory and other processes (Storz et al., 2014). The
detection and functional characterization of small proteins in
cyanobacteria has received particular attention (Baumgartner
et al., 2016). We therefore decided to add their genes, if they
were conserved and had a minimum length of 50 amino acids,
to the other two genomes, leading to the numbers presented in
Figure 4.

Among the shared and strongly conserved genes, we found a
gene cluster putatively involved in the biogenesis of chaperone-
usher (CU) �mbriae, the cell surface-located organelles found in
many Gram-negative bacteria (Waksman and Hultgren, 2009;
Wurpel et al., 2013). These genes encode a �mbrial usher
protein with a FimD outer membrane domain (BMF81_00267),
two SCPU domain-containing proteins (BMF81_00268 and
BMF81_00270), and a pilus assembly protein PapD with a FimC
domain (BMF81_00269). Closer homologs (BLASTp identity
� 80% and coverage� 50%) can only be found in several
cyanobacterial species includingChrysosporum ovalisporum,
Sphaerospermopsis kisselevianaandDolichospermum compactum,
while remote homologs (BLASTp identity� 60% and coverage
� 40%) mainly exist in Proteobacteria such asMyxococcus,
CollimonasandRhodanobacter, and several other cyanobacterial
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FIGURE 4 | Pan-genome composition of three sequencedNodulariastrains. The number of gene clusters is given for each type ofintersection. The total number of
gene clusters found in at least one or two species for the pan-genome and for each strain are shown in the subplot.

strains includingTrichormussp. NMC-1,Calothrix sp. NIES-
2100, and Alkalinema sp. CACIAM 70d. Many of the
shared clusters represent functionally well-described multi-
copy gene families. For example, all threeNodularia harbor
four identical copies of thepsbA gene encoding the D1
protein of photosystem II, and 10 gene copies encoding
proteins of the CAB/ELIP/HLIP superfamily. These proteins
are supposed to support the highly robust photophysiology of
these cyanobacteria when exposed to high irradiance and oxygen
partial pressure at the Baltic Sea surface during summer (Kopf
et al., 2015).

In addition to IS elements, another particular dynamic
element in bacterial genome evolution are the CRISPR-Cas
systems. These systems are frequently deleted and also become
horizontally distributed (Godde and Bickerton, 2006). However,
the draft status of previous genome analyses rendered the
analysis of theNodularia spumigenaCRISPR apparatus with
its many repeated sequence elements di�cult. Our analysis
unraveled two CRISPR-Cas repeat-spacer arrays on the
chromosome ofNodularia UHCC 0039 (Figure S3). These
encompass a total of 34 spacers. According to the presence of
respective marker genes (Makarova et al., 2015), one major
CRISPR-Cas system on the reverse strand of the chromosome,
with its repeat-spacer region from 4035453–4037321 can be

classi�ed as subtype III-B. The intergenic regions (952013-
952477, 4037653-4037322) between the two CRISPR loci and
their upstream genes were compared against the CRISPRleader
database (Alkhnbashi et al., 2016), assigning them to cluster
F8B14. Thecas1and cas2genes of this cassette on the reverse
strand are separated from the other genes by a 16-gene insertion
on the forward strand of the chromosome (Figure S3). The
other repeat-spacer array from 952478–953238 lacks associated
casgenes. Based on the conservation of the repeat sequences
and secondary structures, both elements probably belong to
the same system. Especially the conserved stem-loop structures
(CTTTCCATAACCTCTTCCCCTAACGGGGATGGAAAC
and GTTTTTCATAACCatTTCCCCgcAaGGGGAcGGAAAC)
are relevant for recognition by the Cas6 maturation endonuclease
(Reimann et al., 2017). The direct repeats of the two CRISPR
arrays were moreover identical to their counterparts in
Nodularia CCY9414, but all spacers di�ered from each
other. Spacer sequences provide a memory of past infections,
with the most recent additions represented by the most 5'-
located spacers. Therefore, this �nding indicates that the
CRISPR systems in both strains were inherited from their joint
ancestor, while all the spacers were acquired later, remaining
as hallmarks of di�erent infectious trajectories in the past.
Transcripts were detected from both CRISPR loci in UHCC
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0039 (Figure S3), suggesting the functionality of both CRISPR
arrays.

Conserved Non-coding RNAs Found in
Nodularia spumigena
Increasing evidence has shown ncRNA is a major player in
the regulatory systems of cyanobacteria and thus conserved
non-coding RNAs were searched (Kopf and Hess, 2015). In
this study, we identi�ed 15 expressed intergenic regions and
24 antisense RNAs based on the transcriptome data of the
here tested conditions (Table S5). Seven contained the DGR1
ncRNA elements (Table S5, highlighted in red) (Voß et al.,
2013), which were widespread in the threeNodularia strains
(75, 67, and 50 copies were found in CCY9414, UHCC0039,
and CENA596 at an e-value cuto� of 1e-20), indicating
that these DGR elements were active in the genome. The
DGR1 sequences were highly conserved at the sequence level
(Figure S4a) and at the secondary structure level (Figure S4b)
even among three geographically separatedNodularia strains,
suggesting that DGR1 was present in their common ancestor
and evolved extremely slowly. In addition, the 9th strongly
expressed intergenic regions (nsn009) in Table S5 encoded a
long ncRNA that was only found inNostocalesbased on a
BLASTn search at an e-value cuto� of 1e-5. These homologs
were conserved at the sequence level (Figure S4c) and in
part at the secondary structure level, too (Figure S4d). The
second hairpin structure in particular was highly conserved,
and the sequence UGURCCUCC in the loop (highlighted by
a green curve in Figure S4d) might function as a regulatory
element.

Nodularia UHCC 0039 Growth in Low and
Moderate Salinities
Nodularia UHCC 0039 growth was followed at four di�erent
salinities, 0, 3, 6, and 9 g L� 1 NaCl by measuring chlorophyll
a concentration (Figure 5). Nodularia UHCC 0039 survived in
each of the tested salinities, but growth was heavily impaired
at 0 g L� 1 NaCl. No obvious growth di�erences were observed
at 3, 6, or 9 g L� 1 NaCl, suggesting �exibility of theNodularia
metabolism as long as some salt was present. Cell counting was
applied to follow culture growth to exclude the e�ect of chlorosis
on the estimation of cellular growth. Patterns of chlorophyll a
and cell counts appeared to correlate well (Figure S5), and thus
chlorophylla concentration was later used for the normalization
in our study.

Transcriptome Remodeling Under
Unfavorable Salinities
We applied a transcriptomic sequencing approach to study the
transcriptional response ofNodularia spumigenato long-term
low salinity (0 g L� 1 NaCl), corresponding to general freshwater
conditions. Transcriptional responses were analyzed at 0 g
L� 1 NaCl with reference to those at 6 g L� 1 NaCl (analyzed
at day 16), using a Log2 fold change (Log2FC) of� 1 and
FDR < 0.01 as cut-o� values: positive values (up-regulation)
re�ect increased expression at 0 g L� 1 NaCl. The acclimation

FIGURE 5 | Growth of NodulariaUHCC 0039 at salinities of 0, 3, 6, and 9 g
L� 1 NaCl.

response ofNodulariaUHCC 0039 to the lower salinity involved
302 up-regulated and 341 down-regulated genes (Table 1 and
Tables S6, S7). The most up-regulated gene BMF81_04664
encodes Serpin B (serine protease inhibitor). RNA polymerase
sigma factors have a key role in the acclimation to changes in
environmental conditions. In addition to the vegetative major
sigma factor SigA, there are �ve alternative group 2 sigma
factors and �ve alternative group 3 sigma factors, which were
classi�ed by comparison against the set of well-characterized
sigma factors fromSynechocystisPCC 6803 (Figure S6). One
group 2 (BMF81_04399) and one group 3 (BMF81_04729)
sigma factor lack an obvious homolog inSynechocystisPCC
6803. The plasmid-encoded sigma factor BMF81_04729 is
highly unique, which interestingly has no counterpart in the
other two Nodularia strains and is fused to an unknown
N-terminal region. Similar proteins exist only in four other
cyanobacteria,Oscillatoria acuminataPCC 6304,Tolypothrix
bouteillei, Geminocystis herdmanii, and Trichodesmium
erythraeumIMS 101 (Figure S7). RNA polymerase group 2
sigma factors (BMF81_01360, BMF81_02088, BMF81_04429,
and BMF81_00672 corresponding to SigB (Sll0306), SigD
(Sll2012), SigC (Sll0184), and SigE (Sll1689) in the model
SynechocystisPCC 6803, respectively (Figure S7), together with
one group 3 sigma factor (BMF81_00786) were induced in zero
salt whereas sigma factors BMF81_04399 and BMF81_04729
became repressed (Table 1 and Tables S6, S7). The fact
that six out of 11 sigma factor genes displayed signi�cant
changed expression suggests a massive sigma factor-dependent
remodeling of the transcriptome upon entering the zero salt
condition.

Signi�cantly di�erentially expressed genes (FDR< 0.01)
were further used in gene ontology (GO) enrichment analysis
to identify over- and under-represented GO terms (Figure 6).
Several di�erentially expressed genes were classi�ed to participate
in cellular component organization or biogenesis (GO:0071840;
e.g., BMF81_00264 and BMF81_03893). The demand for cell
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TABLE 1 | List of the selected differentially expressed genes ofNodulariaUHCC 0039 while comparing low salinity (0 g L� 1 NaCl) to normal salinity (6 g L� 1 NaCl).

GO term locus_tag Gene name Product Log2 FC

PHOTOSYNTHESIS AND ELECTRON TRANSPORT

GO:0009055 BMF81_00359 Cytochrome b6 1.66

GO:0009055 BMF81_01796 psbA Photosystem II protein D1 2 1.28

GO:0005622 BMF81_04216 ccsB Cytochrome c biogenesis protein 1.08

GO:0044424 BMF81_00668 Cytochrome c6 � 1.58

GO:0043167 BMF81_00670 Cytochrome c6 � 2.36

GO:0042651 BMF81_01995 psb27 Photosystem II lipoprotein � 1.02

GO:0034357 BMF81_02616 psbB/C Chlorophyll a/b light-harvesting protein � 1.43

GO:0034357 BMF81_02622 pcb Chlorophyll a/b light-harvesting protein � 2.16

GO:0034357 BMF81_02857 cpcD Photosystem I reaction centerXII � 1.15

GO:0034357 BMF81_02858 cpcD Photosystem I reaction centerXII � 1.32

CELL MEMBRANE AND CELL DIVISION

GO:0071840 BMF81_00264 N-acetylmuramoyl-L-alanine amidase 2.6

GO:0071840 BMF81_03893 N-acetylmuramoyl-L-alanine amidase 1.67

GO:0071704 BMF81_02030 lytC Peptidoglycan-N-acetylglucosamine deacetylase 1.27

GO:0071704 BMF81_03481 murB UDP-N-acetylenolpyruvoylglucosamine reductase 1.45

GO:0071704 BMF81_03482 murC UDP-N-acetylmuramate L-alanine ligase 1.28

TRANSCRITPION AND TRANSLATION

GO:0016987 BMF81_01360 sigB RNA polymerase sigma factor 2.08

GO:0016987 BMF81_00786 sigG RNA polymerase sigma factor 1.25

GO:0016987 BMF81_02088 sigD RNA polymerase sigma factor 1.3

GO:0016987 BMF81_04429 sigC RNA polymerase sigma factor 1.25

GO:0016987 BMF81_00672 sigE RNA polymerase sigma factor 1.12

GO:0016987 BMF81_04399 RNA polymerase sigma factor � 1.7

GO:0016987 BMF81_04729 RNA polymerase sigma factor � 1.02

GO:0043226 BMF81_03163 rimO Ribosomal protein S12 methylthiotransferase 1.22

GO:0034062 BMF81_02138 DNA-directed RNA polymerase subunit beta 1.08

GO:0034062 BMF81_02139 DNA-directed RNA polymerase subunit beta 1.16

CHAPERONES

GO:0005515 BMF81_04277 dnaJ Chaperone protein 1.33

GO:0043167 BMF81_04014 clpB1 ATP-dependent chaperon 1.37

GO:0043167 BMF81_04028 dnaK Chaperone protein 1.29

GO:0005515 BMF81_01878 dnaJ Chaperone protein 1.21

GO:0051082 BMF81_00304 Chaperone protein dnaK2 1.99

GO:0051082 BMF81_00306 Chaperone protein dnaK2 1.74

wall reorganization was further evidenced by up-regulation
of genes related to peptidoglycan synthesis (GO:0071704:
BMF81_03481-2). Photosynthesis and electron transport
functions were heavily in�uenced by lowered salinity. Genes
in the GO terms thylakoid (GO:0042651), photosynthetic
membranes (GO:0034357), and phycobilisome (GO:0030089)
together with photosynthesis (GO:0015979) and chlorophyll
metabolic processes (GO:0015994) were signi�cantly down-
regulated. However, electron carrier activity (GO:0009055)
and respiratory chain complex (GO0098803 and GO0070469)
exhibited increased gene expression, showing the reorganized
balance between the photosynthetic complex and respiratory
chain. Transcription (GO:0034062, e.g., RNA polymerases
BMF81_02138-9), translation (GO:0005840, e.g., ribosomal
protein S12 methylthiotransferase BMF81_03163), and protein

metabolism (GO:0006518, GO:0019538, and GO:0043043)
were induced in low salinity, further demonstrating the
high demand for structural and metabolic reorganization
of the cell. Chaperones, molecules with an important role
in protein folding, protection, and repair under stress
conditions, were also highly up-regulated (BMF81_04014
and 04028).

Trehalose and sucrose are the major compatible solutes
participating in the protection of the cellular component
under increased salinity in freshwater cyanobacteria (Klähn and
Hagemann, 2011). Nodularia UHCC 0039 possesses sucrose
synthases genes along with trehalose synthase genes, similar
to Nodularia spumigenaCCY9414 (Voß et al., 2013), but
these genes were not di�erentially expressed in our current
study.
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FIGURE 6 | Gene Ontology (GO) enrichment analysis of the up-regulated(A) and down-regulated (B) genes in low salinity (0 g L� 1 NaCl) compared to normal
condition (6 g L� 1 NaCl). Circle size is proportional to the number of differentially expressed genes (FDR� 0.01) assigned to each GO term and the color indicates the
log10 adjusted p-value under hypergeometric test. Only GO terms with an adjusted p-value < 0.05 are shown. Pairwise semantic similarities of enrichedGO terms
were calculated using REVIGO with the SimRel method (Supek et al., 2011). GO terms with a dispensability< 0.15 were taken as representatives and were
highlighted in black color and bold font, the remaining GO terms were taken as redundant and were shown in gray color. BP, biological process; CC, cellular
components; MF, molecular function.

AntiSMASH was used to annotate the gene clusters of
naturally produced biosynthetic gene clusters. Results showed
that the genome ofNodularia UHCC 0039 harbors �ve
known and two unknown gene clusters for the synthesis
of natural products (Table S8). The known metabolites
are nodularin, aeruginosin, nodulapeptin, spumigin, and
heterocyst glycolipid. Of the known biologically active peptides,
nodularin concentration was followed every fourth day (Figure
S8). Nodularin concentrations increased over time in both
low and high salinities, probably due to the accumulation

of continuously produced toxins into cultures, while no
di�erences were detected in nodularin concentrations or in
the expression of genes within the nodularin gene cluster
between low and moderate salinities. Interestingly, expression
of the large genetic region containing 33 genes (BMF81_00493
and BMF81_00528) was heavily repressed (Log2FC < � 1).
This particular region includes hybrid nonribosomal
peptide synthetase and polyketide synthase gene clusters
(BMF81_00493-507; BMF81_00524-526), but the products are
unknown.
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DISCUSSION

Species diversity in brackish water ecosystems is usually relatively
narrow because most organisms have adapted to life in either
marine or freshwater environment (Telesh et al., 2013). However,
cyanobacteria diversity is high in the brackish water Baltic Sea
(Celepli et al., 2017) and, hence, the underlying phenomena
should be studied in much greater detail. In our study,Nodularia
UHCC 0039 was found to proliferate equally well in all tested
salinities above and including 3 g L� 1 NaCl, whereas growth
was severely hampered in freshwater conditions (0 g L� 1 NaCl).
Our �ndings agree well with previous studies carried out in
the Baltic Sea, where salt concentration plays an important role
in the abundance and intensity ofNodularia spumigenaand
Dolichospermumin the blooms (Lehtimäki et al., 1997; Stal et al.,
2003; Brutemark et al., 2015). Nodularia dominates in more
saline parts (Halinen et al., 2007; Sivonen et al., 2007). The
optimal salt concentration for Baltic SeaNodularia spumigena
CCY9414 growth was previously found to be 12.5 g L� 1 NaCl,
which is the salinity prevailing in the southern regions of the
Baltic Sea (Möke et al., 2013).

Comparative Genomics
Nodularia spumigena is �lamentous, capable of �xing
atmospheric nitrogen and producing toxins, is buoyant,
and forms akinetes in unfavorable conditions (Stal et al., 2003;
Castenholz, 2015). The observed abundance ofNodularia
spumigenain the Baltic Sea is thus the consequence of ecological
niche adaptation, which can be obtained at the genome and
gene regulation levels. The genome size ofNodularia UHCC
0039 was 5.39 Mb, which matches its previously sequenced
counterpartsNodularia CCY9414 (5.46 Mb,Voß et al., 2013)
andNodularia spumigenaCENA596 (5.2 Mb;Popin et al., 2016).
In the phylogenomic tree ofNostocales, Nodularia spumigena
encompasses one branch, which corresponded with the cluster Id
distinguished in the average nucleotide and amino acid identity
analyses. Our phylogenomics analysis further demonstratesthe
close relationship ofNodularia spumigenastrains and highlights
the joint evolutionary origin of Baltic SeaNodularia spumigena
strains (Laamanen et al., 2001; Lyra et al., 2005).

Syntenic regions were identi�ed within the Baltic Sea
Nodularia spumigenaUHCC 0039 and CCY9414, but plasticity
was also ubiquitous between UHCC 0039 and CENA596.
Increased numbers of IS elements in the genomes of the Baltic
SeaNodularia spumigenacompared toNodularia spumigena
CENA596 explain brackish water adaptation, as IS elements
are a great source of genetic rearrangement and environmental
adaptation (Frangeul et al., 2008). Phage-related horizontal
gene transfer is another mechanism accelerating the evolution
of bacteria and enabling them to adapt quickly in changing
environments (Leitet et al., 2006; Paul, 2008; Shi and Falkowski,
2008). Although we found no phage remnants in the genome
of Nodularia UHCC 0039, there is evidence that lytic
bacteriophages a�ectNodularia spumigena, and Baltic Sea
cyanobacteria are thus highly exposed to viruses (Cairns et al.,
2017; Coloma et al., 2017). To defend against viruses and other
foreign DNA, bacteria have evolved several mechanisms, such

as restriction endonucleases and CRISPR-Cas systems, which
are found also within cyanobacteria (Hein et al., 2013; Scholz
et al., 2013). For example, all studiedMicrocystis aeruginosa
strains carried at least one CRISPR loci in their genomes, and
10 CRISPR-Cas systems were identi�ed from the genome of
Microcystis aeruginosaPCC 9717 (Yang et al., 2015). Here, two
CRISPR loci with almost identical repeats were identi�ed in the
genome ofNodulariaUHCC 0039. One of these loci lackedcas
genes, which suggests that the two belong to the same CRISPR
array.

Transcriptome Adaptation to a New
Environment
Genomes of cyanobacteria are highly dynamic and the induction
of either general or stress-speci�c genes and regulatory
systems enable them to proliferate in a changing environment.
Transcriptome modi�cations that acclimate to elevated salt
concentration are induced rapidly (Billis et al., 2014), but
complete acclimation of metabolic processes resulting in the
inhibition of cell division requires a longer time period (Qiao
et al., 2013; Al-Hosani et al., 2015). For example, work on
Synechocystissp. strain PCC 6803 showed that the number of
di�erentially expressed genes peaked after 30 min of salt shock
and the majority of these genes returned back to the control
level after acclimation for 24 h (Marin et al., 2004). Relying
on the number of di�erentially expressed genes found after 16
days of incubation in various salt concentrations, we assume
that the reconstruction of a transcriptional pattern remained
vivid long enough to minimize the harm of unfavorable salt
conditions, �ne-tune the metabolic patterns, and replace the
damaged proteins. Speci�c sigma factors play crucial roles in
the regulation of gene expression and acclimation to a new
environment. Especially group 2 sigma factors, such as up-
regulated SigB, SigC, and SigD homologs inSynechocystissp.
PCC 6803 are important in environmental acclimation, being
involved in high salt, response to heat stress, nitrogen starvation,
and further environmental perturbations (Marin et al., 2004;
Tuominen et al., 2005; Singh et al., 2006; Nikkinen et al., 2012;
Antal et al., 2016). Moreover, we observed a matching induction
of another sigma factor, BMF81_00672, which corresponds to
SigE, (Sll1689) of the modelSynechocystissp. PCC 6803 (cf.
Figure S4), which up-regulates the expression of genes encoding
proteins involved in sugar catabolism (Osanai et al., 2005, 2011).
Interestingly, decreased expression was found in one group 2
(BMF81_04399) and one group 3 (BMF81_04729) sigma factor,
which lacked direct homologs inSynechocystisPCC 6803. Hence,
these alternative sigma factors appear to have a role in the
prevailing brackish water conditions.

Accumulation and production of compatible solutes together
with ion exchange over the cell membrane are major salt-
stress acclimation strategies for minimizing the e�ects of
increased intracellular ion concentrations (Hagemann, 2011).
Low halotolerant strains are able to produce the compatible
solutes trehalose and sucrose (Klähn and Hagemann, 2011).
In our study, none of the genes previously speci�cally known
for salt stress appeared to remain up-regulated for 16 days. In
turn, the metatranscriptomics study of the Baltic Sea showed
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that transcripts of trehalose synthase were not found, whereas
transcripts of sucrose synthase were present at a salinity of
< 20 practical salinity unit (psu) (Celepli et al., 2017). These
results also matched the observations byVoß et al. (2013)
on the expression of these genes inNodularia CCY9414. In
addition, accumulation of compatible solutes was measured in
Nodularia CCY9414, and sucrose appeared to be the major
compatible solute (Möke et al., 2013). The possible role of
trehalose as a compatible solute in brackish water ecosystems is
thus questionable and needs more investigations.

In general, salt shock inhibits the proper functioning of several
proteins and metabolic processes, such as photosynthesis, central
metabolism, and cellular growth, and the high demand for the
reconstruction of cellular metabolism is obvious (Marin et al.,
2004; Allakhverdiev and Murata, 2008; Billis et al., 2014; Rai et al.,
2014; Al-Hosani et al., 2015). Chaperones, molecules with an
important role in protein folding, protection, and repair under
stress conditions, were highly up-regulated in our study. Their
role in maintaining protein integrity under low and high salt
stress was previously described (Fulda et al., 2006; Al-Hosani
et al., 2015). The cell wall is the �rst part encountering a
new environment, and thus cell wall structure and functioning
have a crucial role in adaptation. In our study, the induction
of the respective genes pointed at the reconstruction of cell
wall structures in unfavorable low salt concentrations. Cell wall
structure and composition have previously been shown to change
drastically in increased salt concentrations (Poolman et al., 2004;
Huang et al., 2006) and a similarly reorganized cell wall is also
needed in unsuitable low salinity conditions (our study).

Natural Products in Unfavorable Salinities
Cyanobacterial genomes harbor a great variation of gene clusters
for the production of biologically active natural products, of
which toxins, such as nodularin and microcystin, are the most
studied molecules due to their harmfulness against mammals
(Welker and von Döhren, 2006). Similarly to Nodularia
spumigenaCCY9414,Nodularia UHCC 0039 harbors �ve gene
clusters for chemically characterized bioactive compounds,
including the nodularin toxin (Fewer et al., 2013; Voß et al.,
2013). Nodularin concentration was previously reported to
decrease in extreme salinities (Lehtimäki et al., 1997), but here
the tested salinity range was most probably too narrow and the
nodularin concentration remained constant in all conditions.

The drastically down-regulated region encompassing genes
BMF81_00439 to BMF81_00526 shows high similarity to the
siderophore synthase gene cluster inAgrobacterium tumefaciens
C58 (Rondon et al., 2004), but the product in cyanobacteria has
not been identi�ed. However, in unfavorable conditions, where
cell growth and metabolism are heavily repressed, expressionof
this gene cluster appeared redundant and thus transcription was
hindered.
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