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Passive Brain-Computer interfaces (pBCls) are a human-coputer communication tool
where the computer can detect from neurophysiological sigals the current mental
or emotional state of the user. The system can then adjust igdf to guide the user
toward a desired state. One challenge facing developers of BCls is that the system's
parameters are generally set at the onset of the interactioand remain stable throughout,
not adapting to potential changes over time such as fatigueThe goal of this paper
is to investigate the improvement of pBCls with settings adpted according to the
information provided by a second neurophysiological signaWith the use of a second
signal, making the system a hybrid pBCl, those parameters gabe continuously adjusted
with dynamic thresholding to respond to variations such asdtigue or learning. In this
experiment, we hypothesize that the adaptive system with dyamic thresholding will
improve perceived game experience and objective game perfmance compared to
two other conditions: an adaptive system with single primar signal biocybernetic loop
and a control non-adaptive game. A within-subject experimet was conducted with
16 participants using three versions of the game Tetris. Edcparticipant plays 15 min
of Tetris under three experimental conditions. The controtondition is the traditional
game of Tetris with a progressive increase in speed. The secal condition is a cognitive
load only biocybernetic loop with the parameters presentedn Ewing et al. (2016) The
third condition is our proposed biocybernetic loop using dpamic threshold selection.
Electroencephalography was used as the primary signal andutomatic facial expression
analysis as the secondary signal. Our results show that, cdrary to our expectations, the
adaptive systems did not improve the participants' experiace as participants had more
negative affect from the BCI conditions than in the control endition. We endeavored
to develop a system that improved upon the authentic versiorof the Tetris game,
however, our proposed adaptive system neither improved phgers' perceived experience,
nor their objective performance. Nevertheless, this exp&nce can inform developers
of hybrid passive BCIs on a novel way to employ various neurdyysiological features
simultaneously.

Keywords: dynamic adaptation, passive brain computer interfa
hBClI, EEG, tetris

ce, hybrid brain computer interface, BCI, pBClI,
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INTRODUCTION time. While most hybrid BCls use a second signal to improve
the robustness of the system, to our knowledge, no othergrou
We have become quite adept at communicating with ouhas used a secondary neurophysiological signal to adjust the
computer systems and having them do what we wish. Howevesarameters of the system's adaptation to the rst signal. &l
this type of communication lacks the subtleties that accompanyhe second signal would be used as a successfulness indi€ator
human-human interactions through non-verbal signals. Athe adaptation, which is based on the rst signal, leadingpit t
promising new mode of communicating with technology haspe personalized. To our knowledge, this paper presents a rst
emerged that could help our computer systems understand morgitempt to do so.
understated information about us, and that is passive brain- Qur approach takes a slightly di erent view of pBCls as most
computer interfaces (pBCls)Z@nder and Kothe, 20)1This  systems intend the subject to be unaware of the adaptations
paper presents suggested improvements to the current state @king place. We propose instead that subjects do not need to be
pBCI development. completely conscious of the changes, but that they are probably,
With pBCls, the user's state is communicated to the computepn some level, aware that changes are taking place. By megsuri
without any conscious e ort from the user and the system takeshe impact of these changes with a secondary, a ective signal,
that into account to adapt itself to ultimately lead the useh  we intend to measure the user's reaction to the adaptation in
optimal state. Passive BCls can bring about many di erent typegeal time. This should inform the system whether the adaptati
of adaptations, such as modifying the level of di culty of age  improved their experience (and/or performance) or not, thus
to ensure it is as stimulating as possible for playesi(De Laar  telling it whether the adaptation parameters were correct or
et al., ZOlB set o an alarm when truck drivers are too tired to not. According|y’ we propose a new approach for dynamic
be safe on the roadHajinoroozi et al., 201 or disengaging the  threshold selection that performs a continuous calibrati®he
autopilot to prevent airline pilots from getting so bored thdgy  biocybernetic loop adapts to one physiologically inferrednngt
fail to notice important warning signsfope et al., 1995Passive i this case, cognitive load, using electroencephalograpBGjE
BCls, as opposed to active BCls, are mostly being developed fghile the thresholds are continuously adjusted based on anseco
average users to improve their daily experiences rather than inetric, in this case, emotional valence, inferred using anattic
replace other input devices such as using eye tracking inste@d  facial expression analysis.
mouse frisolietal., 2012 As mentioned by Robert Jacob, “active  The goal of this paper is to evaluate if dynamic thresholding
BCls have the potential to bring a great improvement to thedivewjth a secondary neurophysiological signal can continuously
of a small number of people, while passive BCls can bring smalersonalize the adaptive system. We hypothesize that the
improvements to the lives of a great number of peopl&dob, adaptive system with dynamic thresholding will improve

2017 p. 14). perceived game experience and objective performance.
While multiple research groups have been building functional

pBCI systemsRrinzel et al., 2000; Scerbo et al., 2003; Berka

et al., 2004; Lin et al., 2006; Ewing et al., 3Di@any METHODS

technical challenges remain to be addressédagson and o

Fairclough, 2004; Fairclough, 2011; Brouwer et al., RGiEh Participants

as personalization. As biosignals vary greatly from one persoThiS study was carried out in accordance with the Researcic&th
to another, personalization is required for systems to fiorct Board of our institution and with written informed consentdm
properly (Makeig et al., 2092 Developers will often use all subjects. Participants were students at local univessiThere
personalization tasks to individually tailor threshold<dre the =~ were 16 in total (6 women). Average age was 2753 8.55).
use of a systemJphnson et al., 20).ITheir participants will thus ~ Participants had to be over 18 and have no known health issues.
have to be recorded twice, once to measure their responses td Bey received a $30 gift card as a compensation.

task designed to induce a given state and a second time omece th

system has been personalized to actually use it. This regjirine Initial Baselining

and resources and results in highly personalized systensaté . . . .
i gniy p >0 SYSIETNAIBA ~\\/e used a modi ed vanilla baseline taske(inings et al., 1992
nonetheless, not responsive to changes over time, suchgssfat ) o . "
as a baseline calibration task. This was chosen becausant is

This is the challenge we attempt to address within this paper. . N . g
: emotionally neutral task with similar visual charactedstas the
A solution that has been proposed to many such BCI problem ) .
etris game, i.e., color and movement.

is the combination of multiple neurophysiological signalgtghid
BCI) to improve reliability, pro ciency, bandwidth, convesmce,
and utility (seeBanville and Falk, 201for a review;Nijholt  Experimental Design

et al., 201). The type of system presented in this article canas Ewing et al. (2016underlined, game periods need to be
incorporate both neurophysiological and psychophysiologicabnger than 5 min to get an accurate representation of theesg'st
measures into the same systefil(tscheller et al., 2010; Zander adaptation. Thus, participants played each condition for 15.min
etal., 2010; Banville and Falk, 20116is also commonly known  The order of the three conditions was counterbalanced betwe
as multimodal BCI. We look to the hybrid BCI to personalizeparticipants. For the adaptive conditions, the system managed

our system in real-time and diminish the time and resourdestt the game diculty as in the Dynamic Diculty Adjustment
are required before a user can begin using a system for the r$ramework (Hunicke and Chapman, 20p4
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Game positive (ang et al., 1995 Valence is measured with the use
Tetris is a game that is often used in research as it is easitf facial expression analysis, which is explained in the next
adaptable and because gameplay is generally understood by maegction. The emotional valence is measured before andesdtdr
In this instance, Tetris was also advantageous as there is speed adaptation over 2s. If the after-before delta is positive,
emotional component to the gameplay. This prevented us fronthe subject is deemed satis ed with the adaptation, the tino&s
having to tease out the e ect of gameplay from the e ects of thevalue is considered appropriate and is maintained. If the dslta
adaptive system on the measured valence, the latter being maregative, the subject is deemed dissatis ed with the admptat
relevant to our study. and the threshold value is modi ed as follows. There are two
To easily control game parameters, we developed an in-housiereshold values, the lower threshold which, when crossed,
version of Tetris. The game window consisted of a rectanfjle deads to an increase in speed, and the upper threshold, which,
10 by 20 squares. Players controlled the game with a Logitegbhen crossed leads to a decrease in speed. When the subject
F310 gamepad (Logitech, Lausanne). They could move the piedegleemed dissatis ed with the adaptation, only the threghol
laterally with the left and right arrows and rotate the pieeeh  that was crossed is changed. The thresholds move away from
the “A” and “X” buttons. No other manipulation was allowed.  the middle, i.e., the upper threshold increases, or the lower
For each condition, the initial speed was 400 ms per linethreshold decreases, leading to a less severe adaptatieriecri
The slowest allowed speed was 1,500 ms per line and the fast@steFigure 2). For example, if the upper threshold value was
allowed speed was 100ms per line. Speed variations betweknand the baseline alpha value was 4, when the current alpha
levels were of 100 ms at a time. These parameters were chosedue reaches past 8 for a given window (a 100% increase} it ha
after pilot testing was conducted. The only parameter that wasrossed the threshold. Thus, the decision-rule determinasthe
atypical was the absence of the control that allows the user game speed must slow down. At the moment where the speed is
manually make the blocks fall faster. The ability to force th modi ed, the delta valence is measured. The valence value fro
blocks down which might prevent the conditions from being before the speed change is subtracted from the valence \ftdue a
uniform between subjects, thus it was not implemented in outhe speed change to see if the change is received positively or

game. negatively. For example, if the valence before the speed change
was 2 and the valence after the speed change is 1, the deltasvale
Condition 1 is negative ( 1). The threshold value from our previous example,

In the control condition, there was no adaptation taking placea value of 1 for the upper threshold, should be modi ed. It will
The speed increased by one step (speed levels are de ned in tmeve away from the center; therefore, the upper thresholdevalu
next section) every time four rows were successfully cledigd  will increase to 1.1. In the next window, for the speed to change
condition was chosen to resemble a traditional game of $etsi  the alpha value will need to reach 8.4 (an increase of 110% of

closely as possible. the baseline value of 4). In addition, when, for a given 1@sdc
epoch, no adaptation takes place while delta valence is negative
Condition 2 both thresholds are considered too loose and are brougheclos

The second condition was developed to model as closely &sthe middle, i.e., the upper threshold decreases, and therlow
possible ta=wing et al. (2016&onservative condition. The system threshold increases, leading to a more severe adaptati@mion.
adapts to the user state as measured by the EEG. Any 100% or
two-fold increase/decrease from the baseline value flega Measurement Tools and Processing
starting baseline value of 4, a 100% increase would be a vala&G Recording and Processing
of 8, a 100% decrease would be a value of 2) or more froffihe EEG was recorded from 32 Ag-AgCl preampli ed electrodes
the benchmarking task triggers a speed change Kggpge 1. mounted on the actiCap and with a brainAmp amplier
Ewing et al. (2016employed the upper alpha (10.5-13 Hz) in (Brainvision, Morrisville). The recording reference was FCz
the P4 location and theta bands (4-8 Hz) in the Fz location irand the acquisition rate was 500Hz. All the EEG processing
the following manner: an increase of theta accompanied by awas performed in the NeuroRT software (Mensia, Renne). The
increase in alpha (both should be more than 100% baselinédllowing steps were performed in this order for the online
corresponds to the user being in a state of boredom and the spepdeprocessing of the data: down-sampling to 256 Hz, bandpass
is increased; an increase of theta accompanied by a decreaseltiering with an in nite impulse response Iter at 1-50 Hz, notch
alpha (both 100% or more) corresponds to the user being in dtering at 60 Hz, blink removal through blind source sepanati
state of overload and the speed is decreased. Similarlyystars  re-referencing to the common average reference, and ettifa
adaptations of speed are triggered by 100% or more changesdetection by computing the Riemannian distance between the
the baseline level of the upper alpha band (10.5-13 Hz). Thivariance matrix and the online mean. The data was then
band was chosen froiawing et al. (2016fpllowing pilot testing.  Itered to keep only the upper alpha band (10.5-13Hz) and
squared. Only data from P3 and P4 was kept in accordance with
Condition 3 Ewing Ewing et al., 2016 Finally, each 0.5 s epoch was divided
The third condition is similar to the second condition (see by the average of the 1-min calibration period to normalize th
Figures 1a,bfor a side by side comparison) with the addition data. This value, which ranged from 0.008 to 6.87, was thetn se
of adaptive thresholds. The thresholds adapt to the emotionab the adaptation system to be used in the decision rule-based
valence of the subject, i.e., the extent to which an emot#on iprocess.
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Translation:
Feature extraction: Decision rule: > +100% (e.g., from 4 to 8)
upper alpha band | > +100% or < -100% from [—* = speed increase
(10.5-13Hz) baseline <-100% (e.g., from 4 to 2)
T = speed decrease
I Pre-processing |
A
EEG signal
acquisition
Changes in speed =
- change in cognitive load
a)
b)
Feature extraction:
A Valence
Translation: x
: Decision-rule: _ Threshold
Feature extraction: > upper threshold = o
Upper or lower di modification
Pre- upper alpha band |—* > speed increase ——»
threshold from _ based on A
i (10.5-13Hz) 8 < lower threshold =
processing : baseline Valence
T speed decrease
| Pre-processing |
A
Automatic facial EEG signal
expression recognition acquisition
signal acquisition
A
Changes in speed =
h change in cognitive load
FIGURE 1 | (a) Flowchart of the pBCI in Condition 2. The game speed adapts amording to changes in the EEG from baseline. In this conditiothe threshold at which
changes in the EEG register as suf cient to trigger a change ispeed is xed at 100%. (b) Flowchart of the pBCI with adaptive thresholds in Conditio3. The game
speed adapts according to changes in the EEG from baseline. Ithis condition, the threshold at which changes in the EEG ragter as suf cient to trigger a change in
speed is continually adjusted according to the valence chages surrounding the previous speed changes.

Facial Expression Analysis combinations of muscle contractions are associated toagert
Emotional valence was obtained through the use of facia@motions. Computer image recognition is now able to detect
expression analysis performed in real time with the FaceReadtitese same muscle contraction combinations and code théuser
software (Noldus, Wageningen). Automatic facial expressioemotions in real time Bartlett et al., 1999 We used the
analysis uses the Facial Action Coding Systéthn{an et al., Facereader valence ratio which is calculated as the inyeoSi
1980 that has traditionally been employed by human expertgositive emotion minus the intensity of the negative expr@ssi
who manually code video playback for facial expressions. $peciwith the highest intensity. The software maps the facial rressc
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Alpha ,
(WV%) Avalence <0 Avalence >0
[ ——
l_. .A. ._. c
! 1
. o > threshold ! :
' ¢ q <threshold
| ‘ i
Upper ’ - d
threshold AW/ ! Ti >Ti_1 \/\/ \K.: T,+1=T,
i :
Lower : :
threshold H :
! |
: : » Time
10 20 (sec)

Adaptation 1
Speed decreases

FIGURE 2 | lllustration of the dynamic thresholds adaptation in four sps (adaptation pacingD 10s): (1) The average of alpha over the 5s (in red) preceding
adaptation 1 is higher than the upper threshold; (2) The sysin therefore choose to decrease the game speed at adaptatiord; (3) The difference in valence before
(average of 2s) and after (average of 2 s) adaptation 1 is netize; (4) The system quali es adaptation 1 as a fail and raisethe upper threshold in order to be less

sensitive during adaptation 2. Trefers to the threshold value at the offset of a given adaptain (i).

Adaptation 2
Speed remains

of the user and derives valence at a rate of 30 Hz. It stream@@dBLE 1 | High and low speed comparisons for each experimental condiion.

to the adaptive system that used the 2s before and the 2s
after an adaptation to calculate the change in valence caused

by the adaptation. A positive change tells the system th%pha
the adaptation was appropriate, meaning that the threshold
parameters were correct, while a negative change tells shersy

that the adaptation was wrong and that the thresholds shoeld bvalence
modi ed.

Average

Game Performance
The behavior of each system (Conditions 1-3) was loggetd ™ tevel
in order to compare them and understand what drove user,
experience. The game speed was controlled as the duratiQgns
(ms) it took for a block to move down one line. This was
convertedpost-hoanto levels. The smaller the level, the slowerscore
the game and there was 100 ms di erence between levels (i.e.,

level 1D 1,500 ms, level 1B 100 ms). The number of “game

Condition 1 Condition 2 Condition 3

NA Low speedD 0.65 Low speed D 0.69
High speed D 0.82 High speed D 0.86
pDo0.21 p D 0.03

NA Low speedD 0.03 Low speed D 0.03

Low speed D 12.37
High speedD 12.69
pD 0.39

Low speed D 3.6
High speedD 3.9

p D 0.84

Low speed D 4,186
High speed D 5,367
p D 0.35

High speedD 0.14
pDo0.21

Low speed D 3.94
High speed D 7.69
pD 0.05

Low speed D 0.3
High speedD 1.3

p D 0.72

Low speed D 2,043
High speed D 2,989
p D 0.26

High speedD 0.13
pDO0.11

Low speed D 4.41
High speed D 10.84
p < 0.001

Low speed D 0.14
High speedD 1.3
p D 0.09

low speedD 1957
high speedD 956
p D 0.008

deaths” per subject and the score of the subject at the end of
each condition were also loggediaple 1). Participants scored

100 points each time they cleared a line, 300 points for twes|ine positive, and negative a ect are the 6 dimensions of the In-gam
500 points for three lines, and 800 points for four lines. GEQ and positive experience, negative experience, tiredness,
. and returning to reality are the 3 dimensions of the pots-game
Perceived Measures guestionnaire. Each item has a 5-point scale ranging from 0
In addition to game performance, we also measured th¢Don't get the feeling described in the statement at all) to 4
perception of the participant at the end of each experimentajExtremely get the feeling described in the statement).
condition. We used the In-game and Post-game Game
Experience Questionnaire (GEQ), a shortened version ofdhe ¢ Statistical Analysis
questionnaire which was developed to assess multiple ibgx@ti Diverse statistical tests have been performed between tiee th
of an experimentlsselsteijn et al., 200& hese questionnaires conditions (control, EEG, adaptive thresholds) and between
respectively have 14 and 17 items that lead to scores on tletusters of participants afterwards. In order to compare
following dimensions: competence, ow, annoyance, chaéen conditions (GEQ, total scores, average game level, valeipte

Frontiers in Human Neuroscience | www.frontiersin.org 5 July 2018 | Volume 12 | Article 282


https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

Labonte-Lemoyne et al. Dynamic Threshold Selection for a Game BCI

power), we used Wilcoxon tests to compare the 3 conditionhey are also statistically di erent in terms of valence eslu

and Mann—Whitney tests to compare the clusters of participantgp D 0.02; high speeD 0.01; low speeb 0.20).

Both these tests are non-parametric as is appropriate consgleri  We also evaluated if participants di ered in Condition 2 to see

the sample size. Also, a Kolmogorov—Smirnov test was used iiothey were intrinsically di erent or if they were only di enet

test for normality and found only one variable to be normally while using the dynamic threshold adaptive system. For those

distributed, the alpha power in conditions B and C 0,12, two groups (high and low-speed), their values did not dier

p D 0.15; DD 0.16,p D 0.15) further justifying the use in Condition 2 (alphap D 0.35; valence D 0.23;Table J).

of non-parametric tests. We used Poisson regressions withlso, these groups di ered on some dimensions of the GEQ. In

random e ects to account for repeated measures from the sam@ondition 2, they reported di erent annoyance perceptions (low

participant to compare total number of deaths and total numberspeedD 2.78; high spee® 1.7;p D 0.02) and in Condition

of level changes between the 3 conditions. 3, challenge (low spedd 2.17; high spee® 3.65;p D 0.03)
and competence perceptions di ered (low sped3.22; high
speedD 1.35;p < 0.01). Finally, the two groups signi cantly

RESULTS diered in game deaths in Condition 3 (high speed O;
low speed 19) and score in Conditions 1 and 2 (respectively,

As can be seen ifrigure 3, when compared to the control low speed 4028.57, high spedd 5233.33p D 0.001 and low

condition (Condition 1), the number of game deaths wasspeed 2028.57, high spedal2,700p D 0.001).

signi cantly lesser in the EEG only BCI (Condition 2), and in

the adaptive thresholds condition (Condition 3). The scevhen

compared with the control condition, was lesser in both BCID|SCUSSION

conditions. The average game level (seeffrigure 4) in each

condition was 12.53 for control (Condition 1), 6.18 for EEAy  Our results show that the adaptive systems did not improve

(Condition 2), and 8.92 for adaptive thresholds (Conditiop 3 the participants' experience while playing Tetris. Contrary to

All di erences were signi cant ap < 0.05. These results show our expectation, participants had more negative a ect from the

that both BCI conditions seem to have “over adapted” the gameed threshold and the dynamic thresholds conditions tham i

resulting on average in slower games (lower game level) aride traditional Tetris game (control condition). In the EEsaly

decreased player performance (score) compared to the controbndition, similarly toEwing et al. (2016 participants had fewer

condition. game deaths, a lower score, and a lower average speed; showing

As for the GEQ, results and signi cant di erences can be seetthat the system slowed down the game, leading to the partitipan
in Figures § 6. Participants in the EEG condition (Condition feeling more con dent, but less challenged and ultimatekgling
2) perceived the experience as less challenging (comparisonmbre negative a ect.
vs. 2,p D 0.004; comparison 2 vs. B, D 0.059), negatively If we examine the adaptive threshold condition by separating
charged (comparison 1 vs. 2 D 0.012), and less conducive the participants according to how much time they spent at each
to ow (comparison 1 vs. 2p D 0.019; comparison 2 vs. 3, extreme level, we can see that participants have signi cantly
p D 0.086) compared to the two other conditions. The xeddi erent alpha and valence. However, they did not di er in EEG
threshold condition (Condition 3) is perceived as less aringy only condition, showing that they are not fundamentally dient
(comparison 2 vs. B D 0.032) and participants in this condition in their neurophysiology, but that their neurophysiological
develop a higher perceived competence than in the two otheesponses to the use of an adaptive system were dierent.
conditions (comparison 1 vs. @ D 0.008; comparison 2 vs. 3 Obviously, the high-speed group found the challenge higher an
p D 0.033). Participants felt the experience in Condition 1 moreheir competence lower as they were generally unable to kpep u
negatively than in the two other conditions (comparison 1&s. with the game and died many more times than the low speed
p D 0.031; comparison 1 vspd 0.041). group.

When explored further, our results appeared to show two One potential explanation of our counterintuitive results
di erent clusters of responses in Condition 3. Thus, we evidda could be found in Csikszentmihalyi's ow theoryNgkamura,
how many subjects spent 5 or more periods of 10 s at the fastea®14. This specic ow theory postulates that an optimal
speed or at the slowest speed. Once these two groups wemesitive valence experience emerges in an autotelic contest wh
identi ed, we compared them with Wilcoxon tests to evaluateone's competence is in alignment with a given challenge. In
if they di ered in their alpha power change from benchmark, self-motivating contexts, such as games, the theory pretheit
valence, GEQ, number of game deaths, and game scores. when the challenge is above one's competency, a state ofyanxie

Results suggest that in Condition 3, 9 participants spent a larggnd frustration is likely to emerge. As the competency of the
portion of their time at the slowest speed, while 10 participantplayer evolves in addressing this challenge, the theoryestiigig
spent most of their time at the fastest speed. Only thre¢hat the individual is likely to move back toward a positively
participants spenk 25s at either extremity. When compared, valenced equilibrium state. In our study, it is possible tha t
these two groups (slow speed group vs. high speed grouparameters to capture the change in the valence might not have
Condition 3) are statistically di erent for their average GRlpha  been optimized to account for the time it takes for the player to
power change from baseling D 0.01), where the high-speed come back to this equilibrium. This would suggest that future
group has more alpha (high spe&l0.99; low spee® 0.67). research needs to not only personalize the values that trigge

Frontiers in Human Neuroscience | www.frontiersin.org 6 July 2018 | Volume 12 | Article 282


https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

Labonte-Lemoyne et al. Dynamic Threshold Selection for a Game BCI

FIGURE 3 | Average number of game deaths per minute and average score peninute per experimental condition. Error bars representtandard deviation. p < 0.05.

FIGURE 4 | Average game level for each experimental condition. Eachné is the game level of a study participant over time in milésonds. A higher game level

means that the speed at which the blocs descend increases, ths diminishing the time available to position the bloc propgy and increasing dif culty. In Condition 1,
participants began at level 12 and the level increased progssively. In Condition 2, for most participants the level deeased over time. In Condition 3, a split appears,
where some participants see their level increase irrevelsy, while other participants have a result more similar to @dition 2. In a functioning system, there would be
a lot of variations early on and after some time the levels wadistabilize and adjust linearly. For Condition 3, we presérmnly results for which the adaptive mechanism
leads to thresholds that were mathematically attainable.fis issue is discussed in further details in the next section
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FIGURE 5 | Average answers to the in-game portion of the Game ExperiercQuestionnaire (GEQ) showing the results for each dimensioneasured. Error bars
represent standard deviation. py < 0.05.

tasks. Our goal was to develop a system that continuous|ysesdju

its action triggering threshold rules which would have been a
step in the direction of subject independence, or at the |east
a system that is subject dependent and context independent.
While our system needs more testing and calibration to eatalu

its feasibility, we trust that continuous adaptation and thee

of multimodal neurophysiological signals hold the key to gko
challenges. Other researchers should keep in mind that tee u
of valence-based tools may di er in the context of games with
more emotionally charged objects and not extrapolate ousltes

to those contexts. Future works will explore more comprehensiv
EEG data than alpha alone, and various window durations to
see if the aective response to the speed adaptation appears
after a delay, or if it may simply take some time for the user
to get comfortable at a given level thus the speed changes
should happen less frequently. In addition, as speed changes in
quick succession are not expected when playing Tetris, perhaps

FIGURE 6 | Average answers for the post-game portion of the Game novelty playgd arole in the users dissatisfaction, thus eteof
Experience Questionnaire (GEQ) results showing the ressifor each adaptation windows could be tested.
dimension measured. Error bars represent standard deviatn. *p < 0.05. While evaluating a variety of neurophysiological data sasirce

and time windows could lead to a solution, other possible
avenues of exploration have emerged. As mentioned in the
adaptation, but also needs to personalize the adaption windoliterature, machine learning would greatly improve this type
duration. This could be done through a more complex baselinef system &cherer et al., 2013; Brouwer et al., 2015; Ewing
task that would be able to capture this idiosyncratic lateimcy et al., 201 On one side, recent advances in deep learning
players. techniques could help enhance the accuracy of cognitie sta
With both these personalizations in place (threshold andnference models. Deep learning models are well suited to nd
adaptation time), we could hope to reach both subjectomplex hierarchical patterns in high dimensionality datalsuc
independence and context independence. Subject independera neurophysiological data. Research using such approaches for
and context independence are the big challenges currertiyga psychophysiological inferencé/értinez et al., 200)3or EEG
passive BCls in their quest for use in everyday lIBNCI signal decoding §chirrmeister et al., 20} 7%how promising
Horizon 2020, 2016 The hope is to have a system that canresults. On the side of the interaction loop, we would recomahen
be simply put on the user's head and work straight away irthe use of reinforcement learning in the case of hybrid BCls.
a variety of contexts without the need for lengthy calibmati Reinforcement learning uses a problem space to determine where
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it is in relation to the optimal location. The system adaptsadaptive system neither improved players' perceived experience
within this problem space and gets rewarded as it gets closeor their objective performance. In practice, for condition 3
to the goal. In the case of our proposed biocybernetic loophe way we modied the threshold values based on valence
the problem space would be de ned as a grid of di culty by could eventually lead to values that were impossible to rattai
neurophysiological state and the reward could be determiyeal  For some participants, the thresholds crossed, leading teesom
second neurophysiological signal. Consider the systempiede lower thresholds being higher than upper thresholds and for
in this paper. As a reinforcement learning system, the problensome thresholds to be negative which is impossible to attain
space in which the model would evolve and try to nd an optimalfrom the alpha ratio. Nevertheless, this experience can imfor
path would be composed of the two dimensions of cognitive loadevelopers of hybrid passive BCls on a novel way to merge
and current speed of the game. Each action undertaken by tharious neurophysiological features. If the goal of a paf3®ke
model would be rewarded by the local changes in the subjectystem is to be widely adopted, it must be better than the aitirre
valence following the adaptation. Doing so, the system shoulversion of a similarly oriented system. Comparisons to other
converge toward an optimal state of di culty vs. cognitiveald  versions of a given BCIL(u et al., 2009; Chanel et al., 2012
that is speci ¢ to each subject and that may change over timare very informative to better understand how parametersef t
In this approach, the adaptation thresholds would be replaceBCI in uence the user-system relationship, however, thisny
by the transitioning policy optimized over time that the syste one part of the picture when it comes to the future adoption of
uses to decide which action to perform. We can imagine a similapassive BCIs in everyday lives. As mentioned\gynolt et al.
system with a problem space composed of simulator challengé011) new types of human-computer interaction take years
and vigilance level with a reward based on stress levels. Théresearch before they come into their own, thus all advance
idea behind this is that an aective index could conrm or should be presented and discussed. Ultimately, the true téist w
in rm if the action performed by the system improved the user be to compare any new system to the status quo in order to
experience in real time instead of having to validate withuker  improve it.
verbally after they test it for a while and adjusting the epst
manually afterwards. Our future work will explore this promnig ~ AUTHOR CONTRIBUTIONS
alternative.

We endeavored to develop a system that improved upon thEL-L and FC designed the study and developed the system. All
authentic version of the Tetris game, however, our proposeduthors contributed to the analysis and the writing.
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