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Passive Brain-Computer interfaces (pBCIs) are a human-computer communication tool
where the computer can detect from neurophysiological signals the current mental
or emotional state of the user. The system can then adjust itself to guide the user
toward a desired state. One challenge facing developers of pBCIs is that the system's
parameters are generally set at the onset of the interactionand remain stable throughout,
not adapting to potential changes over time such as fatigue.The goal of this paper
is to investigate the improvement of pBCIs with settings adjusted according to the
information provided by a second neurophysiological signal. With the use of a second
signal, making the system a hybrid pBCI, those parameters can be continuously adjusted
with dynamic thresholding to respond to variations such as fatigue or learning. In this
experiment, we hypothesize that the adaptive system with dynamic thresholding will
improve perceived game experience and objective game performance compared to
two other conditions: an adaptive system with single primary signal biocybernetic loop
and a control non-adaptive game. A within-subject experiment was conducted with
16 participants using three versions of the game Tetris. Each participant plays 15 min
of Tetris under three experimental conditions. The controlcondition is the traditional
game of Tetris with a progressive increase in speed. The second condition is a cognitive
load only biocybernetic loop with the parameters presentedin Ewing et al. (2016). The
third condition is our proposed biocybernetic loop using dynamic threshold selection.
Electroencephalography was used as the primary signal and automatic facial expression
analysis as the secondary signal. Our results show that, contrary to our expectations, the
adaptive systems did not improve the participants' experience as participants had more
negative affect from the BCI conditions than in the control condition. We endeavored
to develop a system that improved upon the authentic versionof the Tetris game,
however, our proposed adaptive system neither improved players' perceived experience,
nor their objective performance. Nevertheless, this experience can inform developers
of hybrid passive BCIs on a novel way to employ various neurophysiological features
simultaneously.

Keywords: dynamic adaptation, passive brain computer interfa ce, hybrid brain computer interface, BCI, pBCI,
hBCI, EEG, tetris
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INTRODUCTION

We have become quite adept at communicating with our
computer systems and having them do what we wish. However,
this type of communication lacks the subtleties that accompany
human-human interactions through non-verbal signals. A
promising new mode of communicating with technology has
emerged that could help our computer systems understand more
understated information about us, and that is passive brain-
computer interfaces (pBCIs) (Zander and Kothe, 2011). This
paper presents suggested improvements to the current state of
pBCI development.

With pBCIs, the user's state is communicated to the computer
without any conscious e�ort from the user and the system takes
that into account to adapt itself to ultimately lead the user to an
optimal state. Passive BCIs can bring about many di�erent types
of adaptations, such as modifying the level of di�culty of a game
to ensure it is as stimulating as possible for players (Van De Laar
et al., 2013), set o� an alarm when truck drivers are too tired to
be safe on the road (Hajinoroozi et al., 2016), or disengaging the
autopilot to prevent airline pilots from getting so bored that they
fail to notice important warning signs (Pope et al., 1995). Passive
BCIs, as opposed to active BCIs, are mostly being developed for
average users to improve their daily experiences rather than to
replace other input devices such as using eye tracking insteadof a
mouse (Frisoli et al., 2012). As mentioned by Robert Jacob, “active
BCIs have the potential to bring a great improvement to the lives
of a small number of people, while passive BCIs can bring small
improvements to the lives of a great number of people” (Jacob,
2017, p. 14).

While multiple research groups have been building functional
pBCI systems (Prinzel et al., 2000; Scerbo et al., 2003; Berka
et al., 2004; Lin et al., 2006; Ewing et al., 2016), many
technical challenges remain to be addressed (Allanson and
Fairclough, 2004; Fairclough, 2011; Brouwer et al., 2015), such
as personalization. As biosignals vary greatly from one person
to another, personalization is required for systems to function
properly (Makeig et al., 2012). Developers will often use
personalization tasks to individually tailor thresholds before the
use of a system (Johnson et al., 2011). Their participants will thus
have to be recorded twice, once to measure their responses to a
task designed to induce a given state and a second time once the
system has been personalized to actually use it. This requires time
and resources and results in highly personalized systems that are,
nonetheless, not responsive to changes over time, such as fatigue.
This is the challenge we attempt to address within this paper.

A solution that has been proposed to many such BCI problems
is the combination of multiple neurophysiological signals (hybrid
BCI) to improve reliability, pro�ciency, bandwidth, convenience,
and utility (seeBanville and Falk, 2016for a review;Nijholt
et al., 2011). The type of system presented in this article can
incorporate both neurophysiological and psychophysiological
measures into the same system (Pfurtscheller et al., 2010; Zander
et al., 2010; Banville and Falk, 2016). It is also commonly known
as multimodal BCI. We look to the hybrid BCI to personalize
our system in real-time and diminish the time and resources that
are required before a user can begin using a system for the �rst

time. While most hybrid BCIs use a second signal to improve
the robustness of the system, to our knowledge, no other group
has used a secondary neurophysiological signal to adjust the
parameters of the system's adaptation to the �rst signal. Basically,
the second signal would be used as a successfulness indicatorof
the adaptation, which is based on the �rst signal, leading it to
be personalized. To our knowledge, this paper presents a �rst
attempt to do so.

Our approach takes a slightly di�erent view of pBCIs as most
systems intend the subject to be unaware of the adaptations
taking place. We propose instead that subjects do not need to be
completely conscious of the changes, but that they are probably,
on some level, aware that changes are taking place. By measuring
the impact of these changes with a secondary, a�ective signal,
we intend to measure the user's reaction to the adaptation in
real time. This should inform the system whether the adaptation
improved their experience (and/or performance) or not, thus
telling it whether the adaptation parameters were correct or
not. Accordingly, we propose a new approach for dynamic
threshold selection that performs a continuous calibration. The
biocybernetic loop adapts to one physiologically inferred metric,
in this case, cognitive load, using electroencephalography (EEG),
while the thresholds are continuously adjusted based on a second
metric, in this case, emotional valence, inferred using automatic
facial expression analysis.

The goal of this paper is to evaluate if dynamic thresholding
with a secondary neurophysiological signal can continuously
personalize the adaptive system. We hypothesize that the
adaptive system with dynamic thresholding will improve
perceived game experience and objective performance.

METHODS

Participants
This study was carried out in accordance with the Research Ethics
Board of our institution and with written informed consent from
all subjects. Participants were students at local universities. There
were 16 in total (6 women). Average age was 27.75 (SDD 8.55).
Participants had to be over 18 and have no known health issues.
They received a $30 gift card as a compensation.

Initial Baselining
We used a modi�ed vanilla baseline task (Jennings et al., 1992)
as a baseline calibration task. This was chosen because it isan
emotionally neutral task with similar visual characteristics as the
Tetris game, i.e., color and movement.

Experimental Design
As Ewing et al. (2016)underlined, game periods need to be
longer than 5 min to get an accurate representation of the system's
adaptation. Thus, participants played each condition for 15 min.
The order of the three conditions was counterbalanced between
participants. For the adaptive conditions, the system managed
the game di�culty as in the Dynamic Di�culty Adjustment
framework (Hunicke and Chapman, 2004).
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Game
Tetris is a game that is often used in research as it is easily
adaptable and because gameplay is generally understood by most.
In this instance, Tetris was also advantageous as there is no
emotional component to the gameplay. This prevented us from
having to tease out the e�ect of gameplay from the e�ects of the
adaptive system on the measured valence, the latter being more
relevant to our study.

To easily control game parameters, we developed an in-house
version of Tetris. The game window consisted of a rectangle of
10 by 20 squares. Players controlled the game with a Logitech
F310 gamepad (Logitech, Lausanne). They could move the pieces
laterally with the left and right arrows and rotate the pieceswith
the “A” and “X” buttons. No other manipulation was allowed.

For each condition, the initial speed was 400 ms per line.
The slowest allowed speed was 1,500 ms per line and the fastest
allowed speed was 100 ms per line. Speed variations between
levels were of 100 ms at a time. These parameters were chosen
after pilot testing was conducted. The only parameter that was
atypical was the absence of the control that allows the user to
manually make the blocks fall faster. The ability to force the
blocks down which might prevent the conditions from being
uniform between subjects, thus it was not implemented in our
game.

Condition 1
In the control condition, there was no adaptation taking place.
The speed increased by one step (speed levels are de�ned in the
next section) every time four rows were successfully cleared. This
condition was chosen to resemble a traditional game of Tetris as
closely as possible.

Condition 2
The second condition was developed to model as closely as
possible toEwing et al. (2016)conservative condition. The system
adapts to the user state as measured by the EEG. Any 100% or
two-fold increase/decrease from the baseline value (e.g.,for a
starting baseline value of 4, a 100% increase would be a value
of 8, a 100% decrease would be a value of 2) or more from
the benchmarking task triggers a speed change (seeFigure 1a).
Ewing et al. (2016)employed the upper alpha (10.5–13 Hz) in
the P4 location and theta bands (4–8 Hz) in the Fz location in
the following manner: an increase of theta accompanied by an
increase in alpha (both should be more than 100% baseline)
corresponds to the user being in a state of boredom and the speed
is increased; an increase of theta accompanied by a decrease in
alpha (both 100% or more) corresponds to the user being in a
state of overload and the speed is decreased. Similarly, our system
adaptations of speed are triggered by 100% or more changes to
the baseline level of the upper alpha band (10.5–13 Hz). This
band was chosen fromEwing et al. (2016)following pilot testing.

Condition 3
The third condition is similar to the second condition (see
Figures 1a,bfor a side by side comparison) with the addition
of adaptive thresholds. The thresholds adapt to the emotional
valence of the subject, i.e., the extent to which an emotion is

positive (Lang et al., 1995). Valence is measured with the use
of facial expression analysis, which is explained in the next
section. The emotional valence is measured before and aftereach
speed adaptation over 2 s. If the after-before delta is positive,
the subject is deemed satis�ed with the adaptation, the threshold
value is considered appropriate and is maintained. If the deltais
negative, the subject is deemed dissatis�ed with the adaptation
and the threshold value is modi�ed as follows. There are two
threshold values, the lower threshold which, when crossed,
leads to an increase in speed, and the upper threshold, which,
when crossed leads to a decrease in speed. When the subject
is deemed dissatis�ed with the adaptation, only the threshold
that was crossed is changed. The thresholds move away from
the middle, i.e., the upper threshold increases, or the lower
threshold decreases, leading to a less severe adaptation criteria
(seeFigure 2). For example, if the upper threshold value was
1, and the baseline alpha value was 4, when the current alpha
value reaches past 8 for a given window (a 100% increase), it has
crossed the threshold. Thus, the decision-rule determines that the
game speed must slow down. At the moment where the speed is
modi�ed, the delta valence is measured. The valence value from
before the speed change is subtracted from the valence value after
the speed change to see if the change is received positively or
negatively. For example, if the valence before the speed change
was 2 and the valence after the speed change is 1, the delta valence
is negative (� 1). The threshold value from our previous example,
a value of 1 for the upper threshold, should be modi�ed. It will
move away from the center; therefore, the upper threshold value
will increase to 1.1. In the next window, for the speed to change,
the alpha value will need to reach 8.4 (an increase of 110% of
the baseline value of 4). In addition, when, for a given 10 second
epoch, no adaptation takes place while delta valence is negative,
both thresholds are considered too loose and are brought closer
to the middle, i.e., the upper threshold decreases, and the lower
threshold increases, leading to a more severe adaptation criterion.

Measurement Tools and Processing
EEG Recording and Processing
The EEG was recorded from 32 Ag-AgCl preampli�ed electrodes
mounted on the actiCap and with a brainAmp ampli�er
(Brainvision, Morrisville). The recording reference was FCz
and the acquisition rate was 500 Hz. All the EEG processing
was performed in the NeuroRT software (Mensia, Renne). The
following steps were performed in this order for the online
preprocessing of the data: down-sampling to 256 Hz, bandpass
�ltering with an in�nite impulse response �lter at 1–50 Hz, notch
�ltering at 60 Hz, blink removal through blind source separation,
re-referencing to the common average reference, and artifact
detection by computing the Riemannian distance between the
covariance matrix and the online mean. The data was then
�ltered to keep only the upper alpha band (10.5–13 Hz) and
squared. Only data from P3 and P4 was kept in accordance with
Ewing (Ewing et al., 2016). Finally, each 0.5 s epoch was divided
by the average of the 1-min calibration period to normalize the
data. This value, which ranged from 0.008 to 6.87, was then sent
to the adaptation system to be used in the decision rule-based
process.
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FIGURE 1 | (a) Flowchart of the pBCI in Condition 2. The game speed adapts according to changes in the EEG from baseline. In this conditionthe threshold at which
changes in the EEG register as suf�cient to trigger a change inspeed is �xed at 100%. (b) Flowchart of the pBCI with adaptive thresholds in Condition3. The game
speed adapts according to changes in the EEG from baseline. Inthis condition, the threshold at which changes in the EEG register as suf�cient to trigger a change in
speed is continually adjusted according to the valence changes surrounding the previous speed changes.

Facial Expression Analysis
Emotional valence was obtained through the use of facial
expression analysis performed in real time with the FaceReader
software (Noldus, Wageningen). Automatic facial expression
analysis uses the Facial Action Coding System (Ekman et al.,
1980) that has traditionally been employed by human experts
who manually code video playback for facial expressions. Speci�c

combinations of muscle contractions are associated to certain
emotions. Computer image recognition is now able to detect
these same muscle contraction combinations and code the user's
emotions in real time (Bartlett et al., 1999). We used the
Facereader valence ratio which is calculated as the intensity of
positive emotion minus the intensity of the negative expression
with the highest intensity. The software maps the facial muscles
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FIGURE 2 | Illustration of the dynamic thresholds adaptation in four steps (adaptation pacingD 10 s): (1) The average of alpha over the 5 s (in red) preceding
adaptation 1 is higher than the upper threshold; (2) The system therefore choose to decrease the game speed at adaptation1; (3) The difference in valence before
(average of 2 s) and after (average of 2 s) adaptation 1 is negative; (4) The system quali�es adaptation 1 as a fail and raisesthe upper threshold in order to be less
sensitive during adaptation 2. Ti refers to the threshold value at the offset of a given adaptation (i).

of the user and derives valence at a rate of 30 Hz. It streamed
to the adaptive system that used the 2 s before and the 2 s
after an adaptation to calculate the change in valence caused
by the adaptation. A positive change tells the system that
the adaptation was appropriate, meaning that the threshold
parameters were correct, while a negative change tells the system
that the adaptation was wrong and that the thresholds should be
modi�ed.

Game Performance
The behavior of each system (Conditions 1–3) was logged
in order to compare them and understand what drove user
experience. The game speed was controlled as the duration
(ms) it took for a block to move down one line. This was
convertedpost-hocinto levels. The smaller the level, the slower
the game and there was 100 ms di�erence between levels (i.e.,
level 1D 1,500 ms, level 15D 100 ms). The number of “game
deaths” per subject and the score of the subject at the end of
each condition were also logged (Table 1). Participants scored
100 points each time they cleared a line, 300 points for two lines,
500 points for three lines, and 800 points for four lines.

Perceived Measures
In addition to game performance, we also measured the
perception of the participant at the end of each experimental
condition. We used the In-game and Post-game Game
Experience Questionnaire (GEQ), a shortened version of the core
questionnaire which was developed to assess multiple iterations
of an experiment (IJsselsteijn et al., 2008). These questionnaires
respectively have 14 and 17 items that lead to scores on the
following dimensions: competence, �ow, annoyance, challenge,

TABLE 1 | High and low speed comparisons for each experimental condition.

Condition 1 Condition 2 Condition 3

Alpha NA Low speedD 0.65
High speed D 0.82
p D 0.21

Low speed D 0.69
High speed D 0.86
p D 0.03

Valence NA Low speedD 0.03
High speed D 0.14
p D 0.21

Low speed D 0.03
High speed D 0.13
p D 0.11

Average
game level

Low speed D 12.37
High speed D 12.69
p D 0.39

Low speed D 3.94
High speed D 7.69
p D 0.05

Low speed D 4.41
High speed D 10.84
p < 0.001

Game
deaths

Low speed D 3.6
High speed D 3.9
p D 0.84

Low speed D 0.3
High speed D 1.3
p D 0.72

Low speed D 0.14
High speed D 1.3
p D 0.09

Score Low speed D 4,186
High speed D 5,367
p D 0.35

Low speed D 2,043
High speed D 2,989
p D 0.26

low speedD1957
high speedD956
p D 0.008

positive, and negative a�ect are the 6 dimensions of the In-game
GEQ and positive experience, negative experience, tiredness,
and returning to reality are the 3 dimensions of the pots-game
questionnaire. Each item has a 5-point scale ranging from 0
(Don't get the feeling described in the statement at all) to 4
(Extremely get the feeling described in the statement).

Statistical Analysis
Diverse statistical tests have been performed between the three
conditions (control, EEG, adaptive thresholds) and between
clusters of participants afterwards. In order to compare
conditions (GEQ, total scores, average game level, valence, alpha
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power), we used Wilcoxon tests to compare the 3 conditions
and Mann–Whitney tests to compare the clusters of participants.
Both these tests are non-parametric as is appropriate considering
the sample size. Also, a Kolmogorov–Smirnov test was used to
test for normality and found only one variable to be normally
distributed, the alpha power in conditions B and C (DD 0,12,
p D 0.15; D D 0.16, p D 0.15) further justifying the use
of non-parametric tests. We used Poisson regressions with
random e�ects to account for repeated measures from the same
participant to compare total number of deaths and total number
of level changes between the 3 conditions.

RESULTS

As can be seen inFigure 3, when compared to the control
condition (Condition 1), the number of game deaths was
signi�cantly lesser in the EEG only BCI (Condition 2), and in
the adaptive thresholds condition (Condition 3). The score,when
compared with the control condition, was lesser in both BCI
conditions. The average game level (seen inFigure 4) in each
condition was 12.53 for control (Condition 1), 6.18 for EEG only
(Condition 2), and 8.92 for adaptive thresholds (Condition 3).
All di�erences were signi�cant atp < 0.05. These results show
that both BCI conditions seem to have “over adapted” the game
resulting on average in slower games (lower game level) and
decreased player performance (score) compared to the control
condition.

As for the GEQ, results and signi�cant di�erences can be seen
in Figures 5, 6. Participants in the EEG condition (Condition
2) perceived the experience as less challenging (comparison 1
vs. 2,p D 0.004; comparison 2 vs. 3,p D 0.059), negatively
charged (comparison 1 vs. 2p D 0.012), and less conducive
to �ow (comparison 1 vs. 2,p D 0.019; comparison 2 vs. 3,
p D 0.086) compared to the two other conditions. The �xed
threshold condition (Condition 3) is perceived as less annoying
(comparison 2 vs. 3p D 0.032) and participants in this condition
develop a higher perceived competence than in the two other
conditions (comparison 1 vs. 2p D 0.008; comparison 2 vs. 3
p D 0.033). Participants felt the experience in Condition 1 more
negatively than in the two other conditions (comparison 1 vs.2
p D 0.031; comparison 1 vs. 3p D 0.041).

When explored further, our results appeared to show two
di�erent clusters of responses in Condition 3. Thus, we evaluated
how many subjects spent 5 or more periods of 10 s at the fastest
speed or at the slowest speed. Once these two groups were
identi�ed, we compared them with Wilcoxon tests to evaluate
if they di�ered in their alpha power change from benchmark,
valence, GEQ, number of game deaths, and game scores.

Results suggest that in Condition 3, 9 participants spent a large
portion of their time at the slowest speed, while 10 participants
spent most of their time at the fastest speed. Only three
participants spent< 25 s at either extremity. When compared,
these two groups (slow speed group vs. high speed group,
Condition 3) are statistically di�erent for their average EEG alpha
power change from baseline (p D 0.01), where the high-speed
group has more alpha (high speedD 0.99; low speedD 0.67).

They are also statistically di�erent in terms of valence values
(p D 0.02; high speedD 0.01; low speedD 0.20).

We also evaluated if participants di�ered in Condition 2 to see
if they were intrinsically di�erent or if they were only di�erent
while using the dynamic threshold adaptive system. For those
two groups (high and low-speed), their values did not di�er
in Condition 2 (alphap D 0.35; valencep D 0.23;Table 1).
Also, these groups di�ered on some dimensions of the GEQ. In
Condition 2, they reported di�erent annoyance perceptions (low
speedD 2.78; high speedD 1.7; p D 0.02) and in Condition
3, challenge (low speedD 2.17; high speedD 3.65;p D 0.03)
and competence perceptions di�ered (low speedD 3.22; high
speedD 1.35;p < 0.01). Finally, the two groups signi�cantly
di�ered in game deaths in Condition 3 (high speedD 0;
low speedD 19) and score in Conditions 1 and 2 (respectively,
low speedD 4028.57, high speedD 5233.33;p D 0.001 and low
speedD 2028.57, high speedD 2,700;p D 0.001).

DISCUSSION

Our results show that the adaptive systems did not improve
the participants' experience while playing Tetris. Contrary to
our expectation, participants had more negative a�ect from the
�xed threshold and the dynamic thresholds conditions than in
the traditional Tetris game (control condition). In the EEGonly
condition, similarly toEwing et al. (2016), participants had fewer
game deaths, a lower score, and a lower average speed; showing
that the system slowed down the game, leading to the participants
feeling more con�dent, but less challenged and ultimately feeling
more negative a�ect.

If we examine the adaptive threshold condition by separating
the participants according to how much time they spent at each
extreme level, we can see that participants have signi�cantly
di�erent alpha and valence. However, they did not di�er in EEG
only condition, showing that they are not fundamentally di�erent
in their neurophysiology, but that their neurophysiological
responses to the use of an adaptive system were di�erent.
Obviously, the high-speed group found the challenge higher and
their competence lower as they were generally unable to keep up
with the game and died many more times than the low speed
group.

One potential explanation of our counterintuitive results
could be found in Csikszentmihalyi's �ow theory (Nakamura,
2014). This speci�c �ow theory postulates that an optimal
positive valence experience emerges in an autotelic context when
one's competence is in alignment with a given challenge. In
self-motivating contexts, such as games, the theory predicts that
when the challenge is above one's competency, a state of anxiety
and frustration is likely to emerge. As the competency of the
player evolves in addressing this challenge, the theory suggests
that the individual is likely to move back toward a positively
valenced equilibrium state. In our study, it is possible that the
parameters to capture the change in the valence might not have
been optimized to account for the time it takes for the player to
come back to this equilibrium. This would suggest that future
research needs to not only personalize the values that trigger
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FIGURE 3 | Average number of game deaths per minute and average score per minute per experimental condition. Error bars represent standard deviation. *p < 0.05.

FIGURE 4 | Average game level for each experimental condition. Each line is the game level of a study participant over time in milliseconds. A higher game level
means that the speed at which the blocs descend increases, thus diminishing the time available to position the bloc properly and increasing dif�culty. In Condition 1,
participants began at level 12 and the level increased progressively. In Condition 2, for most participants the level decreased over time. In Condition 3, a split appears,
where some participants see their level increase irreversibly, while other participants have a result more similar to Condition 2. In a functioning system, there would be
a lot of variations early on and after some time the levels would stabilize and adjust linearly. For Condition 3, we present only results for which the adaptive mechanism
leads to thresholds that were mathematically attainable. This issue is discussed in further details in the next section.
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FIGURE 5 | Average answers to the in-game portion of the Game Experience Questionnaire (GEQ) showing the results for each dimension measured. Error bars
represent standard deviation. *p < 0.05.

FIGURE 6 | Average answers for the post-game portion of the Game
Experience Questionnaire (GEQ) results showing the results for each
dimension measured. Error bars represent standard deviation. *p < 0.05.

adaptation, but also needs to personalize the adaption window
duration. This could be done through a more complex baseline
task that would be able to capture this idiosyncratic latencyin
players.

With both these personalizations in place (threshold and
adaptation time), we could hope to reach both subject
independence and context independence. Subject independence
and context independence are the big challenges currently facing
passive BCIs in their quest for use in everyday life (BNCI
Horizon 2020, 2015). The hope is to have a system that can
be simply put on the user's head and work straight away in
a variety of contexts without the need for lengthy calibration

tasks. Our goal was to develop a system that continuously adjusts
its action triggering threshold rules which would have been a
step in the direction of subject independence, or at the least,
a system that is subject dependent and context independent.
While our system needs more testing and calibration to evaluate
its feasibility, we trust that continuous adaptation and theuse
of multimodal neurophysiological signals hold the key to those
challenges. Other researchers should keep in mind that the use
of valence-based tools may di�er in the context of games with
more emotionally charged objects and not extrapolate our results
to those contexts. Future works will explore more comprehensive
EEG data than alpha alone, and various window durations to
see if the a�ective response to the speed adaptation appears
after a delay, or if it may simply take some time for the user
to get comfortable at a given level thus the speed changes
should happen less frequently. In addition, as speed changes in
quick succession are not expected when playing Tetris, perhaps
novelty played a role in the user's dissatisfaction, thus a variety of
adaptation windows could be tested.

While evaluating a variety of neurophysiological data sources
and time windows could lead to a solution, other possible
avenues of exploration have emerged. As mentioned in the
literature, machine learning would greatly improve this type
of system (Scherer et al., 2013; Brouwer et al., 2015; Ewing
et al., 2016). On one side, recent advances in deep learning
techniques could help enhance the accuracy of cognitive state
inference models. Deep learning models are well suited to �nd
complex hierarchical patterns in high dimensionality data such
as neurophysiological data. Research using such approaches for
psychophysiological inference (Martinez et al., 2013) or EEG
signal decoding (Schirrmeister et al., 2017) show promising
results. On the side of the interaction loop, we would recommend
the use of reinforcement learning in the case of hybrid BCIs.
Reinforcement learning uses a problem space to determine where

Frontiers in Human Neuroscience | www.frontiersin.org 8 July 2018 | Volume 12 | Article 282



Labonte-Lemoyne et al. Dynamic Threshold Selection for a Game BCI

it is in relation to the optimal location. The system adapts
within this problem space and gets rewarded as it gets closer
to the goal. In the case of our proposed biocybernetic loop,
the problem space would be de�ned as a grid of di�culty by
neurophysiological state and the reward could be determinedby a
second neurophysiological signal. Consider the system presented
in this paper. As a reinforcement learning system, the problem
space in which the model would evolve and try to �nd an optimal
path would be composed of the two dimensions of cognitive load
and current speed of the game. Each action undertaken by the
model would be rewarded by the local changes in the subject's
valence following the adaptation. Doing so, the system should
converge toward an optimal state of di�culty vs. cognitive load
that is speci�c to each subject and that may change over time.
In this approach, the adaptation thresholds would be replaced
by the transitioning policy optimized over time that the system
uses to decide which action to perform. We can imagine a similar
system with a problem space composed of simulator challenge
and vigilance level with a reward based on stress levels. The
idea behind this is that an a�ective index could con�rm or
in�rm if the action performed by the system improved the user
experience in real time instead of having to validate with theuser
verbally after they test it for a while and adjusting the system
manually afterwards. Our future work will explore this promising
alternative.

We endeavored to develop a system that improved upon the
authentic version of the Tetris game, however, our proposed

adaptive system neither improved players' perceived experience,
nor their objective performance. In practice, for condition 3,
the way we modi�ed the threshold values based on valence
could eventually lead to values that were impossible to attain.
For some participants, the thresholds crossed, leading to some
lower thresholds being higher than upper thresholds and for
some thresholds to be negative which is impossible to attain
from the alpha ratio. Nevertheless, this experience can inform
developers of hybrid passive BCIs on a novel way to merge
various neurophysiological features. If the goal of a passiveBCI
system is to be widely adopted, it must be better than the current
version of a similarly oriented system. Comparisons to other
versions of a given BCI (Liu et al., 2009; Chanel et al., 2012)
are very informative to better understand how parameters of the
BCI in�uence the user-system relationship, however, this isonly
one part of the picture when it comes to the future adoption of
passive BCIs in everyday lives. As mentioned byNijholt et al.
(2011), new types of human-computer interaction take years
of research before they come into their own, thus all advances
should be presented and discussed. Ultimately, the true test will
be to compare any new system to the status quo in order to
improve it.
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