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Verticillium dahliae is a soil-borne vascular pathogen that causes severe wilt symptoms

in a wide range of plants. Co-culture of the fungus with Arabidopsis roots for 24 h

induces many changes in the gene expression profiles of both partners, even before

defense-related phytohormone levels are induced in the plant. Both partners reprogram

sugar and amino acid metabolism, activate genes for signal perception and transduction,

and induce defense- and stress-responsive genes. Furthermore, analysis of Arabidopsis

expression profiles suggests a redirection from growth to defense. After 3 weeks, severe

disease symptoms can be detected for wild-type plants while mutants impaired in

jasmonate synthesis and perception perform much better. Thus, plant jasmonates have

an important influence on the interaction, which is already visible at the mRNA level before

hormone changes occur. The plant and fungal genes that rapidly respond to the presence

of the partner might be crucial for early recognition steps and the future development of

the interaction. Thus they are potential targets for the control of V. dahliae-induced wilt

diseases.
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INTRODUCTION

Vascular wilts caused by members of the genus Verticillium are among the most devastating
fungal diseases worldwide, and these soil-borne ascomycete fungi attack a large variety of plant
hosts in many parts of the world (Decetelaere et al., 2017) which leads to massive yield losses
(Pegg and Brady, 2002). Among the 10 species within the Verticillium genus, Verticillium dahliae
has the broadest host range with the ability to infect >200 plant species worldwide (Agrios,
1997; Inderbitzin et al., 2011; Inderbitzin and Subbarao, 2014). Verticillium species produce
microsclerotia, which can survive in soil or dead plant material for more than 10 years, but they also
form restingmycelia which survive in dead plant material. Newly growing hyphae rapidly penetrate
the roots of their hosts, reach the vascular tissue and ultimately propagate in the xylem (Puhalla
and Bell, 1981; Schnathorst, 1981). Initially, these hemibiotrophic fungi show biotrophic behavior
that does not lead to severe reductions in plant performance. However, at later stages, they shift
to a necrotrophic interaction characterized by the reprogramming of phytohormone metabolism
(Veronese et al., 2003; Thaler et al., 2004; Tjamos et al., 2005), synthesis of hydrogen peroxide
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FIGURE 4 | Chlorophyll fluorescence (QY_max) analysis of Arabidopsis WT and JA mutant plants after 24 h of V. dahliae infection. Shown are the QY_max values [±

SE, n = 6 (control) and 9 (VD-infected)] in control (plain color) and VD-infected (stripes) plants 10 and 20 dpi. QY_max was analyzed in WT (white), jar1 (light gray),

coi1-16 (dark gray) and cyp94B3 (black) plants. Statistically significant differences between controls and between infected plants were analyzed by one-way ANOVA

separately, p < 0.05 (Sidak). Different letters indicate a statistically significant difference.

SWEET11 as well as –3, −12, −15, and –8 were downregulated
in decreasing order (Table S2). SWEET11 and −12 are involved
in phloem loading with sugars (Chen et al., 2010, 2012; Boyd
et al., 2013). By silencing of OsSWEET11 in rice it could be
demonstrated that the growth of Xanthomonas oryzae pv. oryzae
(Xoo) is decreased which resulted in more resistant plants
(Yang et al., 2006). Also SWEET3 was reported to be involved
in defense and was downregulated after Geminivirus infection
(Ascencio-Ibá-ez et al., 2008). These observations suggest that the
plant is trying to prevent export of its sugars to restrict fungal
growth.

Besides the defense genes discussed above, members of the
WAK family are also highly represented in our data sets. WAK-
L10 and WAK3, –5, −1, and −4 responded to Verticillium
treatment (in declining order, Table S1). WAK1 is induced upon
infection with Ps. maculicola ES4326 and the protein stimulated
PR1 expression (He et al., 1998). Additionally, WAK1, −2,
−3, and −5 are inducible by SA which accumulated during
pathogen infection (He et al., 1999). Likewise, the WAK-like
gene WAKL10 is SA-induced and involved in defense against
bacteria and fungi (Meier et al., 2010). Among the genes
involved in controlling Ca2+ homeostasis, genes for in- and efflux
transporters of the cyclic nucleotide-gated channel (CNGC),
autoinhibited Ca2+-ATPase (ACA), and glutamate-like receptor
(GLR) protein families responded to the fungus, indicating that
many signaling events induced during the early phase of the
interaction are Ca2+-dependent. Consistent with this idea, genes

for Ca2+-binding proteins involved in signal perception and
propagation showed increased expression, especially members
of the calmodulin-like (CML) protein family. However, closer
inspection of the genes did not allow any meaningful conclusion
about which pathways are major targets of the fungus. Besides
regulation of defense responses, many genes for Ca2+-binding
proteins are involved in ion homeostasis, enzyme activity control,
and biotrophic plant/microbe interactions (for details compare
genes in Table S1 with the TAIR database). An induction of
defense genes is always accompanied by a lower investment
in plant growth (Huot et al., 2014). This is reflected by the
down-regulation of ROOT CAP POLYGALACTURONASE28
and enzymes involved in cytokinin signaling. The phase of
reprogramming of plant primary metabolism lasts for several
days, as in Verticillium-infected tomato plants where it was
shown that both gene expression and protein synthesis of
metabolic pathways proteins are still down-regulated at 7 dpi (van
Esse et al., 2009; Witzel et al., 2017). The global transcriptome
analysis performed in this study provides significant insights
into components involved in early phases of the Arabidopsis—V.
dahliae interaction and suggests a number of genes and pathways
that could be employed as markers in breeding for wilt tolerance.

In contrast to previous studies focusing on analysis of the
plant’s reaction to the fungus (van Esse et al., 2009; Faino et al.,
2012; Witzel et al., 2017; Zhang W. W. et al., 2017), we present
also DEGs from the fungus caused by response to the plant.
The majority of the 3289 DEGs code for proteins with unknown
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FIGURE 5 | Colonization of Arabidopsis WT and JA mutant plants by V.

dahliae after 24 h. Shown is the normalized fold expression (± SE, n = 3) of

VD_Actin2 in VD-infected WT, jar1, coi1-16 and cyp94B3 plants (A) and the

relative expression in % (B). The expression level of VD_Actin2 in VD-infected

WT plants was used as control and set to 1.0. The mRNA levels for each

cDNA probe were normalized with respect to the RPS18B mRNA level.

Statistically significant differences between the mutants were analyzed by

one-way ANOVA, p < 0.05 (Sidak). Different letters indicate a statistically

significant difference.

functions (Tables S3, S4). The up-regulation of VDAG_02979,
which encodes for a glucose transporter, suggests that it might
play an important role in the early interaction. Besides this
initial observation, a huge number of identified genes belong to
families which might become important targets after elucidation
of their function in V. dahliae. Therefore, this list might provide
useful information for genes with interaction-specific functions,
in particular since the knowledge about the function of V.
dahliae genes is strongly increasing. For example, very recent
studies revealed that homeodomain and bZIP transcription
factors (Fang et al., 2017; Sarmiento-Villamil et al., 2017), two
less characterized transcription factors (Sarmiento-Villamil et al.,
2010; Zhang W. Q. et al., 2017), polyketide synthases (Zhang

FIGURE 6 | Phytohormone levels in Arabidopsis WT and JA mutant plants

after 24 h of V. dahliae infection. Shown is the content (± SE, n = 10) of SA

(A), JA (B), and JA-Ile (C) in control (white) and VD-infected (black) WT, jar1,

coi1-16, and cyp94B3 plants. Statistically significant differences were analyzed

by Mann Whitney U-test, p < 0.05; n.s. not significant, **p < 0.01.

T. et al., 2017), endochitinases (Cheng et al., 2017), a novel V.
dahliae protein that targets the plant nucleus (Zhang L. et al.,
2017), LysM effectors (Kombrink et al., 2017), a isochorismatase
hydrolase (Zhu et al., 2017), a factor involved in the fungal
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FIGURE 7 | Expression of selected genes in Arabidopsis WT and JA mutant

plants after 24 h of V. dahliae infection. Shown is the normalized fold

expression (± SE, n = 3) of WAKL10 (A), SWEET11 (B), and SWEET3 (C) in

VD-infected WT, jar1, coi1-16, and cyp94B3 plants. The expression level of

genes of interest (GOIs) in water-treated plants was used as control and set to

1.0. The mRNA levels for each cDNA probe were normalized with respect to

the RPS18B mRNA level. Statistically significant differences between the

mutants were analyzed by one-way ANOVA, p < 0.05 (Sidak). Different letters

indicate a statistically significant difference.

FIGURE 8 | Expression of selected genes in V. dahliae after colonizing

Arabidopsis WT and JA mutant plants for 24 h. Shown is the normalized fold

expression (± SE, n = 3) of VDAG_02979 (A) and VDAG_06565 (PARN) (B) in

VD-colonized WT, jar1, coi1-16, and cyp94B3 plants. The expression level of

GOIs in VD alone was used as control and set to 1.0. The mRNA levels for

each cDNA probe were normalized with respect to the VD_Actin2 mRNA level.

Statistically significant differences between the mutants were analyzed by

one-way ANOVA, p < 0.05 (Sidak). Different letters indicate a statistically

significant difference.

secretory pathway (Xie et al., 2017), a RACK1-like protein
involved in root entry (Yuan et al., 2017), pathogenesis-related
exudated proteins (Chen et al., 2016), and the mitogen-activated
protein kinase 2 (Tian et al., 2016) are important components
in controllingV. dahliae-induced disease development in various
plant species. Members of all these protein families can be found
in the list of V. dahliae genes up-regulated after infection of
Arabidopsis.

JA Mutants Are Less Susceptible to
Verticillium Infection
Various studies have shown the involvement of several classes
of plant hormones in the control of Verticillium growth and

Frontiers in Microbiology | www.frontiersin.org 14 February 2018 | Volume 9 | Article 217

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Scholz et al. Initial Phase of Verticillium-Arabidopsis Interaction

propagation in Arabidopsis. While ET perception mutants are
more susceptible to Verticillium infection, an elevation of
cytokinins enhances plant resistance (Pantelides et al., 2010;
Reusche et al., 2013; Sun et al., 2014). Downregulation of
plant genes involved in cytokinin signaling might therefore be
induced by the fungus. Interestingly, jasmonates are not only
accumulated by the plant to induce defense, but the fungus also
requires a JA-independent COI1 function in roots to elicit disease
symptoms in Arabidopsis shoots (Ralhan et al., 2012). To further
analyze the role of JA levels in the interaction of Arabidopsis
and V. dahliae, JA biosynthesis (jar1), perception (coi1-16)
and degradation (cyp94B3) mutants were studied. All of these
mutants performed better, showed less severe disease symptom
development in the leaves at 20 dpi compared to the WT
control, which were already dead at this time point (Figure 3),
and had a higher photosynthetic potential, as demonstrated
by their QY_max value above 0.80 (Fv/Fm, Figure 4) (e.g.,
Kim et al., 2009; Sztatelman et al., 2015). The observation,
that jar1 plants performed better than WT plants, contradicts
earlier findings where jar1 plants were as susceptible as WT
plants (Fradin et al., 2011). To analyze this contradiction, the
colonization of the mutants used was compared to WT plants
(Figure S2).While there was no difference to theWT colonization
level after 10 dpi in the roots and the shoots, there was a
significant difference at 20 dpi. The colonization level of the
root was similar to WT while the colonization in the shoots was
significantly lower in jar1 (Figure S2D). This observation could
explain the better performance of the aerial parts of the jar1
plants. Taken together, the altered expression of the interaction-
specific genes of plant and fungal origin in the JA mutants
confirms the important role of this phytohormone also during
early phases. Apparently, the altered expression profile occurs
before a significant change in phytohormone levels become
detectable.

To gain insight into the growth behavior of V. dahliae on JA
mutants during the first 24 h of co-cultivation, the colonization
of the roots was analyzed. The detected differences in the
colonization (Figure 5) were not significant at this time point,
but may have a greater impact in later phases where a clear
difference is obvious. After 24 h of co-cultivation, there was
also no detectable difference in the levels of the phytohormones
SA, JA and JA-Ile (Figure 6). Since changes in phytohormone
levels upon pathogen attack are normally very rapid in plants,
Arabidopsis might have not yet recognized the microbe as friend
or foe, in spite of the already initiated reprogramming of its gene
expression pattern. It is also conceivable that the penetration
rate is still too low to induce the accumulation of JA and JA-
Ile, since this is often associated with wounding or pathogen-
induced cell disruption, which was not visible in our microscopic
studies (e.g., Suza and Staswick, 2008; Koo et al., 2009). The
biphasic interaction with an initial biotrophic period followed
by a necrotrophic period may also leave the plant undecided
whether it responds to the pathogen with SA- or JA-dependent
defense strategies. Furthermore, both phytohormones cross-talk
(Thaler et al., 2012; Proietti et al., 2013).

The low content of active JA-Ile in jar1 plants and the
reduced perception in the receptor mutant coi1-16 lead to

a decreased activation of the downstream signaling pathway
by the receptor complex SCFCOI1 (Thines et al., 2007). Since
Verticillium propagation from the roots to the leaves depends on
an activated COI pathway (Ralhan et al., 2012), this could be a
reason why Verticillium causes a reduced leaf growth rate of the
JA mutant plants (Figure 3). The reduced spread in the green
parts of the JA mutants is also reflected in the gene expression
analysis of chosen genes for both the plant and the fungus
(Figures 7, 8). In the mutant plants, the SA-induced defense gene
WAKL10 is more highly expressed than in WT plants and the
downregulation of SWEET11 is less pronounced (Figure 7). In
the fungus, both target genes VDAG_02979 and VDAG_06565
are more weakly expressed in the mutants than in the WT plants
(Figure 8). VDAG_02979 codes for a glucose transporter (http://
fungi.ensembl.org/Verticillium_dahliae), which contributes to
the nutrient supply of the fungus. The lower growth rate in the
mutants may be a consequence of this transporter being less
expressed.

In conclusion, biotrophic plant-microbe interactions are
characterized by the stimulation of SA, but not JA levels, while
the opposite hormone regulation occurs during nectrophophic
interactions (reviewed in Chanclud andMorel, 2016). Within the
first 24 h of interaction studied here, none of these phytohormone
levels increase significantly, while hormone-synthesis related
genes, as well as defense-related genes responding to both
hormone types are already up-regulated in the host. This
suggests that no clear decision has been taken yet about
which strategy will follow initial contact. The numerous genes
identified during early reprogramming of the fungal and
plant development might be crucial for the initiation and
propagation of the pest, and thus may be helpful for developing
strategies which potentially restrict fungal development after
infection. Considering our results, identification of crucial
players which control the interaction at early stage is apparently
difficult, because many metabolomic pathways are already
re-adjusted within the first 24 h of the contact of the two
partners.

The strong retardation of disease symptom development in
host plants impaired in jasmonate mutants has been attributed to
the fact thatVerticillium stimulates the host JA functions in order
to promote host cell death during the later necrotrophic phase.
There is a substantial crosstalk between JA and SA signaling in
which each hormone inhibits the accumulation and/or function
of the other. Complete or strong inhibition of JA functions in
the mutants may favor SA accumulation and/or SA signaling
function which—in turn—may prolong the biotrophic phase and
thus retard necrosis and disease development.
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