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Reprogramming of somatic cells into induced pluripotent stem cells (iPS) or directly
into cells from a different lineage, including neurons, hasrevolutionized research in
regenerative medicine in recent years. Mesenchymal stem cells are good candidates for
lineage reprogramming and autologous transplantation, since they can be easily isolated
from accessible sources in adult humans, such as bone marrowand dental tissues. Here,
we demonstrate that expression of the transcription factors (TFs) SRY (sex determining
region Y)-box 2 (Sox2), Mammalian achaete-scute homolog 1 (Ascl1), or Neurogenin
2 (Neurog2) is suf�cient for reprogramming human umbilical cord mesenchymal stem
cells (hUCMSC) into induced neurons (iNs). Furthermore, the combination ofSox2/Ascl1
or Sox2/Neurog2 is suf�cient to reprogram up to 50% of transfected hUCMSCs into
iNs showing electrical properties of mature neurons and establishing synaptic contacts
with co-culture primary neurons. Finally, we show evidencesupporting the notion that
different combinations of TFs (Sox2/Ascl1 and Sox2/Neurog2) may induce multiple and
overlapping neuronal phenotypes in lineage-reprogrammediNs, suggesting that neuronal
fate is determined by a combination of signals involving theTFs used for reprogramming
but also the internal state of the converted cell. Altogether, the data presented here
contribute to the advancement of techniques aiming at obtaining speci�c neuronal
phenotypes from lineage-converted human somatic cells to treat neurological disorders.

Keywords: induced neurons, lineage reprogramming, human mesen chymal stem cells, umbilical cord, proneural
genes

INTRODUCTION

Reprogramming of somatic cells into induced pluripotent stem cells (iPS) that can generate
all three major embryonic lineages, stem cells and even a newanimal has revolutionized
research in regenerative medicine in recent years (Takahashi and Yamanaka, 2006; Okita
et al., 2007). Somatic cells isolated from di�erent sources can be converted into iPS
(Meissner et al., 2007; Aoi et al., 2008; Hanna et al., 2008; Espejel et al., 2010; Imamura
et al., 2010), which in turn can be converted into speci�c cell types including neurons
(Wernig et al., 2008; Kuzmenkin et al., 2009; Mizuno et al., 2010; Zhang et al., 2013).
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However, generation of iPS and further di�erentiation into
neuronal cells is time consuming and the cells retain tumorigenic
potential (Takahashi and Yamanaka, 2006; Okita et al., 2007).

In contrast, direct lineage reprogramming of somatic cells is a
fast process and bypasses the pluripotent stage associated with
tumor transformation. Astrocytes isolated from the postnatal
cerebral cortex of mice were the �rst cells to be directly
reprogrammed into induced neurons (iNs) following expression
of the transcription factor (TF) Neurogenin 2 (Neurog2) or
Mammalian achaete-scute homolog 1 (Mash1/Ascl1) (Berninger
et al., 2007; Heinrich et al., 2011). Subsequently, the list of
murine cell types liable to lineage reprogramming into iNs
grew substantially, including non-neural cells, such as mouse
�broblasts and hepatocytes (Vierbuchen et al., 2010; Marro et al.,
2011). However, non-neural cells typically require more than one
TF to achieve a full neuronal conversion.

Direct reprogramming of human somatic cells into neurons
can also be achieved through expression ofAscl1in combination
with other TFs (Ambasudhan et al., 2011; Son et al., 2011;
Karow et al., 2012). It has also been reported that expression
of Ascl1or Neurog2alone is su�cient to induce conversion of
human �broblasts into induced neurons (Chanda et al., 2014;
Gascón et al., 2016), but the e�ciency of this process is low
(< 10%). Moreover, the phenotypes of iNs obtained through
direct cell lineage reprogramming using human cells remains
largely elusive. Pinpointing strategies capable of producingiNs
exhibiting de�ned neurochemical phenotypes is a critical step
towards translation of the lineage reprogramming techniques
into clinics.

Here, we show that the expression of the transcription
factor SRY (sex determining region Y)-box 2 (Sox2), Ascl1or
Neurog2is su�cient to lineage-convert a small fraction of human
umbilical cord mesenchymal stem cells (hUCMSCs) into iNs. In
contrast, the co-expression of eitherSox2/Ascl1or Sox2/Neurog2
is su�cient to convert a large fraction of hUCMSCs (up
to 50%) into iNs displaying electrophysiological hallmarks of
mature neurons and establishing synaptic contacts with other
cells. Furthermore, we show that iNs may express transcripts
associated with the acquisition of di�erent neurochemical
phenotypes, independently of the combination of transcription
factors used. Also,Sox2/Ascl1and Sox2/Neurog2may induce
the expression of genes involved in the acquisition of the
same neurochemical phenotypes, suggesting that iNs fate
during lineage-conversion is in�uenced by other aspects
than the transcription factors used. Collectively, our data
indicate that hUCMSCs are good candidates for lineage
reprogramming into iNs, but more studies are required to further
advance protocols capable of producing iNs with a particular
phenotype.

MATERIALS AND METHODS

Cell Culture
Human multipotent mesenchymal stem cells (hMSC) were
isolated from umbilical cords donated with informed consent
of the pregnant mothers at maternity Januário Cicco, Federal
University of Rio Grande do Norte, Natal, Brazil. The study

was approved by the Research Ethics Committee of the Federal
University of Rio Grande do Norte (Project Number 508.459),
and in strict agreement with Brazilian law (Resolution 196/96).
All subjects gave written informed consent in accordance with
the Declaration of Helsinki.

In this study, Wharton's jelly mesenchymal stem cells were
isolated from umbilical cord. Following isolation from the
subendothelium vein, according to the method previously
published (Duarte et al., 2012), the remaining umbilical cord
tissue was cut in small pieces and washed with phosphate-
bu�ered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 4.3 mM
Na2HPO4, and 1.47 mM KH2PO4; Merck), supplemented with
3% antibiotic–antimycotic solution (prepared with 10,000
units/ml penicillin G sodium, 10,000mg/ml streptomycin sulfate
and 25mg/ml amphotericin B; HyClone). Then, the tissue was
centrifuged at 200 g for 10 min, and the pellet resuspended in
10 mL of 0.1% collagenase type IV (Worthington) diluted in
PBS. After that, the explants were incubated for 16 h at 37� C
in a water bath. The tissue was centrifuged again at 200 g
for 10 min, the pellet washed twice with PBS and then gently
dissociated in a digestion solution containing 0.25% trypsin and
0.02% EDTA (Invitrogen) for 15 min at room temperature. To
interrupt trypsin activity, we added fetal bovine serum (FBS;
HyClone). Once again, the cell suspension was centrifuged,
and the cell pellet resuspended in minimum essential medium
a (a MEM; Gibco Invitrogen) supplemented with 10% FBS
and 1% antibiotic solution. Cells were plated onto T25 tissue
culture �asks (TPP) and these cultures maintained at 37� C in
a humidi�ed atmosphere containing 5% CO2. After 2 or 4
days, the medium was changed and non-adherent cells were
removed. Cultures consisting of small, adherent and spindle
shaped �broblastoid cells reaching 60–70% of con�uence were
detached and subcultured at 4,000 cells/cm2.

Characterization of hMSCs
The cells isolated from Wharton's jelly human umbilical cord
were characterized as MSCs, according to the criteria proposed
by the International Society for Cellular Therapy (Horwitz et al.,
2005; Dominici et al., 2006). The hMSCs were labeled with
a panel of monoclonal antibodies against several cell markers,
including CD105-FITC, CD90PE-Cy5 (Bioscience), CD73PE,
CD34PE, HLA-DR-FITC, CD45-FITC, and CD14PE (Becton
Dickinson's). Brie�y, the cells were detached of the tissue culture
plates using 0.25% trypsin/EDTA, washed, and homogenized
with PBS. They were then incubated with monoclonal antibody
for 30 min in darkness at room temperature. At the end of
this period, the cell suspension was centrifuged, washed in PBS,
and re-suspended in cold �xing solution, 0.5% formaldehyde
in PBS. For each test, isotype-matched monoclonal antibodies
were used as negative controls (IgG1-FITC, PE, and PE-Cy5;
Becton Dickinson's). The �uorescence intensity of labeledcells
was determined with a �uorescence-activated cell analyzer
(FACScan) using cell quest software (Cell QuestTM Software,
Becton Dickinson Immunocytometry Systems), a total of
20,000 events for each sample were recorded. The following
parameters were considered: forward scatter in linear scale
(which evaluates cell size), side scatter in linear scale (assessing
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cell complexity), and cell marker expression in �uorescence
analysis by FL1, FL2, and FL3 in logarithmical scale, representing
the antigen–antibody reaction conjugated to FITC, PE, and PE-
Cy5, respectively. Results were expressed as a percentage of cells
labeled with monoclonal antibodies. Osteogenic, adipogenic, and
chondrogenic di�erentiation assays were carried out according to
methodology previously published (Duarte et al., 2012).

Plasmids
The pro-neural genesAscl1, Neurog2,or Sox2were expressed
under control of an internal chickenb-actin promoter with
cytomegalovirus enhancer (pCAG) together with DsRed or GFP
behind an internal ribosomal entry site (pCAG-Ascl1-IRES-
DsRed, pCAG-Neurog2-IRES-DsRed, and pCAG-Sox2-IRES-
GFP). For control experiments, cultures were transfected with
plasmids encoding only DsRed or GFP (pCAG-IRES-DsRed or
pCAG-IRES-GFP) (Heinrich et al., 2010; Karow et al., 2012).
Plasmid stocks were prepared inEscherichia coliand puri�ed
using the endotoxin-free Maxiprep plasmid kit (Invitrogen).
DNA concentration was adjusted to 1mg/mL in TE bu�er
endotoxin free, and plasmids were stored at� 20� C.

Transfection
For transfections, hMSC were seeded in 24-well plates onto
poly-D-lysine (Sigma-Aldrich) and laminin (L-2020; Sigma
Aldrich) coated glass coverslips at a density of 3� 104

cells per well in 0.5 mLa MEM (Gibco) supplemented with
10% fetal bovine serum (FBS) and 1% antibiotic solution
(penicillin/streptomycin). The cells were grown in these
conditions for 1–3 days until 70–80% con�uent.

Both DNA plasmids (1mg/mL) and a lipophilic cationic
reagent (Lipofectamine 2000, Invitrogen) were diluted in 50
mL Opti-MEM (Reduced Serum Medium, Invitrogen). Mixtures
were incubated for 5 min and then combined for a further 20 min
according to the manufacturer's instructions. Complexes were
added to the cells in a total volume of 0.5 mL Opti-MEM (Gibco)
and incubated at 37� C in a humidi�ed atmosphere containing
5% CO2 for 10–12 h. Antibiotics and serum were not used during
transfection procedures.

Co-culture With Hippocampal Neurons
For co-culture experiments, mouse hippocampus at postnatal
day 0 to 4 (P0-4) were dissected in ice-cold PBS and dissociated
in a the digestion solution for 10 min at 37� C. Trypsin
action was interrupted with fetal bovine serum and the tissue
dissociated mechanically with a �re-polished glass Pasteur
pipette. The suspension was then centrifuged at 200 g for 5 min
and washed twice in DMEM/F12 10% FBS in DMEM/F12
medium (Gibco). Mouse hippocampal cells were added to the
human cultures 1–2 days after transfection at a density of
50,000 cells per well. The local University Animal Care and
Use Committee (CEUA/UFRN) approved experiments involving
mice. All experiments were carried out in accordance with
international guidelines and regulations for animal use.

Immunocytochemistry
Cell cultures were �xed in 4% paraformaldehyde (PFA) in
PBS for 15 min at room temperature. Primary antibodies were
diluted in PBS, 0.5% Triton X-100 and 5% normal goat
serum. Specimens were incubated overnight at 4� C. After three
washes with PBS, cells were incubated with species-speci�c
secondary antibodies conjugated to �uorophores for 2 h at
room temperature. Once again, samples were washed with PBS
three times. For nuclei staining, cells were incubated for 5 min
with 0.1mg/mL DAPI (4060-diamino-2-phenylindone) in PBS
0.1 M. Coverslips were �nally mounted onto a glass slide with
a mounting medium (Aqua Poly/Mount; Polysciences). The
following primary antibodies and dilutions were used: chicken
anti-Green Fluorescent Protein (GFP, Aves Labs, 1:1,000),rabbit
anti-Red Fluorescent Protein (RFP, Rockland, 1:1,000), mouse
anti-major microtubule associated protein (MAP2; Sigma, 1:500),
guinea pig polyclonal anti-vesicular GABA transporter (vGAT,
Synaptic Systems, 1:200), and polyclonal anti-vesicular glutamate
transporter 1 (vGLUT11, Synaptic Systems, 1:1,000).

Electrophysiology
Cell cultures with induced neurons were transferred to a
recording chamber mounted on the stage of a microscope
equipped with a water immersion 40X objective (Zeiss Examiner.
A1, 1 NA) and perfused with oxygenated external solution (1–
1.25 ml/min) at 37� C. Data were acquired using a patch-clamp
ampli�er Axopatch 200B (Molecular Devices) in current or
voltage clamp mode, a 16-bit data acquisition card (National
Instruments), and WinWCP or WinEDR software implemented
by Dr. John Dempster (University of Strathclyde). Patch-pipettes
of borosilicate glass capillaries (GC150F-10 Harvard Apparatus)
were pulled on a vertical puller (Narishige) with resistances from
5–7 M• . Pipettes were �lled with internal solution (� 290 Osm)
containing (in mM) 130 KC-gluconate, 7 NaCl, 0.1 EGTA, 0.3
MgCl2, 0.8 CaCl2, 2 Mg-ATP, 0.5 NaGTP, 10 HEPES, and 2 EGTA
(pH 7.2 adjusted with KOH 1M). The external solution (� 300
Osm) contained (in mM) 120 NaCl, 3 KCl, 1.2 MgCl2, 2.5 CaCl2,
23 NaHCO3, 5 HEPES, and 11 Glucose (pH 7.4 adjusted with
NaOH 1M).

Patch-clamped cells were measured for input resistance,
resting membrane potential, and capacitance. Recordings were
analyzed with custom routines in MATLAB. Action potentials
were triggered by 400-ms depolarizing current injections from
100 pA, 400 ms, with 10 pA increments. The �rst �red action
potential in response to minimal current injection was analyzed
for amplitude (peak to afterhyperpolarization voltage), half-
width (halfway between threshold voltage and peak), and
afterhyperpolarization amplitude (threshold to minimum of
voltage trough between the �rst and the second action
potential in a spike train). Instantaneous and steady-state
voltage were analyzed in response to hyperpolarizing current
injections (� 100 pA, 400 ms). Excitatory postsynaptic currents
were analyzed for amplitude and rise time in free-run traces
of 150 s. Active and passive electrophysiological membrane
properties, including action potential parameters were analyzed
using a Student's unpaired, two-tailedt-test.
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Calcium Imaging
Calcium imaging was performed on human MSC 3 weeks
post-transfection using Oregon green 488 BAPTA-1 (Invitrogen,
10mM). Imaging was performed in physiological saline solution
containing (in mM) 140 NaCl, 5 KCl, 2 MgCl2, 2 CaCl2, 10
HEPES, 10 glucose, and 6 sucrose (pH 7.35). Images were
acquired approximately every 10 ms using a scienti�c CMOS
camera (Andor). The microscope was controlled by Micro-
Manager software together with the image processor ImageJ.
Changes in �uorescence were measured for individual cells and
average of the �rst 10 time-lapse images for each region of interest
(ROI) was de�ned as initial �uorescence (F0).

Single Cell RT-qPCR
After electrophysiological recordings, the cell was sucked
into the recording pipette. Pipettes were quickly removed
and broken into 1.5 mL tubes containing 20 U of RNase
inhibitor and 8.3 mM DTT. Samples were frozen immediately
on dry ice and stored at� 80� C. Immediately after thaw,
the samples were treated to eliminate contaminating DNA
molecules. Complementary DNA (cDNA) synthesis and pre-
ampli�ed reactions were performed with the RT2 PreAMP
cDNA Synthesis Kit following the manufacturer's procedure
(QIAGEN). Ampli�cation was performed on the Applied
Biosystems ViiA 7 Real-Time PCR (Applied Biosystems).
RT2 Pro�ler PCR Array were customized in 96-well plates,
designed for analyzing the expression of the following genes:
Choline O-acetyltransferase (CHAT), Tyrosine hydroxylase
(TH), Tryptophan hydroxylase 2 (TPH2), Vesicular glutamate
transporter 1 (VGLUT1 or SLC17A7), GABA Vesicular
transporter (VGAT or SLC32A1), FEZ family zinc �nger 2
(FEZF2), T-box brain 1 (TBR1), SATB homeobox 2 (SATB2),
COUP-TF-interacting protein 2 (CTIP2 or BCL11B), Platelet-
derived growth factor receptor, beta polypeptide (PDGFRB),
Thy-1 cell surface antigen (THY-1), Atonal homolog 8 (ATOH8),
Neurogenic di�erentiation 1 (NEUROD1), Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), and Hypoxanthine
phosphoribosyltransferase 1 (HPRT1). The RT-qPCR was
performed using the RT2 pro�ler PCR customized array
(QIAGEN). Each array included genomic DNA control primer
set, reverse transcription control, positive PCR control to report
the e�ciency of the polymerase chain reaction itself, and the
endogenous reference genesGAPDHandHPRT1.

Analysis of Single-Cell RT-qPCR
A single-cell RT-qPCR pre-processing was performed based on
method described byStåhlberg et al. (2013). Melting curve
analysis performed elimination of false positives. Next, relative
quantities were calculated using a cycle of quanti�cation cuto�
(Cq-cuto�) and relative-quantities of cDNA molecule equation.
Missing data were imputed with absolute value 0.5, followed
by conversion to log2-scale. Mean center and auto scale, for
each gene mean center and auto scale were calculated separately
using log2-values. Heat map and Principal Component Analysis
(PCA) were used to visualize expression di�erences between
groups. Statistical analysis and plotting were performed using the
software R version 3.3.3.

Statistical Analysis
All statistical data are presented as the mean� standard error
of the mean (SEM) of at least three independent experiments.
Statistically signi�cant di�erences were assessed by Student's
unpaired t-test or one-way Analysis of variance (ANOVA),
comparing two or more groups, respectively.P < 0.05 was
considered a signi�cant di�erence (� ).

RESULTS

Direct Lineage Reprogramming of Human
Umbilical Cord MSCs
Mesenchymal stem cells (MSCs) can be isolated from di�erent
sources in adult humans, including the bone marrow and
umbilical cord (Ding et al., 2011). These cells are highly
plastic, retaining the potential to generate chondroblasts,
adipocytes, and osteoblasts (Caplan, 1991; Dominici et al.,
2006; Afanasyev et al., 2010; Keating, 2012). In order to
characterize the cells isolated from Wharton's jelly umbilical
cord, we �rst evaluated the expression of MSC-speci�c
antigens using �ow cytometry. Virtually all cells exhibited
expression of CD105, CD73, and CD90 markers, and lacked
the expression of hematopoietic lineage markers, such as
CD14, CD34, and CD45 (Supplementary Figures 1A–I). The
MSCs also demonstrated capacity for osteogenic, adipogenic,
and chondrogenic di�erentiation (Supplementary Figures 1J–
L). Given this versatility, we hypothesized that expression
of neurogenic transcription factors in MSCs could directly
reprogram these cells into neurons. To test this possibility,
we transfected plasmids carrying the genes encoding forSox2,
Neurog2,or Ascl1into human umbilical cord mesenchymal stem
cells (hUCMSCs) using lipophilic cationic reagent. To monitor
transduced cells, all vectors carried a �uorescent protein (GFP
or DsRed) under control of an internal chickenb-actin promoter
with cytomegalovirus enhancer (pCAG). Vectors expressing GFP
or DsRed alone were used as control (Figures 1A,B). One day
after transfection, cultured medium of hUCMSCs was replaced
with neuronal di�erentiation medium containing B27. In this
medium, most transfected hUCMSCs underwent cell death
precluding analysis of lineage reprogramming (Supplementary
Figure 2). To overcome this limitation, we co-cultured neonatal
mouse hippocampal cells with hUCMSCs. We found an average
of about 50% GFPC/DsRedC hUCMSC per �eld 15 days
after transfection and in the presence of co-cultured neonatal
mouse hippocampal cells. In contrast, the average number of
GFPC/DsRedC hUCMSCs in the absence of co-cultured cells
was< 4% (Supplementary Figure 2). Low number of cells was also
observed in Hucmsc cultures transfected with control plasmids,
indicating that the cell death under these culture conditions
was independent of lineage-reprogramming. It is likely that
the withdrawal of serum performed after transfection (aiming
at the di�erentiation of induced neurons) a�ects the survival
of hUCMSCs, whereas addition of co-cultured cells, somehow,
counteracts this cell-death e�ect. We, therefore, concluded that
co-cultures are necessary to support hUCMSC in the culture
conditions used.
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FIGURE 1 | Direct lineage reprogramming of hUCMSC into iN by forced expression ofSox2, Ascl1, or Neurog2 alone, Sox2/Ascl1 or Sox2/Neurog2. (A–U)
Immunostaining for DSRED (red), GFP (green), MAP2 (white), and DAPI (blue), 15 days post transfection (dpt). Scale bar represents 20mm. (A–D) Example of
hUCMSC transfected with control plasmids encoding only reporter proteins GFP and DSRED. Note that cell displayed classical mesenchymal cell morphologies and
did not express MAP2.(E–H) Example of hUCMSC transfected withSox2 and Ascl1 (white arrows indicate hippocampal neurons expressing MAP2). (I–L) hUCMSC
transfected with Sox2 and Neurog2. (M–O) hUCMSC transfected with onlySox2. (P–R) hMSC transfected with onlyNeurog2. (S–U) hUCMSC transfected with only
Ascl1. (V) Histograms show the percentage of induced neurons, measured by the number of expressing MAP2 cells over the total numberof reporter positive cells.
Data are presented as mean� s.e.m. from three independent experiments. ANOVA followedby Dunn's post-hoc test, *p < 0.05; no statistically signi�cant difference
(n.s.). hUCMSC transfected with control plasmids did not express MAP2, thereby the bar is not being shown.

A few days after transfection, we observed that some
hUCMSCs transfected with proneural genes acquired neuronal-
like morphology. To con�rm this possible lineage conversion
of hUCMSCs into iNs, we further analyzed the expression of

the neuronal-speci�c microtubule-associate protein 2 (MAP2)
15 days after transfection with proneural genes (Figure 1). A
fraction of cells transfected with proneural genes expressed
MAP2 and acquired small-round cell bodies and thin and
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FIGURE 2 | After transfection, cells were grown on astrocyte monolayers which provide support to hUCMSCs-derived iNs.(A–C) hUCMSCs transfected with control,
(D–F) Sox2/Ascl1, or (G–I) Sox2/Neurog2. (J) Histogram shows the percentage of hUCMSCs-derived iNs. Data are presented as mean� s.e.m. from three
independent experiments, Student's unpairedt-test, no statistically signi�cant difference (n.s.). hUCMSC transfected with control plasmids were not reprogramed into
induced neurons, therefore the bar is not being shown.

long processes, resembling immature neurons. Whereas,
hUCMSCs transfected with control plasmids displayed classical
mesenchymal cell morphologies and did not express MAP2
(Figures 1A–U). Expression ofSox2, Ascl1,or Neurog2alone
was su�cient to reprogram hUCMSCs into iNs, albeit at low
rates (Figure 1V). However, the combination ofSox2and Ascl1
increased the e�ciency of reprogramming up to 49%, whereas
the combination ofSox2andNeurog2increased the e�ciency up
to 35% (Figure 1V). We obtained these results using Wharton's
jelly mesenchymal stem cells isolated from tree di�erent donors
and did not observed any heterogeneity in the potential of
reprogramming (data not shown). These data indicate that single
proneural TFs have potential to elicit lineage reprogramming
of hUCMSCs into iNs, but that the synergistic action of the
TFsSox2/Ascl1or Sox2/Neurog2is su�cient to induce neuronal
phenotype in a high number of hUCMSCs.

It has been shown that cells from the mesenchymal lineage
can fuse with other cell types in culture (Terada et al., 2002;
Alvarez-Dolado et al., 2003). To rule out the possibility that
hUCMSCs could be fusing with mouse hippocampal neurons
present in our co-cultures, we performed similar experiments
co-culturing reprogrammed hUCMSCs with puri�ed postnatal
mouse cortical astrocytes (Heinrich et al., 2011). Similar to
cultures containing neonatal hippocampal cells, we observed
that hUCMSCs transfected withSox2/Ascl1or Sox2/Neurog2
survived in astrocyte monolayers and acquired neuronal-like

morphologies (Figures 2A–I). Thus, lineage reprogramming of
hUCMSCs into iN afterSox2/Ascl1or Sox2/Neurog2expression
is unlikely to be attributed to cell fusion with primary co-cultured
neurons. However, we observed a lower lineage conversion
e�ciency when plating hUCMSCs on astrocytes (Figure 2J)
compared to hippocampal cells suggesting that additional
factors released by co-cultured neurons may a�ect either the
reprogramming e�ciency or survival of iNs.

Functional Properties of Induced Neurons
To investigate if iNs could establish synaptic connections with
neighboring neurons, we studied the dynamics of calcium
transients using calcium sensitive dye imaging (Rosenberg
and Spitzer, 2011). We measured the spontaneous changes in
�uorescence intensity (1 F/F0) during the total period of imaging
(17 s) and compared their responses with primary murine
hippocampal neurons. We found that both human iNs and
mouse hippocampal neurons present in the co-culture displayed
fast calcium-transients as indicated by rapid variations inthe
�uorescence (Figures 3A–I, Supplementary Movies 1, 2). The iNs
reprogrammed withSox2/Ascl1, Sox2/Neurog2, and the mouse
hippocampal neurons showed a mean variation in �uorescence
intensity of 39.66% (Figure 3J, gray bar), 33.05% (Figure 3J, blue
bar), of 60.83% (Figure 3J, white bar), respectively. In contrast,
the change in �uorescence intensity observed in hUCMSCs
transfected with control plasmids presented a mean value of
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FIGURE 3 | Human MSC lineage-converted iNs show fast calcium transients. (A,B) hUCMSCs transfected with control plasmids encoding only reporter proteins GFP
and DSRED 23 dpt (yellow arrow).(D,E) hUCMSCs transfected withSox2 and Neurog2 with neuronal morphology 23 dpt (yellow arrow).(G,H) Example of hUCMSCs
transfected with Sox2 and Ascl1 with neuronal morphology 23 dpt (yellow arrow). Note the presence of mouse hippocampal neurons (green arrowheads) in the same
�elds. (C,F,I) Representative traces of time course calcium-transients of transfected hUCMSCs are shown by spontaneous variations in the �uorescence intensity (FI).
(J) Histograms show the mean change in �uorescence of mouse hippocampal neurons and iNs. Responses were calculated as the change in �uorescence (1F) over
the initial �uorescence (F0). Number of cells analyzed is indicated in the bars for each group. (ANOVA followed by Tukey'spost-hoc test, *p < 0.05; **p < 0.01;
***p < 0.001).

1.1% (Figure 3J, black bar), signi�cantly lower than the responses
observed in iNs and hippocampal neurons (ANOVA followed
by Tukey's post-test,p < 0.0001). These observations indicate
that hUCMSCs-derived iNs present fast calcium transients
qualitatively similar of those observed in primary neurons.

Notably, this sudden increase in �uorescence intensity in
hUCMSC-derived iNs was temporally synchronized mouse
hippocampal neurons in the same �eld of observation
(Figures 4A–I). To quantify this phenomenon, we measured
the percentage of hippocampal neurons showing elevation
in the �uorescence intensity within a time-range (ms) of the

�uorescence �uctuation observed in a single iN within the same
�eld of observation. The time of the iN calcium transient was
considered ast D 0. We found that the majority of mouse
hippocampal neurons showed changes in �uorescence intensity
within 15 ms of �uctuations observed in iNs (Figure 4J),
indicating a strong synchronization of calcium transients
among primary neurons and iNs. Such a strong synchronization
within the frame of milliseconds may suggest that cells are
synaptically connected (Dawitz et al., 2011). To further con�rm
that hUCMSCs-derived iNs could receive synaptic inputs, we
performed patch clamp recordings on these cells.
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FIGURE 4 | Synchronization of calcium transients between iNs and primary neurons.(A,D,G) Photomicrographs show hUCMSC cultures 23 dpt and labeled with
BAPTA Oregon Green. Colored circles delimit the regions of interest (ROI) where �uorescence intensity (FI) was measured (colored arrowheads).(B,E,H)
Photomicrographs of the same �elds show DsRed expression. Yellow arrowheads(A,B, D,E) point to hUCMSC-derived iNs. Blue, red, green and purple arrowheads
point to primary hippocampal neurons.(C,F,I) Graphics show spontaneous calcium transients. The color ofROIs in the left panel(A,D,G) corresponds to the color of
each trace in the right panel(C,F,I). The traces show spontaneous variations in the FI during 17sof recording. (J) Histogram shows percentage of hippocampal
neurons that respond within a range time difference (ms) in the same area,t D 0 was considered the time of spontaneous calcium responses of the reprogrammed iN
present in the same �eld of imaging. Density curve is represented in black.

We performed patch-clamp recordings on iNs reprogrammed
with one transcription factor (1 TF;n D 5) and compared their
active and passive properties to cells reprogrammed with two
transcription factors (2 TF;n D 10). Cells with 1 TF had a mean
input resistance of 726� 119 M• , resting membrane potential
of � 61 � 2 mV and capacitance of 22� 2 pF. Out of the 5
cells, 2 responded with regular spiking pattern (Figure 5A, top
left), 1 responded with startle onset (Figure 5A, top right), and
2 with a spikelet in response to depolarizing current injections
(0–100 pA, 400 ms, with 10 pA increments). Spikes were analyzed
for action potential amplitude, action potential half-width and
afterhyperpolarization amplitude. Spikes of cells with 1 TF had
a mean action potential amplitude of 44� 8 mV, action potential
half-width of 13� 0.5 ms and afterhyperpolarization amplitude

of � 6 � 2 mV (Figure 5C). In comparison, cells reprogrammed
with 2 TF had a mean input resistance of 605� 110 M•
(pD 0.51), resting membrane potential of� 59� 2 mV (pD 0.54)
and capacitance of 26� 1 pF (p D 0.13). Of the 10 cells with 2
TF, 6 responded with regular spiking pattern and 4 responded
with startle onset (0–100 pA, 400 ms, with 10 pA increments).
Spikes of cells with 2 TF had a mean action potential amplitude
of 76 � 3 mV (p D 0.0004), action potential half-width of 4�
1 ms (p D 0.0006) and afterhyperpolarization amplitude of� 11
� 2 mV (p D 0.22;Figure 5B). While hyperpolarizing current
injections (0 to� 100 pA, 400 ms, with 10 pA decrements) caused
some cells to rebound (n D 3), prominent membrane sags
could only be detected in cells transfected withSox2/Neurog2
(n D 7;Figure 5B, right) suggesting that these cells have a sizeable
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hyperpolarization-activated current. Comparing instantaneous
and steady state voltage in response to negative current injections
(� 100 pA, 400 ms) showed a signi�cant di�erence between
instantaneous (� 71 � 2 mV) and steady state (� 66 � 1 mV)
values (p D 0.0427).

We also observed spontaneous excitatory postsynaptic
currents (EPSCs) in iN during voltage clamp (Figure 5D),
suggesting that lineage-reprogrammed iNs could receive synaptic
contacts from other neurons. We compared the �rst 100 events of
1 TF cells and 2 TF cells against each other. Postsynaptic currents
of cells with 1 TF had an amplitude of 82� 9.7 pA and rise time
of 11� 0.4 ms. The postsynaptic currents of cells with 2 TF had
an amplitude of 86� 15.1 pA (p D 0.8312) and a mean rise time
of 9 � 0.3 ms (p D 0.0211).

Sox2/Neurog2 and Sox2/Ascl1 Induce
Different Neuronal Phenotypes in
hUCMSCs
Next, we set out to evaluate the expression of messenger
RNAs (mRNA) of genes commonly expressed in either hMSCs
or neurons. To that, we collected single cells using a glass-
micropipette, isolated the total mRNA, reverse transcribed,
and pre-ampli�ed cDNAs that were used in RT-qPCR
reactions. We observed that the average expression level of
common MSCs genesTHY1 and PDGFB was decreased in
the iNs (Supplementary Figure 3A), whereas the expression
of the neuronal genesATHO8 or NEUROD1increased after
expression ofSox2/Ascl1or Sox2/Neurog2in hMSCs, respectively
(Supplementary Figure 3B). Combined with our previous
observations, these data indicate that hMSCs were e�ectively
converted into iNs by forced expression of proneural TFs.

To evaluate the possible phenotypes adopted by hMSC-
derived iNs, we analysed the expression of known genes
expressed by cholinergic (CHAT), dopaminergic (TH),
serotoninergic (TPH2), glutamatergic (SLC17A7), and
GABAergic (SLC32A1) neurons, as well as genes encoding
for transcription factors associated with speci�c classes of
glutamatergic neurons within the cerebral cortex (FEZF2
and BCL11B—corticofugal neurons;TBR1—cortico-thalamic
neurons; SATB2—callosal neurons). Relative expression of
these transcripts was calculated using a cycle of quanti�cation
cuto� (Cq-cuto�) and relative-quantities of cDNA molecule
equation (Ståhlberg et al., 2013). Next, we used unsupervised
PCA analysis to classify iNs obtained from hUCMSCs expressing
either Sox2/Neurog2or Sox2/Ascl1.We observed that the
expression levels of the transcripts forCHAT, TH, TPH2,
SLC17A7, SLC32A1, FEZF2, BCL11B, TBR1,and SATB2
could not clearly distinguish the two populations of cells
(Figure 6A), indicating that similar genes were regulated
by both combinations of TFs in hUCMSCs-derived iNs.
Indeed, we observed that bothSox2/Ascl1and Sox2/Neurog2
could induce the expression of genes associated with distinct
neurochemical phenotypes in hUCMSCs-derived iNs, although
some phenotypes were more commonly observed for a given
TF combination. For instance,Sox2/Ascl1generated more iNs
expressing high levels ofTPH2, whereasSox2/Neurog2generated

more CHAT expressing iNs. Nevertheless, the expression of
all transcripts analyzed was regulated by both combinations of
TFs, suggesting thatAscl1and Neurog2do not have a unique
role in the phenotypic speci�cation of lineage reprogrammed
hUCMSC-derived iNs (Figure 6B). These data suggest that
the expression ofSox2/Ascl1or Sox2/Neurog2in hUCMSC
activates a transcriptional program associated with loss of
mesenchymal phenotype and acquisition of multiple neuronal
phenotypes.

To further evaluate the neurochemical phenotypes of
hUCMSC-derived iNs, we investigated the expression of
SLC17A7 (Vesicular Glutamate Transporter 1 or VGLUT1)
and SLC32A1 (GABA Vesicular Transporter or VGAT) using
immunocytochemistry (Figure 7). We observed that only a
few Sox2/Ascl1-derived iNs showed expression of VGAT �fteen
days after reprogramming (Figures 7I–L), whereas most of the
hUCMSC-derived iNs did not express any of these markers days
after (Figures 7M–Y). Although iNs expressed MAP2 15 days
after transfection with proneural genes (Figure 1), expression
of vesicular neurotransmitter transporters is likely to occurat
later stages of neuronal di�erentiation. Further analyses and
immunostaining for other vesicular transporters isoforms are
necessary to con�rm the phenotypes of hUCMSCs-derived
iNs.

DISCUSSION

Direct lineage reprogramming of human somatic cells into
neurons is a promising strategy to advance cell-based therapies
to treat neurological disorders, as well as to study the basic
mechanisms of neuronal di�erentiation. In this work, we further
expand the list of cells suitable for direct lineage reprogramming
using transcription factors. More importantly, we show that
combined expression of eitherNeurog2/Sox2 or Ascl1/Sox2
is su�cient to convert human MSCs into iNs displaying
electrophysiological properties typical of neuronal cells. Finally,
we show that these two combinations of transcription factors
may elicit diverse and non-exclusive neuronal phenotypes in
reprogrammed cells.

Human MSCs are versatile cells, capable of di�erentiation
into adipocytes, chondrocytes, and osteoblasts (Horwitz et al.,
2005; Dominici et al., 2006). This potential, combined with
the fact that hMSC can be easily isolated from adult donors,
has encouraged researchers to further exploit the versatility of
reprogramming MSCs to other lineages, such as muscle and
neural cells for therapeutic purposes (Fan et al., 2011; Kwon
et al., 2016). However, the capacity to convert MSCs into fully
functional neurons using extrinsic signals remains a matter of
intense debate.

Here, we show that forced expression ofAscl1, Neurog2,or
Sox2alone is su�cient to convert hUCMSCs into iNs expressing
key neuronal proteins and exhibiting electrophysiological
properties of mature neurons. Importantly, combination of
Neurog2or Ascl1with Sox2signi�cantly increases the rate of
hUCMSC conversion into iNs (up to 35% withSox2/Neurog2and
49% withSox2/Ascl1). This e�ciency is similar to the conversion
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FIGURE 5 | hUCMSCs-derived iNs show electrical properties of mature neurons and establish synaptic contacts with co-culture mouse primary neurons.
Electrophysiological properties of cells reprogrammed with one transcription factor (1 TF) compared to cells reprogrammed with two transcription factors (2 TF).
(A) Current clamp traces from cells with 1 TF (left:Ascl11; right: Neurog2) showing regular spiking pattern (left), and startle onset(right) in response to depolarizing

(Continued)
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FIGURE 5 | current injections [50 pA (black), 100 pA (red), 400 ms].(B) Example of current clamp traces from cells with 2 TF (left:Sox2/Ascl1; right: Sox2/Neurog2)
responding with a regular spiking pattern (black: 50 pA; red: 100pA; 400 ms). Note that hyperpolarizing current injections caused some cells to rebound (� 50 and
� 100 pA, 400 ms). Fluorescence images of the recorded cells are displayed below.(C) Bar graphs showing mean and SEM input resistance, resting membrane
potential and capacitance (top) as well as mean action potential (AP) amplitude, AP half-width and afterhyperpolarization (AHP) amplitude (bottom) for cells with 1 TF
(white bars) and 2 TF (black bars) respectively (Student's unpaired t-test, ***p < 0.001). (D) Example of voltage clamp trace (free run) showing spontaneous EPSCs of
a reprogramed 1TF iN (top, left) and a 2TF iN (bottom, left). Single postsynaptic currents are plot in gray (right) and thecorresponding mean trace is shown in black
(n D 25).

FIGURE 6 | Phenotypic speci�cation of lineage reprogrammed hUCMSC-derived iNs.(A) Principal component analysis (PCA) of gene expression among cells
reprogrammed withSox2/Neurog2 or Sox2/Ascl1. Genes used in the PCA are involved in neurotransmitter identity. Note the signi�cant overlap between the two cell
populations, suggesting that expression of eitherSox2/Neurog2 or Sox2/Ascl1/ may elicit similar neuronal phenotypes.(B) Heat map showing the relative expression
of 9 genes involved in the speci�cation of different neuronalphenotypes. Observe the variable expression of genes essential for the speci�cation of distinct
neurotransmitter identities in iNs derived from hUCMSCs lineage-converted through the expression of eitherSox2/Neurog2or Sox2/Ascl1. Choline O-acetyltransferase
(CHAT), Tyrosine hydroxylase (TH), Tryptophan hydroxylase 2 (TPH2), Vesicular Glutamate Transporter 1 (VGLUT1 or SLC17A7), GABA Vesicular Transporter (VGAT or
SLC32A1), FEZ family zinc �nger 2 (FEZF2), T-box brain 1 (TBR1), SATB homeobox 2 (SATB2), COUP-TF-Interacting Protein 2 (CTIP2 or BCL11B).

of human pericytes into iNs usingSox2/Ascl1(Karow et al.,
2012) and signi�cantly higher than the conversion rate of human
�broblasts into iNs usingAscl1or Neurog2alone (Chanda et al.,
2014; Gascón et al., 2016) or the combinationAscl1/Brn2/Myt1

(Caiazzo et al., 2011; Pang et al., 2011; Wapinski et al., 2013).
However, the latter can be increased by using micro-RNAs, co-
expression ofBcl-2 and small molecule treatment (Yoo et al.,
2011; Ladewig et al., 2012; Gascón et al., 2016).
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FIGURE 7 | Protein expression of vesicular transporters of lineage reprogrammed hUCMSC-derived iNs. Immunostaining for DSRED (red), GFP (green), vGAT (white;
left panel) or vGLUT1 (white; right panel) and DAPI (blue), 15 days post transfection (dpt). Scale bar represents 20mm. (A–H) hUCMSC transfected with control
plasmids encoding only reporter proteins GFP and DSRED. Note that cells displayed classical mesenchymal cell morphologies and did not express neither vGAT or
vGLUT1.(I–P) hUCMSC transfected withSox2 and Ascl1. (Q–Y) hUCMSC transfected withSox2 and Neurog2. (I,J) Observe the expression of the vesicular GABA
transporter (VGAT) inSox2/Ascl1-derived iN (yellow arrows). The inset shows a high magni�cation view of the boxed area.

Single expression ofAscl1is su�cient to convert other human
somatic cells into iNs (Chanda et al., 2014). This potential ofAscl1
is attributed to its ability to recognize and bind to the regulatory
elements of its target genes even when they are nucleosome-
bound (Wapinski et al., 2017). In contrast, the same pioneering
activity has not been shown toNeurog2, which is believed to
bind exclusively to accessible regulatory elements withinthe
genome. This could help to explain the prominent potential of
Neurog2to lineage-reprogram astrocytes (Berninger et al., 2007;
Heinrich et al., 2010; Chouchane et al., 2017) and pluripotent
stem cells (Zhang et al., 2013) in comparison to mouse embryonic
�broblasts into iNs (Gascón et al., 2016).

Our results indicate that a fraction of hUCMSCs (1–2%) has
an epigenetic state compatible with the binding of NEUROG2
to regulatory elements of neuronal genes, allowing for the
conversion into iNs. However, combination withSox2, which
has a well-known role in chromatin modi�cation of Neurog2-
target genes (Amador-Arjona et al., 2015), largely increases the
e�ciency of neuronal conversion mediated byNeurog2(� 35%).
Similarly, combination withSox2increases the percentage of
hUCMSCs converted byAscl1into iNs by an order of magnitude.
These observations suggest that key regulatory elements of
neuronal genes identi�ed by ASCL1 and NEUROG2 are not
accessible in the vast majority of hUCMSCs cultured under the
conditions described in this study.

In addition to the low frequency of neuronal conversion
elicited in hUCMSC by forced expression ofAscl1or Neurog2
alone, iNs also display electrophysiological properties less robust
compared to iNs generated usingSox2/Ascl1or Sox2/Neurog2.
In fact, the action potential of iNs reprogrammed with a
single TF has a smaller amplitude and a shorter half-width
as compared to iNs reprogrammed with 2 TFs (Sox2/Ascl1
or Sox2/Neurog2), indicating that the latter express a more
complete set of ion channels. It is possible that these
di�erences represent a delay in the maturation of single-TF iNs.
Alternatively, the combination ofSox2/Ascl1or Sox2/Neurog2
may be necessary to induce the complete transcriptional cascade
required for thorough neuronal maturation. Calcium transients
are implicated in distinct aspects of neuronal di�erentiationby
regulating neurotransmitter phenotype, dendritic morphology,
and axonal growth and guidance (Rosenberg and Spitzer,
2011). While control-transfected hUCMSCs never displayed
fast calcium transients, bothSox2/Ascl1- and Sox2/Neurog2-
iNs showed spontaneous fast calcium transients, indicative of
synaptic activity (Bonifazi et al., 2009). Likewise, the calcium
transients of primary neurons and iNs are synchronized,
suggesting that these cells are synaptically connected. Together,
these �ndings suggest that hUCMSCs are lineage-converted into
iNs capable of �ring action potentials and establishing pre- and
post-synaptic compartments.
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The cellular and molecular mechanisms of direct lineage
reprogramming remain largely unknown. It has been reported
that the metabolic state is particularly important in direct
neuronal reprogramming of somatic cells into iNs. Accordingly,
co-expression ofBcl2/Neurog2or Bcl2/Ascl1greatly enhances
the conversion e�ciency of astrocytes into iNs by inhibiting
lipid peroxidation, consistent with a caspase-independent role.
Similarly, co-expression ofBcl-2 alongsideAscl1improves the
rates of lineage conversion of mouse embryonic �broblast
into iNs, demonstrating that the metabolic shift is necessary
to support survival of lineage-converted iNs (Gascón et al.,
2016). Our data suggest that mouse astrocytes and hippocampal
neurons may contribute to enhance hUCMSCs survival during
lineage conversion. Future experiments should elucidate whether
Bcl2 co-expression or small molecules treatment would allow
for the conversion ofSox2/Neurog2-or Sox2/Ascl1-iNs from
hUCMSCs even in the absence of co-cultured cells.

Despite the large number of studies showing the conversion of
human somatic cells into iNs, it remains largely unknown what
is the phenotype of reprogrammed neurons (Ambasudhan et al.,
2011; Pang et al., 2011; Son et al., 2011; Karow et al., 2012; Chanda
et al., 2014; Hu et al., 2015). Moreover, it is still unclear whether
di�erent TFs could induce particular neuronal fates in lineage-
converted cells. Here, we show that lineage-reprogrammed
hUCMSCs generate iNs expressing genes associated with the
acquisition of diverse neurotransmitter identities, regardless
of the use of Sox2/Ascl1or Sox2/Neurog2. These di�erent
combinations of TFs can regulate similar sets of genes,
suggesting thatSox2/Ascl1and Sox2/Neurog2are not su�cient
to drive unambiguous neurotransmitter identities in hUCMSCs-
derived iNs. However, the expression of genes associated
with a speci�c neuronal phenotype is only an indication
of the possible phenotype of the iNs. Future experiments
using electrophysiological and pharmacological techniquesare
necessary to con�rm the phenotypes of hUCMSCs-derived iNs.

According to the notion thatNeurog2and Ascl1 may be
su�cient to induce a pro-neuronal program during somatic
cell lineage reprogramming but not be su�cient to determine
a speci�c phenotype of the iN, studies of the developing
central nervous system reveal that those TFs may be associated
with diverse neuronal phenotypes. For instance, while in
the telencephalon,Neurog2 plays important roles for the
speci�cation of glutamatergic neurons (Schuurmans and
Guillemot, 2002). Progenitors in the cerebellum and spinal cord
expressNeurog2generate GABAergic and cholinergic neurons,
respectively (Bertrand et al., 2002). Similarly, progenitors
expressingAscl1 contribute to di�erent neuronal lineages in
the cerebral cortex, cerebellum, and retina (Chouchane and
Costa, 2018). Most protocols aiming at obtaining �broblast-
derived iNs with a particular phenotype through direct lineage
reprogramming require the use of several TFs (Victor et al., 2014;
Blanchard et al., 2015).

Expression of either Ascl1 and Neurog2 in cortical astrocytes
leads to the activation of transcriptional networks with only a
small subset of shared target genes (Masserdotti et al., 2015),
which could partly explain the role of those TFs in instructing
di�erent iNs phenotypes (Berninger et al., 2007; Heinrich et al.,

2010). However, co-expression of Ascl1, Myt1L, and Brn2
induces a glutamatergic neuronal fate in �broblast-derived iNs
(Vierbuchen et al., 2010), whereas Neurog2 drives motor neuron
di�erentiation associated with forskolin and dorsomorphin
treatments in the same cells (Liu et al., 2013), suggesting that
the fate-speci�cation of iNs is not only dependent on the
TF used. Recent work in our laboratory using direct lineage
reprogramming of mouse astrocytes isolated from di�erent brain
regions further supports the versatile roles ofNeurog2and
Ascl1to a�ect the phenotypes of iNs (Chouchane et al., 2017).
While cerebral cortex astrocytes reprogrammed into iNs with
Neurog2adopt mostly a glutamatergic fate, cerebellum astrocyte-
derived iNs show GABAergic phenotypes. Taken together, these
data indicate that the cell of origin with its speci�c epigenetic
landscape can in�uence the �nal fate of iNs.

A comprehensive understanding of the molecular
mechanisms involved in the acquisition of particular
neurochemical phenotypes will greatly improve the protocols for
lineage reprogramming of human somatic cells into iNs, allowing
for the generation of homogeneous neuronal populations that
could be later used in cell-based therapies.
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