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Background: Longitudinal movement parameter analysis of hemipareticagtients over
several months could reveal potential recovery trends and dip clinicians adapting
therapy strategies to maximize recovery outcome. Wearableensors offer potential for
day-long movement recordings in realistic rehabilitatiosettings including activities of
daily living, e.g., walking. The measurement of walking-tated movement parameters of
affected and non-affected body sides are of interest to detemine mobility and investigate
recovery trends.

Methods: By comparing movement of both body sides, recovery trends amss the

rehabilitation duration were investigated. We derived andalidated selected walking
segments from free-living, day-long movement by using rute that do not require

data-based training or data annotations. Automatic stridesegmentation using peak
detection was applied to walking segments. Movement parameers during walking were
extracted, including stride count, stride duration, cadene, and sway. Finally, linear
regression models over each movement parameter were derikto forecast the moment

of convergence between body sides. Convergence points werexpressed as duration
and investigated in a patient observation study.

Results: Convergence was analyzed in walking-related movement pamaeters in an
outpatient study including totally 102 full-day recording of inertial movement data
from 11 hemiparetic patients. The recordings were performg over several months
in a day-care centre. Validation of the walking extraction ethod from sensor data
yielded sensitivities up to 80% and speci city above 94 % on g&erage. Comparison
of automatically and manually derived movement parametershowed average relative
errors below 6 % between affected and non-affected body side. Movement parameter
variability within and across patients was observed and commed by case reports,
re ecting individual patient behavior.

Conclusion;  Convergence points were proposed as intuitive metric, whic could
facilitate training personalization for patients accordg to their individual needs. Our
continuous movement parameter extraction and analysis, wa feasible for realistic,
day-long recordings without annotations. Visualizationsf movement parameter trends
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and convergence points indicated that individual habits agh patient therapies were
re ected in walking and mobility. Context information of ¢hical case reports supported
trend and convergence interpretation. Inconsistent convgence point estimation
suggested individually varying de ciencies. Long-term reovery monitoring using
convergence points could support patient-speci c trainirg strategies in future remote
rehabilitation.

Keywords: free-living, inertial measurement units, stroke, r ehabilitation, trend, unsupervised

INTRODUCTION Various sensor technologies have been used and motion
sensors including accelerometetdde-Nilssen and Helbostad,
Analyzing movement parameters in patients with a hemiparesisoo4: Zijistra, 2004; Senden et al., 2009:; SantAnna and
over weeks and months could help clinicians to understandyickstrom, 201) or gyroscopes Greene et al., 2010; Abaid
behavioral changes and reveal potential recovery trendsiées et al., 2013: Fraccaro et al., 2DMere frequently described
classical clinical assessments. Wearable motion sensors Gor gait and movement analysi®arisi et al. (2016applied a
continuously assess a ected and non-a ected body sides durinshimmer3 IMU, attached to the lower trunk, for movement
an extended stroke recovery process and could therefoghalysis in stroke patients. Results of their investigaticowatd
enable rehabilitation experts to plan goaI setting and therapM|gh correlation (Pearson" 082) between Spatio_tempora|
adaptations. Continuous measurement and analysis mMaatures derived from the IMU and an optical reference system.
facilitate devising personalized therapy and maximize renov Beside motion sensors, stationary optical systémsiitle, 1996;
outcome. The importance of unsupervised movement parametefoytaayamou et al., 20)Land pressure sensor systenihén
analysis over weeks and months was emphasize#aerson et al., 2005; SantAnna and Wickstrom, 2)Mere used to
et al. (2010;nd further discussed bylarschollek et al. (2012) jnvestigate gait cycles. Wearable sensors were also deployed
highlighting general benets in health-care using weaeabltp analyse movement parameters in patients su ering from
sensors due to “long-term, objective measurement undeparkinson's disease (PD)H(ndza et al., 2014 cerebral
daily-life, unsupervised conditions.” However, to dateaveble  palsy Gtrohrmann et al., 20)3impacts of surgical interventions,
sensors and automatic movement parameter analysis for freg-g. hip arthroplasty Aminian et al., 199p or for behavior
living trend analysis in patients after stroke received tedi analysis of the elderlyHollman et al., 2011; Fraccaro et al.,
attention. 2019. Often sensor technology for movement analysis studies
Research has shown that movement-related features deriv@gére tailored to derive and investigate gait cycles in auled
using wearable inertial measurement sensor units (IMUs)glinical settings, e.g., using a treadmilbaid et al., 2013; Evans
including 3-axis accelerometers, gyroscopes, and mageddic and Arvind, 2013, where patients followed instructions given
sensors, can be used to estimate clinical scores accordifg clinicians. These controlled settings allowed expertsake
to clinically supervised assessments e.g., the Wolf Motginnotations, but resulted in limited amount of sensor data
Function Test (WMFT) (ade et al., 200 the Fugl-Meyer- due to time and cost required. Generalization to realistidlyl
Assessment (FMA) [{el Din et al., 201} or the National |ife settings remain unclearS@larian et al., 2004; Chen et al.,
Institute of Health Stroke Score (NIHSS) motor indeXubbi  2009. In particular, solutions for transferring lab-controtle
et al, 201p Clinical assessments, that include wearabl@nalysis approaches to free-living are required to monitor
sensors, focus on selected, specically designed, anddolarecovery trends over multiple weeks and months. Algorithms to
motor function tasks, where patients are specically aske@erive movement parameters including stride length, véyooi
to perform certain tasks (reaching, grasping, and similar) ingistance, typically include peak detection approactesifian
controlled lab-like settings, guided and assessed byc@Ems. et al., 1999: Greene et al., 2010: SantAnna and Wickstrom,
Typically, the tool-chain to analyse wearable sensor datzved  2010; Hundza et al., 20)Land involve determining thresholds,
pattern classi cation Parnandi et al., 2010; Patel et al., 2010eijther empirically or using experts knowledge. An extensive
and regression Hester et al., 2006; Del Din et al., 2011 discussion on sensors and gait segmentation was provided by
techniques, to derive objective, quantitative measurémemd  Tahorri et al. (2016) In contrast, in this work we present
estimates of clinical scores. While, clinical assessnagntsheir a longitudinal observation study in a day-care centre, and

corresponding scores may be replicated with estimationsgusinnyestigate unsupervised approaches for mobility analysis,
wearable sensors, mainly short-term measurements derivegjitable for free-living.

in lab-controlled settings were investigated. Especiallythie Rehabilitation strategies, particularly those investidatéth
rehabilitation of hemiparetic patients, e.g., after strokéiere patients after stroke, emphasize the importance of walking as
recovery can be a gradual process over weeks, months, apgedictor for rehabilitation outcome and describe walking a
even years, continuous measurement and quanti cation argnhajor rehabilitation goal, to regain mobility and subsentig
needed. increased independenc®lpey and Richards, 1996; Gordon,
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2004; Duncan et al.,, 20D5 Although concepts of life- were: stroke or brain tumor extraction with subsequent upper
long learning were controversially discussed, Dobkin atju and/or lower motor function de cits, including wheelchair
that continuous (walking)-progress in patients after strake reliant patients. The inclusion of wheelchair users was @it
realistic Qobkin, 2003. Longitudinal studies, using wearable to demonstrate patients' continuity and potential recovegnds
sensors, may help to understand the life-long learning ofgpés  using wearable sensors. Due to the longitudinal study desig
with a hemiparesis by objective measurements of behaviorale expected to observe changes in walking behavior of igitial
changes and recovery trendsaralli et al. (2013)and Takeuchi  wheelchair-dependent patients toward independent walking.
and lzumi (2013)further emphasized the importance of a Patients were excluded if presenting additional motor fuorct
comprehensive and intensive rehabilitation to regain or ioy®  impairments caused by neurological diseases. Walking amls, e
motor function by di erent processes, i.e., neurogenesismne sticks or foot orthosis, were not an exclusion criteria. Galler
neuron production) and plasticity (reorganization). Furthé&  eight patients after stroke and three patients after brain dum
has been shown that realistic rehabilitation, includingihattes  extraction were included in the study. Study participantstet
of daily living (ADL) and task-speci c practice, e.g., debed in  the day-care centre at the rehabilitation clinic Reha Rhédieie
the Extended Barthel Index (EBI) assessment, were beréacia in Switzerland. All patients signed a written consent form
support and induce recovery\(instein et al., 2016 Movement for study participation and publication of results before data
quality could be evaluated in daily life using activity mmming,  recording began. The study was approved by the Swiss cantonal
indicating when patients were active as shownveyr Meulen  Ethics committee of the canton Aargau, Switzerland (Appicat
et al. (2016) However only 201 min of data derived from two number: 2013/009). During the data recording period from
patients were analyzed. So far, longitudinal studies amajyzi December 2013 to May 2014, patients spent between 16 to 79 days
recovery trends in hemiparetic outpatients during extendedat the day-care centre. Days after stroke or brain tumoration
rehabilitation periods in a day-care centre were not ingeged.  spanned from 48 to 335 days. Patients' details, including EBI
We analyse walking movement and mobility behaviorscores, are summarizedTiable 1
in free-living, regarding inter- and intra-patient di erems, The EBI is a clinical assessment, primarily used to estimate
and investigate whether recovery trends in patients with a@he level of independence in accomplishing daily activities
hemiparesis during a multi-week outpatient rehabilitatiomipd  and divided in 16 categories including mobility (walkingdan
could be interpreted. In particular, this paper provides thestairs), transfers (e.g., bed to chair and back), feedirggsing,
following contributions: grooming, and similar Prosiegel et al., 19R6Each category
1. We evaluate walking-related movement parameters of ]%afoi(;oge:t,i;:;ggaa:;ﬁﬁfefromdze{o (fpauents nee(g fu_lrlhsupgglrt
outpatients after stroke or brain tumor extraction from \P . pendent ot any suppor).” €
day-long recordings derived in a free-living rehabiliati was e_st|mated twice, rst at the begin (.)f tr?e rehaplhtanas
outpatient, second shortly before the patient's nal disa®rin

setting of a rehabilitation day-care centre. A total of 102, . : . . .
. . hi rvation no ther interventions of pathobadi
recording days were acquired over several months. We shglwS observation study no therapy interventions of pat

that wearable motion sensors capture walking charactesis‘,ticqalt changes and subsequent analysis were intended.
related to patients' individual behavior, therapy schedidesl Study Design

health conditions. . . .
2. We present a longitudinal movement parameter study an(Elach patient at the day-care centre received a personalized
' erapy schedule according to their expected needs, consgleri

analysis during walking using wearable motion sensors. Wi .
Y ng 9 9 . . the level of independence and health state. The day-care
extract walking segments, determine strides, and compare

a ected and non-a ected body sides to describe movemenf;emre specialized on therapy programmes, promoting the re-

changes. In the present work, we highlight the bilateral dren Integration qf pqtlents _|nto mdependent free-living. P' b
- . . - . followed their daily routines, which was partly determined by
analysis and discuss potential for free-living analysis. W

? . . . ; - their therapy schedule, but included free time too. Patients
detail our analysis for three typical patients using clinizge : .
reports were accompanied and observed by the study examiner for 2—

. . . . . .3 times a week. The examiner followed the patients for up to
3. We investigate potential recovery trends in hemlpareu%3 X S : )
. : . h per recording day and annotated activities online with the
patients by comparing body sides and propose a new, : .
. . Android open-source smartphone framework CRNTESpina
regression-based approach to quantify movement parameter% - .
- . et al., 201R Activity annotations were approved by two
using convergence points. . . .
examiners after data post-processing. Scheduled therapies we
notinterrupted or skipped and all annotations were in agreeten
METHODS with the patient and clinicians. The study time spread over 1-
3 months (39.5 day on average) including 9.3 recording days

We rst detail our evaluation study followed by the descripti  On average per patient and a total of 102 recording days.

of the bilateral trend analysis. For the study, we de ned an annotation catalog with a total
of 51 activities, including activity primitivesyalking, walking

Evaluation Study up/downstairs, arm and leg exion/extension, arm rotation

Participants writing, using phone, drinkingand similar, to describe the

We included 11 patients with a hemiparesis in our study (5patients activities. For the present investigation, only kivej
females, aged 34-75 years, 4 wheelchair users). Inclusieriec  annotations were used in further analysis. Typical, agtivit
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TABLE 1 | Patient information.

ID Cause of ~ Locomotion  Gender Affected Age Rehab Rec. DAS EBI?  EBI1compl EBI?  EBI1yak
impairment  (type) (side) (years) (days) (days) (days) compl walk

1 Stroke Wheelchair M Left 57 79 11 335 51 C8 1 C1

2 Stroke Walk M Right 47 18 8 135 63 C1 4

3 Stroke Wheelchair M Right 53 77 10 164 51 Cc10 0

4 Stroke Walk F Left 52 16 7 295 60 C1 4

5 Stroke Walk F Left 74 35 10 134 50 Cc7 2 C1

6 Stroke Walk M Left 38 66 11 90 63 C1 3 C1

7 Stroke Wheelchair M Right 64 28 9 164 56 C3 0 0

8 Brain Walk M Left 34 28 11 84 64 0 4 0
tumor

9 Stroke Walk F Left 72 30 7 116 48 C5 2 Cc2

10 Brain Wheelchair F Left 68 30 9 274 48 C9 0 0
tumor

11 Brain Walk F Left 55 28 9 152 57 0 4 0
tumor

Mean 56.3 39.5 9.3 176.6 55.5 3.6 2.2 0.5

SD 13.1 23 15 85.3 6.3 4.0 1.7 0.7

Locomotion describes the patients' mobility (walker or wheelchair wes), Rehab is the rehabilitation duration, Rec. is the number of study recordj days, DAS are the days after stroke
or brain tumor extraction (duration between stroke event or brain tumor extesion and rehabilitation entry). EBI scores at rehabilitation entry are denates: EBF compl for complete

assessment; EBT walk for subcategory walking. EBI score differences between the rst andast assessment are denoted as1 compl for complete assessment;1 i for subcategory

walking.

routines such aeating/leisure, cognitive training, medical tnessin hemiparetic patients Seiter et al., 20)5 Moreover, the
kitchen work, motor training, and restingere de ned as recent systematic review of wearable sensors for walking
reference for potential subsequent behavior descriptionthln  parameter estimation byraborri et al. (2016) showed that
present analysis, we focus on walking and subsequent mobiliaccelerometer data provide su cient information for walldn
behavior, and use the activity annotations for validatiamyo segment extraction and stride segmentation. Using origona
Patient therapies and incidents were documented daily ire casestimates, which require all IMU sensor modalities, did not
reports according clinical guidelines, including strollpods, show advantages. Moreover, accelerometers are more power-

resting phases or when patients felt unwell. e cient compared with gyroscopes, thus ideal for longitudina
. studies and long-term monitoring applications. Sensors were
Sensors and Data Recording only temporary removed during the recording day for special

Shimmer3 IMU sensors, including a 3-axis accelerometer, a 3herapies (e.g., lymph drainage massages or water therapiks) a
axis gyroscope, and 3-axis magnetom’emere attached to the nally detached at the end of the recording day.

patients when they arrived at the clinic in the morning. We

de ned sensor positions and orientation to guarantee a XedBiIateraI Trend Analysis

reference system, aligning to patients' movements in x-agel
z-axis. Sensor position and orientation were regularly khdc
during recordings to avoid variation in orientation estites or
measurement o sets. Shimmer IMUs are small in size (M

H - 51 34 14 mn?), thus suitable for day-long recordings. 2) walking segment extraction, (3) stride segmentatiofuiding
Shimmer IMUs were con gured to log sensor measurement

. . ) ovement parameter extraction, and (4) regression-based
with a sampling frequency of 50 Hz to the internal SD-card. Therecovery trend analysis. All data processing and analysis were
accelerometers range was set to4g. Sensors were attached

. _ _ ne using MATLAB. Figure 2illustr he walking analysis.
to both wrists, upper arms, and thighs using Velcro straps. FoOIO © using gure 2llustrates the walking analysis

the analysis of the walking behavior, including the upper bodyéubsequently, each processing stage is described.

sway, and the subsequent bilateral trend analysis only thigh (1) Data preprocessingWe time-synchronized and merged
and upper arm sensors were considered necessary as illustratedhe data of all body-worn IMUs based on their time stamps.
in Figure L Our pre-investigations showed that accelerometer A non-overlapping sliding windowing of 1s (50 samples),
data provide su cient information for unsupervised EBI score  was applied to both thigh-worn sensors raw inertial data,

estimation Derungs et al., 20)%nd activity routine discovery

For our bilateral trend analysis approach we implemented
a state-of-the-art data processing tool-chain to derive and
evaluate movement parameters. Our four-stage approach for
the bilateral trend analysis consists of (1) data preprocessing,

2MATLAB, Release 2013b, The MathWorks, Inc., Natick, Masssetts) United
1Shimmer, DCU Alpha, Old Finglas Road, Glasnevin Dublin 11, Ireland. States.
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NonA denotes the non-a ected side, indices y an z describe
the vertical and anteroposterior axis, respectively. Thriesho
were derived experimentally according to the method desctib

in Derungs et al. (201%)y evaluating data of all participants.
Thresholds 1 and > were 83 and 43, respectively. Threshold

3 were 0.25%)? for wheelchair users and 0.%}? for walkers.
Due to the coarse parameter settings, we do not expect
performance changes for patients, who have not been analyzed
in the present dataset. In addition, viability of thigh-wasansors
for step detection has been demonstratedmylfrey et al. (2016)
Due to the higher acceleration, we used sensor data from the
non-a ected side to derive walking segments within all dayg
recordings.

(3) Stride segmentation and movement parameterSelected
walking segments were further processed to derive individual
strides and movement parameters. We derived the following
movement parameters: stride count, normalized stride
count (sum of all derived strides during the day divided
by the recording duration), and the mean and standard
deviation ED of stride duration, cadence, and sway. To
analyse natural walking, we omitted walking segments derived
during physiotherapy sessions.

We used an autocorrelation Iter to remove unlikely walking
segments, a second lIter excluded erratic walking segments
containing less than ve consecutive strides. Next, walking
segments were lItered using a median lter. Peak detectios wa
applied on both thighs' acceleration data derivative using an
iterative Hill-climber approach to nd the highest peaks that
segments individual strideg\(ninian et al., 1990 The resulting
strides of both thighs were veri ed with an iterative algbr.
Similar to the previous walking extraction, the algorithm ugieel
higher acceleration signal amplitude of the non-a ected thtg
locate the rst stride. Starting with the rst stride, thegdrithm
iterated over all strides on the non-a ected side. In eactsitien

the algorithm ensured that one peak, maximum of the a ected
sides' acceleration data, was found. Additional peaks witver

FIGURE 1 | Sensor placement. Wheelchair patient with sensor positian amplitUdeSu detected on the_a eCte_d side, were removgd. The_ las
highlighted (S1, S2, S3, and S4). Data from the wrist-worn sgsors were not stride could be found on either side, thus the resulting dstri
considered in the present analysis. count for the a ected and non-a ected body sides could di er by

one stride per walking segment. The stride duration was lichite
by upper (3 s) and lower (0.25 s) boundaries.
Subsequently, the cadence (C) for the aected and non-

to (_axtract ?cceleratmn featurés including mean () and _aected sides were calculated for every walking segment
variance (), wherek represents the sensors x-, y-, and z-axis . )
k a(?cordlng to:

Sensor data of the corresponding body side were re-labele
with A (a ected side, impaired by the stroke or brain tumor CD Nstrides )
extraction) andNonA (non-a ected, healthy side). tws

(2) Walking extraction: The walking extraction method was Where Miidesrefers to the number of strides within the walking
used to localize and select sensor data segments in walkéRgment andyis is the duration of the walking segment. We
and wheelchair users, which likely contain walking. To eottra d€ ned the cadence as strides per minute according\toittle

potential walking segments (WS), we applied a logic equatioff007) Cadence, which is inversely proportional to stride
to previously derived acceleration featufesaccording the duration, was calculated as additional movement parameter f

indicator functionlwsin Equation 1. comparison to related work. Sway (S) was extracted from the
upper arm sensors' acceleration data according to the isblate
strides. Sway was derived for each body side individualbtesal

lwsD yNona > 1" zNona < 27 yz’NonA > 3 (1) upper body movement perpendicular to the anteroposterior
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FIGURE 2 | Bilateral trend analysis stages: (1) Data preprocessingnte-synchronization, merging, feature extraction, and rabeling of IMU sensor data. (2) Walking
extraction: Localizing of walking segments using logic rek. (3) Stride segmentation and movement parameters: Remawy unlikely WS, stride segmentation (hill climh
algorithm) on sensor data of affected and non-affected sidg alternating stride sequence veri cation, and movement peameter calculation. (4) lllustration of a
sequential recovery trend analysis: conceptual represeation of movement parameters across the rehabilitation dation. Linear trend lines on the affected and

non-affected side are used to derive convergence points pemovement parameter.
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walking direction as sum of the positive and negative acagter  to truth table quantities. Speci cally, true positive (TP) dees
within each stride according to: walking detection when annotated, true negative (TN) no
p walking detected when no walking annotated, false positive (FP)
Li(xi > 0C x; < 0) 3) walking detected when not annotated, and false negative (BN) n
n walking detected when annotated. The walking extraTction was
. . evaluated using sensitivity and speci city. Sensitivi%)
where x denote acceleratlgn.samplgs along the x-axis and n ﬂ\ﬁas used to evaluate that the walking detection was Fsl\(lensitive
total number of samples within a stride. across all patients while speci city{S=s) was used to rule

(4) Recovery trend analysisMovement parameters were out non-walking activities. In contrast to precision, which
analyzed as sequential observations over the rehahilitati is referenced to the positive class, specicity is referenced
duration, to investigate di erences in daily walking behavio to the negative class, here non-walking segments. A correct
Recovery trends were evaluated by linear regressigiepresentation of the non-walking segments are of primary
models, applied to movement parameters (mean andhterestfor the movement parameter analysis.

SD) of a ected and non-a ected sides. TheDwas used to . .

illustrate the variability of each movement parameter asrosMovement Parameter Validation

multiple recordings during the longitudinal rehabilitatio A manual stride annotation was performed by an expert to
Regression slopes between body sides determined if recov@itain a movement parameter reference. For each patient a
trends converge (di erence between body sides decreas#yalking segmentwas chosen from the day where patients walked
diverge (di erence between body sides increase) or remaifost. Manual stride annotation was performed o ine using
parallel during the rehabilitation. The recovery trend wasMATLABS ginput function. Characteristic acceleration peaks
considered parallel, if Pearson correlation between bodyere used as annotation criteria. Resulting stride durafian
sides was positive and the signi cance leyel < 0.05. individual strides were saved and subsequently the avetage
Convergence (CP) was estimated while extrapolatinguration within the walking segment was calculated. Manual
and comparing recovery trends using the time variable Stride annotation was repeated once by the same expert for
according to Equation 4. The regression models weréhe same walking segments of each patient to evaluate intra-
Ynona D Nona C  Nona T (non-aected side) and rater variation. The automatically derived movement partere

Ya A C a t(aected side) where all parameters stride count, stride duration, and cadence were subsedyent
and denote the regression models' o sets and s|opeg;ompared with the movement parameter reference according to
tmax = 3,650 days (10 years). the experts manual annotation. An example of the acceleration
data and the resulting stride segmentation derived by our
algorithm is illustrated irFigure 3.

SD

CP: Nona C Nona tD A C At (4)
fort D 1,:::, tmax Bilateral Trend Analysis

Convergence, expressed in days, quanti es movement paramefdovement parameters were visualized as sequential obsemsati
similarity. Recovery trends between a ected and non-a ectedicross the rehabilitation duration. The movement parameter
body sides can be considered as measure of training need.V/§ualization provides an overview on the patients' dailyation
cut-o limit of 10 years was used to indicate converging, pela and could be used by clinicians to interpret walking behavior

or diverging recovery trends. Continuous convergencerestes 1 he normalized stride count, related with patients’ mobility
were derived using a growing window of recording days tc>10WS the extentand variability of daily stride performasdeor
determine movement parameter recovery trends, startingvat t COnsistency with all movement parameters in this invesiogat
days. The recovery trends' goodness of t were evaluatengusi W€ Present values derived from a ected and non-a ected body
R-values. To determine statistical signi cance of di ereace Sides. Dierences in stride count between a ected and non-
between body sides and movement parameters, T-iestsq.05) & €cted side were not considered as indication for recovery.
were used.

RESULTS

EVALUATION METHODS _ _
We present results of the walking extraction and movement

We initially evaluated the performance of the walking extiamt parameter analysis including data derived from all study

and the subsequent stride segmentation algorithm to derivBarticipants. SubsectionBilateral trend ~analysisincludes
movement parameters. information from case reports to detail walking behavior lofee

patients exemplarily.
Walking Extraction
We validated the walking detection using recordings wherdValking Extraction
corresponding walking annotations were available i.e.,. 8906 Extracting walking segments from the patients' data is esdent
102 recorded days for all patients, including 54 of 63 days faio subsequently estimate movement parameters. Therefore we
walking patients, and 15 of 39days for wheelchair dependenalidated the walking segment extraction performanizble 2
patients. Sensitivity and speci city were determined acomyd summarizes the truth table quantities of the walking segmen
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FIGURE 3 | Walking segment with stride segmentation(Top) Acceleration time series signals of the affected and non-&dcted side including signal offsets for
visualization.(Bottom) Zoomed-in walking segment including algorithm-derived stde segmentation (dashed lines).

extraction. On average, recorded movement data providedelow 1%, thus we consider the manual reference reliable.
3.45% (all patients), 4.42% (walkers), and 1.75% (wheelch&elative errors for movement parameters stride count, stride
users) walking annotations for the validation. Sensiivitas on  duration, and cadence, were below 6 % on average. We atdbut
average 69.3% (including all patients). Sensitivity for ek the errors to the few falsely detected strides. Average einees
was 79.9% and 50.7 % for wheelchair users. Generally, sstteabetween a ected and non-a ected sides were; 0.18 stridesléstr
sensitivity was found for walkers, due to higher mobility count), 0.07 strides/min (cadence), and Os (stride durgtio
and walking events, compared to wheelchair users. Averagsing a manual stride segmentation. Using the automatic
speci city was greater than 94 %, conrming that extractedstride segmentation, di erences were 1strides (stride ¢pun
walking segments were mostly correct. Results showed th@t69 strides/min (cadence), and 30 ms (stride duration).

the unsupervised walking segment extraction was sensitive t Figure 4 illustrates the movement parameter stride duration
walking segments of walkers and wheelchair users even wheerived from oneF;ecording day (patient ID6, walker). A media

only few walking events occurred. lter (order D ~ Stride} applied to the aected and non-
a ected strides showed that both body sides had similar strid
Movement Parameters durations, indicating a balanced walking style. The pasent

Validation results and relative errors are summarizedamle 3 ~ walking behavior during the day, including sections, where th
Comparing the automatic stride segmentation with the expertgPatient moved faster can be observed around strides 50, 260, a
manual stride reference, the following average relativersr 280.
were found; 2.26 % (stride duration),2.76% (cadence), and  All movement parameters were summarizedHigure 5. For
3.67 % (stride count) at the a ected side; 3.96 % (stride danyt  ID9 (walker), a maximum of 891strides (aected side) and
5.41% (cadence), and0.79% (stride count) at the non- 924strides (non-a ected side) were found. Walkers, inahggli
a ected side. The underestimation of average cadence velags patients 1D2, 1D4, ID5, ID6, 1D8, ID9, and ID11, performed
attributed to a biased manual walking segment extractioseda  Signi cantly more strides than wheelchair useps{ 7.3 10 °).
on the visual interpretation of walking segment boundaries. The stride duration and sway, showed no clear pattern
Higher deviations were found for patient ID1 (28.10 %, strideto distinguish between walker and wheelchair users. Stride
duration) and ID8 ( 20.82 %, cadence). For ID1 only few stridegduration, (Figure 5B) was on average 0.6 % lower at the a ected
could be used for the segmentation, rendering the stasisticside for patients ID1, ID7, and ID10 (wheelchair users). Wisdke
unreliable. For patient ID8 the cadence was high, while thdest and one wheelchair user (ID3) showed 2.8 % higher valuesat th
duration was low, suggesting that the patient walked fast bua ected side on average. Cadence was on average 12.2% higher
with short stride length. The repetition of the manual stride for all patients in the non-a ected sidé=gure 50). For patients
annotation by the same expert yielded average intra-ratenghs /D2 and ID6 the sway was signi cantly higher at the non-a edte
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TABLE 2 | Validation results of the walking extraction.

ID TP TN FP FN Sens. Spec. Annot. Rec.
(%) (%) (%) (%) (%) (%) (days) (days)
1 1.49 96.15 0.44 1.92 40.22 99.54 4 11
2 4.79 87.04 5.92 2.25 69.99 93.64 5 8
3 0.27 96.30 3.25 0.18 63.11 96.74 3 10
4 1.81 94.03 3.02 1.14 76.17 96.94 6 7
5 2.60 92.52 4.06 0.83 72.30 95.80 10 10
6 3.76 88.68 6.72 0.84 86.80 93.02 10 11
7 0.06 99.01 0.90 0.02 75.88 99.10 3 9
8 2.07 89.23 8.56 0.15 88.83 91.28 8 11
9 4.73 90.38 3.82 1.07 80.91 95.95 7
10 0.70 96.64 0.30 2.36 23.55 99.69 5
11 412 88.21 6.86 0.81 84.29 92.82 8
Average—All patients Sum
2.40 92.56 3.99 1.05 69.28 95.87 69 102
Average—Walker (IDs: 2, 4, 5, 6, 8, 9, 11) Sum
3.41 90.01 5.57 1.01 79.90 94.21 54 63
Average—Wheelchair (IDs: 1, 3, 7, 10) Sum
0.63 97.03 1.22 1.12 50.69 98.77 15 39

Truth table quantities per patient are shown. The validation was performefdr available walking annotations. Sens., sensitivity of the walkingteaction; Spec., speci city of the walking
extraction rejecting non-walking activities; Annot., recording daythat include walking annotations; Rec., total recording days.

side p D 0.042), remaining patients showed signi cantly higher side o D 0.0001), but di erences between a ected and non-
sway in the aected sidep( D 0.0003). Averaged movement a ected sides were stable. Cadence SD showed no signi cant

parameters were summarizedTable 4 di erences. Sway mean at day 7 appeared to be an outlier.

3. ID9: Stride extraction varied between 86 and 221 strides per
Bilateral Trend Analysis day. However, cadence mean was signi cantly higher at the
The bilateral trend analysis across movement parameters non-a ected side p D 0.017), while cadence SD showed no
revealed di erences and variability between patients dutimg signi cant di erence. Moreover, movement parameter trends

recording period. We subsequently present an interpretatibn o indicate that decreasing stride duration led to increasing
the recovery trends using case reports for three typical petien cadence. On average, sway mean was 53% higher at the
representing the study population: a wheelchair user (ID1) and a ected side (signi cantp D 0.008), although the sway SD at
two walkers of dierent age (ID6, ID9). The corresponding the a ected side decreased signi cantly over tinpeY 0.016),
diagrams are shown iRigure 6, while Table 5summarizes case  suggesting that upper body de cits a ected walking pattern.
report data of the patients' therapy programme. To illustrate
the diversity in motion parameters across all study patiewss,
included remaining patient diagrams in the Appendix (Figure
S1-S3in Supplementary Material).

We derivedR2-values of recovery trends showing ts up to

0.9, e.g., for stride duration mean (ID1) and ranging betwee

%0.4 and 0.9 for sway (ID9). Remaining movement parameters

showed R2-values lower than 0.4, caused by data variance.

1.ID1: The patient was wheelchair-dependent, howevePatients' case reports, summarized Table 5 indicated that
progressed during the 79-day rehabilitation period towarddaily recording durations, therapy schedules, therapy typd, a
an independent walker. Progress indicators can be founttansfers between therapy locations in uenced daily wadkin
during recording days 9, 10, and 11 (e.g., the normalizedurations and resulting stride count. Individual behaviand
stride count increased toward the rehabilitation disclggrg medical incidents in uenced walking behavior too, as shown
The sway mean revealed a signi cant di erence between bodin the case reports. For example, ID6 (recording day 7) had
sides p D 0.015), while the other movement parameters werdwo therapy sessions and su ered from a headache, thus forced
balanced. resting phases, resulting in reduced walking.

2. ID6: The variation in normalized stride count ranged from  Figure 7 shows the continuous convergence estimation as
minimal 79 strides to a maximum of 188. Stride durationbox plots for each movement parameter. Convergence was
mean and SD showed no statistical signi cant di erencesnot guaranteed and some CP's were limited by the 10years
during the rehabilitation, suggesting balanced walkinge Th cut-o. For example, ID1 showed increased mobility toward
cadence mean, was signi cantly higher in the non-a ectedthe end of the rehabilitation, thus convergence was reached

Frontiers in Bioengineering and Biotechnology | www.frorgrsin.org 9 May 2018 | Volume 6 | Article 57



Derungs et al. Longitudinal Walking Analysis in Hemiparetic Patients

However, results revealed inter-patient variability withénd
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FIGURE 4 | Extracted strides derived from one recording day. Strides@ marked for the affected side (637 strides) and non-affeet side (667 strides). The stride
differences were due to the processing of walking segmentsas described in the main text. Stride durations were smooth@, using a median lIter. Vertical lines
indicate starting and ending of individual walking segmest

FIGURE 5 | Movement parameters.(A) Stride count norm. over recording days; signi cantly more gtides in walkers compared to wheelchair users were found
P<73 10 5). (B) Stride duration differed on average 2.2 % between body sideg(C) Cadence was on average across all patients 12.2 % higher at th
non-affected side. (D) The sway showed signi cant differences between body sidesg < 0.0011).

movement of a ected and non-a ected body sideBi(Fabio  duration (sum of swing- and stand-duration), stride velygi

et al., 1986; Bourbonnais and Noven, 1p8Related work cadence, and similarT{tianova et al., 2003; Moe-Nilssen and
involving measurements in controlled settings further wled  Helbostad, 2004; Patterson et al., 20Although stride duration
that patients with a hemiparesis may develop abnormal walkingnd cadence are con rmed as relevant movement parameters for
patterns due to muscle weaknesse (Quervain et al., 1996; recovery indication in the literature, results from our érdiving
Chen et al., 2005Abnormal walking patterns and asymmetries study showed no clear recovery trends in movement parameters
could inuence all phases of the gait cycle including strideStride parameter related to impairments of patients afterksyo
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e.g., scung, fatigue, or imbalance could be investigated t observation study such extended parameter analysis were not
further understand the recovery process. However, in thegmes intended.

TABLE 4 | Summary of extracted movement parameters averaged over all

patients.

Averaged movement parameters

Body Statistic Stride Stride Stride Cadence Sway
side  feature count count duration .s/ S‘ﬂﬁﬁs sz
total normalized
Aff Mean 3880 425 1.40 39.41 2.34
SD 3372 347 0.35 9.06 0.93
Min 66 7 1.10 18.19 1.30
Max 9187 891 2.36 52.61 4.20
NonAff Mean 4059 445 1.38 44.01 1.16
SD 3521 361 0.37 10.02 0.43
Min 79 7 1.07 22.77 0.72
Max 9592 924 2.38 62.35 1.84

Stride count total (sum of all strides) and normalized count (total sti¢ count divided by
recording days) showed high SD due to different walking behavior of veelchair users

and walkers.

Advanced stride segmentation algorithms to derive
movement parameter exist, however, validation were resttic
to lab-controlled settings. How such algorithms perform
in free-living remains unclear, hence our approach utilizes
established methods for subsequent bilateral movemerysisa
Although, the extent of our validation was limited, and false
strides could be detected, we found that our averaged momeme
parameters stride duration (1.40 0.35s a ected side, 1.38
0.37 s non-a ected side) and cadence (39.49.06 strides/min
aected side, 44.01 10.02strides/min non-a ected side),
were similar to published values. In a lab recording study
with six hemiparetic patients after strokeClien et al., 2005
measured stride durations of 1.470.21 s and cadences of 83.4
12.8 steps/min. Cadence was expressed in steps per minute, thus
the value is doubled, compared to strides per minute. Moreover,
Chen et al. showed that movement parameters (stride duration
and cadence) in patients after stroke were similar to healthy
controls. Fraccaro et al. (2014pund averaged stride duration
of (1.1- 1.18s) and cadence of (99.62-129.07 steps/min) while
analyzing healthy older adults using Shimmer sensors. Fyrther
the validation of automatically derived movement paramegter
with the experts' manual stride reference renders the in ceof

FIGURE 6 | Bilateral trend analysis. Left column: wheelchair user (ID&ge = 57 years, 11 recording days), middle column: walker (i) age D 38years, 11 recording
days), right column: walker (ID9, ag® 72 years, 7 recording days). Top to bottom: extracted movemat parameters: normalized stride count, stride duration (@an

and SD), cadence (mean andSD), and sway (mean andSD). Recording days where walking was extracted relative to gtly begin are indicated by markers, dashed
lines indicate recovery trends.
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TABLE 5 | Case reports for the three selected patients, including peonal therapy schedules.

ID Day Dur (h) Therapy schedule, (* see Notes) Notes
1 1 5.6 ST, ET,CT, S, R, ST, PT, IT,
2 7.4 ST, ET, ET, PT, S, CT, ST
3 6.0 ET, PT, ST, R, V,CT, IT
4 75 S,ET* S,CT, R, PT*, S, SpT, IT Walking attempts
5 7.7 V, ET, S, ET, PT,SST, S
6 7.8 R, PT*, S, ET*, SpT, R, SpT*, S Walking attempts
7 7.8 SpT, ET, SpT, S, R, ST, SpT, PT, R
8 6.9 R, ET, PT, SpT, IT
9 4.9 ST, DT, ST, S Walking
10 6.6 ST, PT,ET, STIT Walking
11 3.3 ET, ST, DT Walking
6 1 5.3 ET, DT, PT, V, ST, PT, IT
2 6.6 ET, DT, ET, PT, ST, IT
3 6.4 ST, ST, PT*, IT, Walking-tests
4 5.8 PT, ET, DT, V, ST, IT
5 6.9 ET, PT, DT, ST, IT
6 6.5 PT, ST, ST Exhaustion
7 6.8 PT, ST Rests, headache
8 7.7 PT, S, ET, PT, S, ET* ST, V, IT Walking
9 5.7 PT, S, ET* Walking, stroll
10 5.6 PT, ST, IT, S
11 4.2 V, PT, IT, ET, ST
9 1 4.5 V, PT, DT, ST
2 7.5 PT, ST, ET, DT, BT, V, IT Walking
3 6.4 ET*, PT,DT* R, SpT, IT Walking
4 7.8 CT, PT,DT, BT, R, ST, V Head bumped
5 7.3 CT,V, PT*, SpT, IT Walking exercises
6 8.0 DT, PT, DT, BT, V, IT, ST
7 8.0 CT, PT, DT, BT, ET, SpT, IT

ET, ergotherapy; PT, physiotherapy; DT, training of ADL, e.g., lay the t&@hIST, self training, e.g., drawing, CT, cognitive training; IT, intense tréng in the gym; S, socializing; R, resting;
SpT, special therapy, e.g., lymph drainage; V, visit , e.g., physician;Bbalance training.

FIGURE 7 | Continuous convergence estimates. Across all patients, v@&nce was observed in the movement parameters. ID1 showed @ median CP, suggesting
movement parameter convergence between body sides toward charge. For ID6 and ID9 convergence trends differ by movememparameter. The CP analysis can
help to identify patient-speci c therapy needs.

falsely detected strides on the subsequent recovery treaigsis larger sway amplitude compared to a waist-worn sensor that
negligible. is closer to the centre of mass. Wearing comfort is crucial fo
Sway was determined from bilateral upper arm sensorday-long recordings. In particular, sensors at the lower kun
as variation of the trunk position perpendicular to the might aect the patients' activities, e.g., when using toilets,
walking direction. We expected that the upper arm position issitting, or resting. Orientation variability could resutt reduced
advantageous regarding sensor wearing comfort and providegceleration amplitudes and thus modify the sway estimate.
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Similar to the thigh sensor position, visual inspection dgrin (2013) When comparing body sides, individual anthropometric
the recordings did not reveal a large orientation variatioh characteristics are considered and an absolute referemem t
the upper arm sensors and no readjustment was made durirfgdeal” movement pattern is avoided. The present investigati
recordings. Nevertheless, further evaluations are needegyd, showed for the rst time results in an unconstrained setting
using an optical reference system, to investigate sengmmaént By considering walking segments, a natural and repeatable
and the e ect on sway amplitude. Based on garment ttingassessment condition for movement parameters is created,
simulations, Harms et al. (2012)showed that the angular applicable outside of clinical settings and assessmenten®sti
variability of clothing-integrated sensors and closelting  daily stride counts, which is related to walking behaviodan
garments can remain below 15thus would constrain sway mobility, were compared against case reports for three typical
amplitude variation below 5%. Dierent strategies were patients, as representatives of the study population, incly@in
described in the literature to reduce the in uence of a vagyi wheelchair user and two walkers of di erent age. Based onadini
sensor orientation. For exampl&unze and Lukowicz (2008) case reports, we found that the sensor-reported stride coust wa
proposed a combination of acceleration and gyroscope dat&lated with type and amount of scheduled therapies. We believ
to compensate for sensor placement variances. However, ftirat clinicians could bene t from quanti ed movement analig
long-term recordings, gyroscopes are inappropriate due to thasing wearable sensors to devise therapy. The presentedisnaly
increased power-consumption compared to accelerometers. could facilitate remote monitoring applications, where patgent
follow their activities in home environments.
Bilateral Trend Analysis The patient recovery progress was expressed as convergence
The proposed recovery trend analysis of the patients' movemenf individual movement parameters between body sides, and
parameters over several months including a ected and nonguantied as CP estimate. The impairment of the a ected
aected body sides in realistic day-care settings were ndatide typically results in compensations performed by the non-
addressed in the literature so far. Our study, including 1tlgpds  a ected side. We therefore expected to see changes in movement
and 102 day-long recordings revealed dierences betweeparameters of both body sides. Due to the gradual stroke egov
patients and variability in movement parameters. The whesfch process over weeks, months, and even years, we used linear
users in this study re ected the patient continuum from regressions to describe convergence trends. We consider the
initial wheelchair dependency toward independent walking. InNCP as useful metric for remote patient monitoring, where CPs
particular, patients ID1, ID3, ID7, and ID10, were transfongi could indicate patient-speci c therapy needs. In the present
from wheelchair users to walkers during the study durationstudy, therapy strategies were still chosen independent of CP
Objective sensor measurements could provide cliniciansaidé  estimations. In the future, CPs estimated on each day could
information about mobility behavior and recovery trends in contribute to speci c, individualized therapy choices. Reral
unsupervised remote monitoring, even when patients are aherapy plans could be created in the clinic as well as at home,
the boundary to walking independence and yet rarely walke.g., by selecting exercises that address movement paramete
Although van Meulen et al. (201roposed evaluation metrics with relatively large CP estimates and continue to adjust the
for daily life movements, only 201 min of movement data dedv personalized training programme as the patient's CP estimates
from two patients were analyzed. For the approach presented ithange. For example, walking could be promoted by treadmill
this current study, recordings across several days wer tase training or outdoor strolls, improving the movement parameter
extract walking segments and analyse movement parameters. stride duration and cadence. Sway could be improved via balanc
Typically, analysis of walking-related movement parametergaming exercise$/orone et al., 2014
used feet, ankle, or trunk mounted senso¥s(inian et al., For some patients, e.g., ID1, convergence was found during
1999; Moe-Nilssen and Helbostad, 2004; Zijlstra, 2004e the rehabilitation period. For other patients and movement
present study aimed at an unobtrusive measurement duringarameters, both, recovery trends and CPs varied. Using case
daily activities by choosing sensor positions at thighs appesr  reports, some in uence of the daily therapy programme and
arms, hence suited for exercise monitoring in remote sgin special events could be identi ed. Another source of vaoiati
too. Advantages of thigh-worn sensors, e.g., for posturdyaisa are mood and social stimuli, which were not monitored in
were further discussed b§odfrey et al. (2016)Nevertheless the current study. In contrast, the in uence of falsely deet
practical sensor mounting and integration must be considere strides for the movement parameter calculation and subssique
We believe that the selected positions could be realizedusigg convergence point estimation was considered negligible. By
unobtrusive shirt- and trouser-integrated sensors, samib the  narrowing the activity, e.g., walking at a given speédtiri
approach described bByognetti et al. (2005Hence, patients with et al., 201} or analyzing selected exercises, a focused assessment
a hemiparesis may not need to handle sensors separately framondition could be realized and variability in movement
their clothes. parameters may be reduced. Since we extracting walking
Analyzing rehabilitation patient progress is an open chaleeng segments in free-living behavior data, we did not requiregrds
While clinical assessments require patients to perform sjgeci to perform speci c test exercises. On the other hand, constngini
exercises, our approach was to interpret daily free-livingyeigt  the analysis to a given walking speed would have led to narrow
speci cally walking. applicability of our approach as the walking ability of patients
For post acute stroke patients, the relation of a ected andvith a hemiparesis varies widely. Our sequential recovenydr
non-a ected body sides was rst investigated Bubbi et al. analysis started with only two observations where outlieesym
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a ect the convergence point estimate more than after addaion ETHICS STATEMENT
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REFERENCES

Abaid, N., Cappa, P., Palermo, E., Petrarca, M., and Porri, M. (ROG&it
detection in children with and without hemiplegia using singlésawearable
gyroscopesPLoS ONB:e73152. doi: 10.1371/journal.pone.0073152

Altini, M., Casale, P., Penders, J., and Amft, O. (2016). Carslin@tory tness
estimation in free-living using wearable sensdkif. Intell. Med. 68, 37-46.
doi: 10.1016/j.artmed.2016.02.002

Aminian, K., Rezakhanlou, K., Andres, E., Fritsch, C., LeyvrazF.P and
Robert, P. (1999). Temporal feature estimation during walking usiitgature
accelerometers: an analysis of gait improvement after hip arthroplistssyl.
Biol. Eng. CompuB7, 686—691.

Bourbonnais, D., and Noven, S. V. (1989). Weakness in patieith hemiparesis.

Am. J. Occup. The#3, 313-319.
Boutaayamou, M., Schwartz, C., Stamatakis, J., Denoél, V., dfladu,
Forthomme, B., et al. (2015). Development and validation of an acceétes-

based method for quantifying gait eventsled. Eng. Phys37, 226-232.

doi: 10.1016/j.medengphy.2015.01.001
Chen, G., Patten, C., Kothari, D. H., and Zajac, F. E. (2005t dsarences
between individuals with post-stroke hemiparesis and non-disabttrols

at matched speed&ait Postur@2, 51-56. doi: 10.1016/j.gaitpost.2004.06.009

de Quervain, I. A. K., Simon, S. R., Leurgans, S., Pease, &d3VicAllister, D.
(1996). Gait pattern in the early recovery period after strdk&one Joint Surg.
78,1506-1514.

Del Din, S., Patel, S., Cobelli, C., and Bonato, P. (2011)ni&8tig fugl-meyer
clinical scores in stroke survivors using wearable sensorZ0iil Annual
International Conference of the |IEEE Engineering in Megliaid Biology
SocietyfBoston, MA), 5839-5842.

Derungs, A., Seiter, J., Schuster-Amft, C., and Amft, O. (2098timating
physical ability of stroke patients without speci ¢ tests,” Rroceedings of
the 2015 ACM International Symposium on Wearable Computers €13\§
(Osaka), 137-140.

Di Fabio, R. P., Badke, M. B., and Duncan, P. W. (1986). Adgstirman postural
re exes following localized cerebrovascular lesion: analysis ofebdlatong
latency responseBrain Res363, 257-264.

Dobkin, B. H. (2004). Strategies for stroke rehabilitatibancet Neurol3, 528—
536. doi: 10.1016/S1474-4422(04)00851-8

Duncan, P. W., Zorowitz, R., Bates, B., Choi, J. Y., Glashelg,Graham, G. D.,
et al. (2005). Management of adult stroke rehabilitation care: &elipractice
guideline.Stroke36, e100—-e143. doi: 10.1161/01.STR.0000180861.54180.FF

Evans, R., and Arvind, D. (2014). “Detection of gait phasemgu®rient
specks for mobile clinical gait analysis,” 8014 11th International

Frontiers in Bioengineering and Biotechnology | www.frofgrsin.org

15

May 2018 | Volume 6 | Article 57



Derungs et al.

Longitudinal Walking Analysis in Hemiparetic Patients

Conference on Wearable and Implantable Body Sensor Net(iinksh),
149-154.

Faralli, A., Bigoni, M., Mauro, A., Rossi, F., and Carulli, D. (20MNg)ninvasive
strategies to promote functional recovery after strokéeural Plasticity
2013:854597. doi: 10.1155/2013/854597

Fraccaro, P., Coyle, L., Doyle, J., and O'Sullivan, D. (2014)-{iRekl gyroscope-
based gait event detection and gait feature extractio®TBELEMED 2014, The
Sixth International Conference on eHealth, TelemedicinkSagial Medicine
247-252.

Godfrey, A., Morris, R., Hickey, A., and Del Din, S. (2016). Belydhe
front end: investigating a thigh worn accelerometer device fep stount
and bout detection in Parkinson's diseadé¢ed. Eng. Phys38, 1524-1529.
doi: 10.1016/j.medengphy.2016.09.023

Gordon, N. F. (2004). Physical activity and exercise recomnterdafor stroke

Prosiegel, M., Béttger, S., Schenk, T., Konig, N., Marolf, MneyaC., et al.

(1996). Der erweiterte Barthel-Index (EBI) — Eine neue Skala #asglng von
Fahigkeitsstérungen bei neurologischen Patienkégurol Rehabill, 7-13.

Salarian, A., Russmann, H., Vingerhoets, F., Dehollain, C., B¥an®&urkhard,

P., and Aminian, K. (2004). Gait assessment in Parkinson'askés¢oward an
ambulatory system for long-term monitorindEEE Trans. Biomed. Eng1,
1434-1443. doi: 10.1109/TBME.2004.827933

Sant'Anna, A., and Wickstrom, N. (2010). A symbol-based approackyativ

analysis from acceleration signals: Identi cation and detectd gait events
and a new measure of gait symmetiiyEE Trans. Inform. Technol. Bioméd,
1180-1187. doi: 10.1109/TITB.2010.2047402

Seiter, J., Derungs, A., Schuster-Amft, C., Amft, O., Trosteret@l. (2015). Daily

life activity routine discovery in hemiparetic rehabilitation patis using topic
models Methods Inform. Medb4, 248-255. doi: 10.3414/ME14-01-0082

survivors.Circulation109, 2031-2041. doi: 10.1161/STR.0000000000000022Senden, R., Grimm, B., Heyligers, I., Savelberg, H., and Meijer2609j].

Greene, B. R., McGrath, D., O'Donovan, K. J., O'Neill, R., Burnsaamd Caul eld,
B. (2010). “Adaptive estimation of temporal gait parameters usirdyheorn

Acceleration-based gait test for healthy subjects: Reliahitityreference data.
Gait Posture30, 192-196. doi: 10.1016/j.gaitpost.2009.04.008

gyroscopes,” irt010 Annual International Conference of the IEEE Engineeringpina, G., Huang, G., Vaes, A., Spruit, M., and Amft, O. (2013)pti@ainer,” in

in Medicine and Biolog{Buenos Aires), 1296-1299.
Gubbi, J., Rao, A. S., Fang, K., Yan, B., and Palaniswami, LB)(2@otor recovery

Proceedings of the 2013 ACM international joint conferencereadies and
ubiquitous computing - UbiComp '{&drich), 597—-606.

monitoring using acceleration measurements in post acute strokenpatie Strohrmann, C., Patel, S., Mancinelli, C., Deming, L. C., Chu,@rédenwald, R.,

Biomed. Engl2:33. doi: 10.1186/1475-925X-12-33
Harms, H., Amft, O., and Troster, G. (2012). “Does loose tting mekteredicting

sensor performance in smart garments,Rnoceedings of the 7th International

Conference on Body Area Networks, BodyNe(BHi8sels: ICST), 1-4.

Hester, T., Hughes, R., Sherrill, D., Knorr, B., Akay, M., SteirgtJ). (2006).
“Using wearable sensors to measure motor abilities following stroke,
International Workshop on Wearable and Implantable Bodys&eNetworks
(BSN'06YCambridge, MA), 4.

Troster, G., and Bonato, P. (2013). “Automated assessmenit afeyéations in
children with cerebral palsy using a sensorized shoe and active siages,’
in 2013 IEEE International Conference on Body Sensor Net{@akgridge,
MA), 6.

Taborri, J., Palermo, E., Rossi, S., and Cappa, P. (2016). Gailgramgtimethods:
a systematic revieveensors6:E66. doi: 10.3390/s16010066

Takeuchi, N., and Izumi, S.-I. (2013). Rehabilitation with fst®ke motor
recovery: a review with a focus on neural plastici§troke Res. Treat.

Hollman, J. H., McDade, E. M., and Petersen, R. C. (2011). Normative 2013:128641.doi: 10.1155/2013/128641

spatiotemporal gait parameters in older adul@Gait Posture34, 111-118.
doi: 10.1016/j.gaitpost.2011.03.024

Hundza, S. R., Hook, W. R., Harris, C. R., Mahajan, S. V., Leslié).,P.
Spani, C. A., et al. (2014). Accurate and reliable gait cycle dmteati
Parkinson's diseasdEEE Trans. Neural Syst. Rehabil. EgR, 127-137.
doi: 10.1109/TNSRE.2013.2282080

Kunze, K., and Lukowicz, P. (2008). “Dealing with sensor despieent in

motion-based onbody activity recognition systems,Proceedings of the 10th

International Conference on Ubiquitous Computing, UbiCt@8New York,
NY: ACM), 20-29.

Marschollek, M., Gietzelt, M., Schulze, M., Kohlmann, M., Songaid Wolf,
K.-H. (2012). Wearable sensors in healthcare and sensor-enthameaith
information systems: all our tomorrowd?ealthcare Inform. Re&8, 97-104.
doi: 10.4258/hir.2012.18.2.97

Moe-Nilssen, R., and Helbostad, J. L. (2004). Estimation of gwile
characteristics by trunk accelerometryJ. Biomech. 37, 121-126.
doi: 10.1016/s0021-9290(03)00233-1

Morone, G., Tramontano, M., losa, M., Shofany, J., lemma, A., dtosiM.,
Paolucci, S., and Caltagirone, C. (2014). The e cacy of balararing with
video game-based therapy in subacute stroke patients: a randontnédlled
trial. Biomed. Res. In2014:580861. doi: 10.1155/2014/580861

Olney, S. J., and Richards, C. (1996). Hemiparetic gait followindesti®art I:
CharacteristicsGait Posturet, 136-148.

Parisi, F., Ferrari, G., Baricich, A., D'Innocenzo, M., Cisari,a@d Mauro, A.
(2016). “Accurate gait analysis in post-stroke patients usiniglesinertial

Titianova, E. B., Pitkanen, K., Paakkonen, A., Siveniysantl Tarkka, |. M.
(2003). Gait characteristics and functional ambulation pro le intipats
with chronic unilateral stroke. Am. J. Phys. Med. Rehab82, 778-786.
doi: 10.1097/01.PHM.0000087490.74582.E0

Tognetti, A., Lorussi, F., Bartalesi, R., Quaglini, S., TesébniZupone, G., et al.
(2005). Wearable kinesthetic system for capturing and clasgifypperlimb
gesture in post-stroke rehabilitatiod. Neuroeng. Rehab#:8. doi: 10.1186/
1743-0003-2-8

van Meulen, F. B., Klaassen, B., Held, J., Reenalda, J., Buurkeyah Beijnum,
B.-J. F., Luft, A., and Veltink, P. H. (2016). Objective eviadmabf the
quality of movement in daily life after strok&ront. Bioeng. Biotechn@:210.
doi: 10.3389/fbioe.2015.00210

Wade, E., Parnandi, A. R., and Mataric, M. J. (2010). “Automatidinistration
of the wolf motor function test for post-stroke assessmentPioceedings of
the 4th International ICST Conference on Pervasive Compiicignologies for
HealthcargMunich), 7.

Whittle, M. W. (1996). Clinical gait analysis: a reviétum. Mov. Sci15:369-387.
doi: 10.1016/0167-9457(96)00006-1

Whittle, M. W. (2007) Gait Analysis: An Introduction, 4th Ed¥pl. 1. Edinburgh;
New York, NY: Butterworth-Heinemann.

Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, [Cr&mer, S. C.,
et al. (2016). Guidelines for adult stroke rehabilitation and recg\Stroke47,
€98-e169. doi: 10.1161/str.0000000000000098

Zijlstra, W. (2004). Assessment of spatio-temporal

during unconstrained walking. Eur. J. Appl. Physiol.92, 39-44.

measurement unit,” irR016 IEEE 13th International Conference on Wearable doi: 10.1007/s00421-004-1041-5

and Implantable Body Sensor Networks (B&sh Francisco, CA), 335-340.

Parnandi, A., Wade, E., and MatéayiM. (2010). “Motor function assessment using Conict of Interest Statement: The authors declare that the research was
wearable inertial sensors,” #2010 Annual International Conference of the IEEEconducted in the absence of any commercial or nancial relatimps that could

Engineering in Medicine and Biolg@uenos Aires), 86—89.
Patel, S., Hughes, R., Hester, T., Stein, J., Akay, M., DydJBaato, P. (2010).
“Tracking motor recovery in stroke survivors undergoing rehahtiin using

be construed as a potential con ict of interest.

Copyright © 2018 Derungs, Schuster-Amft and Amft. This is anaipess article

wearable technology,” i2010 Annual International Conference of the IEEEdistributed under the terms of the Creative Commons AtidhuLicense (CC

Engineering in Medicine and Biolo@uenos Aires), 6858—6861.

Patterson, K. K., Gage, W. H., Brooks, D., Black, S. E., and McWo¥. (2010).
Changes in gait symmetry and velocity after stroke: a cross-settgiudy
from weeks to years after strokMeurorehabil. Neural Repa4, 783—790.
doi: 10.1177/1545968310372091

BY). The use, distribution or reproduction in other forumseisnitted, provided
the original author(s) and the copyright owner are creditetithat the original
publication in this journal is cited, in accordance withegoted academic practice.
No use, distribution or reproduction is permitted whichsdus comply with these
terms.

Frontiers in Bioengineering and Biotechnology | www.frorgrsin.org 16

May 2018 | Volume 6 | Article 57

parameters



