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The anaerobic digestion of food waste converts waste products into “green” energy.
Additionally, the secondary product from this process is a nutrient-rich digestate, which
could provide a viable alternative to synthetically-produced fertilizers. However, like
fertilizers, digestate applied to agricultural land can besusceptible to both ammonia (NH3)
and nitrous oxide (N2O) losses, having negative environmental impacts, and reducing the
amount of N available for crop uptake. Our main aim was to assess potential methods for
mitigating N losses from digestate applied to a winter wheatcrop and subsequent impact
on yield. Plot experiments were conducted at two UK sites, England (North Wyke-NW)
and Wales (Henfaes-HF), to assess NH3 and N2O losses, yield and N offtake following
a single band-spread digestate application. Treatments examined were digestate (D),
acidi�ed-digestate (AD), digestate with the nitri�cationinhibitor DMPP (DCNI), AD with
DMPP (ADCNI), and a zero-N control (C). Ammonium nitrate (NH4NO3) fertilizer N
response plots (from 75 to 300 kg N ha� 1) were included to compare yields with the
organic N source. Across both sites, cumulative NH3-N losses were 27.6% from D and
DCNI plots and 1.5% for AD and ADCNI of the total N applied, a signi�cant reduction
of 95% with acidi�cation. Cumulative N2O losses varied between 0.13 and 0.35% of
the total N applied and were reduced by 50% with the use of DMPPalthough the
differences were not signi�cant. Grain yields for the digestate treatments were 7.52–9.21
and 7.23–9.23 t DM ha� 1 at HF and NW, respectively. Yields were greater from the plots
receiving acidi�ed-digestate relative to the non-acidi�ed treatments but the differences
were not signi�cant. The yields obtained for the digestate treatments ranged between
84.2% (DCNI) and 103.6% (D) of the yields produced by the same N rate from an
inorganic source at HF. Advanced processing of digestate reduced N losses providing
an environmentally sound option for N management.
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INTRODUCTION

During the last few decades, the interest in anaerobic digestion in
the European Union (EU) has increased due to the development
of regulations and guidelines that encourage the productionof
renewable energy to bene�t the environment (Siebert et al., 2008;
EU, 2009; BSI, 2010). Anaerobic digestion plants generate biogas
(rich in methane), a source of “green” energy, and a liquid by-
product known as digestate, with a high potential as fertilizer
or soil conditioner depending on its nutrient content (Nkoa,
2014). The EU has promoted nutrient recovery as part of the
circular economy (EU, 2014) encouraging digestate to be valued
as an alternative to inorganic and non-renewable fertilizers in
agriculture, as a potential source of income rather than a waste
or by-product (Alburquerque et al., 2012a,b; Nkoa, 2014; Kataki
et al., 2017).

The main feedstocks for biogas plants are energy crops,
animal manures, and other organic wastes (Lukehurst et al.,
2010) depending on what is locally available. In some countries
of the EU, including the UK, anaerobic digestion is the
recommended technology for sanitizing food waste from
supermarkets, catering, and kitchen waste (Lukehurst et al.,
2010), and their treatment through anaerobic digestion is
increasing (Styles et al., 2016). Nevertheless, there is a lack
of evidence for the agronomic and environmental e�ects of
the application of food waste derived digestate to agricultural
land.

Anaerobic digestion modi�es the former properties of the
feedstocks, a�ecting N cycling and bioavailability once the
digestate is applied to the soil as a source of nutrients for
crops. The enhanced microbial degradation of organic matter
and emission of carbon (C), particularly as methane, resultsin
an increase in the proportion of total N that is more readily
plant available (i.e., in increase in the ratio of ammonium-
N (NHC

4 -N) to total N, typically to > 70%), a decrease in
the C:N ratio and a lower organic matter and dry matter
(DM) content (Webb and Hawkes, 1985; Möller et al., 2008;
Tampio et al., 2016). Anaerobic digestion can signi�cantly reduce
greenhouse gas and odor emissions (if fugitive emissions are
minimized) in comparison with the feedstock (Massé et al., 2011;
Battini et al., 2014), and produces a more sanitized product
when the feedstock is manure (Orzi et al., 2015). However,
the increase in pH and NHC4 -N content through anaerobic
digestion enhance the polluting potential of the digestate
during storage (Sommer and Husted, 1995) and following
land spreading (Möller, 2015). The main concerns regarding
application of digestate and other organic wastes to agricultural
land are emissions of N to the environment through ammonia
(NH3) volatilization, nitrate (NO�

3 ) leaching and greenhouse gas
emissions as nitrous oxide (N2O), with associated impacts on
air and water quality, ecosystem functioning and human health
(Galloway et al., 2003).

Tiwary et al. (2015)reported that 35–65% of the total N
applied in digestate can be lost through NH3 volatilization if
the digestate is surface broadcast. Potential methods to reduce
NH3 volatilization include the rapid incorporation of manures
and digestates into the soil after application (Möller et al., 2008;

Tiwary et al., 2015), soil injection (Riva et al., 2016), band-
spreading (Nicholson et al., 2017), and acidi�cation of slurries
(Fangueiro et al., 2015a).

Nitrous oxide emissions following digestate application to
land are thought to be lower than those emitted from the
undigested material because most of the available C has been
converted to biogas prior to land application. However, there
are contradictory reports from the literature (Möller, 2015)
suggesting that emissions are related to the feedstocks andsoil
properties to which they are applied, e.g., soil organic matter
content, soil texture, water content, and aeration (Chantigny
et al., 2009; Eickenscheidt et al., 2014). Reported N losses as N2O
emissions following the application of food-based digestate vary
from 0.45% (Nicholson et al., 2017) to 4–10% (Tiwary et al.,
2015) of the total N applied. A method to reduce N2O emissions
from manure applications, which may be equally applicable to
digestates is the use of nitri�cation inhibitors (NI), suchas
3,4-Dimethylpyrazole phosphate (DMPP) (Owusu-Twum et al.,
2017), that delay the process in which NHC

4 transforms into
NO�

3 . Nitrate is a readily mobile form of N, which can be lost
by leaching, therefore, keeping N in the form of NHC

4 (less-
mobile) could prevent NO�3 leaching while minimizing N2O
losses (Subbarao et al., 2006; MarkFoged et al., 2011).

The main objective of this study was to compare the e�ciency
of di�erent N loss mitigation strategies (acidi�cation, use of a
nitri�cation inhibitor, and the combination of both) to reduce
N losses (NH3 volatilization and N2O emissions) and enhance
the value of food waste based digestate as a source of N for a
winter wheat crop. Our hypothesis was that the acidi�cation of
the digestate and the use of a nitri�cation inhibitor (i.e.,DMPP)
would decrease N losses in relation to untreated digestate,
improving the N use e�ciency for crop yield and thereby the
potential of digestate as an alternative to an inorganic fertilizer
N source.

MATERIALS AND METHODS

Site Description and Experimental Design
Two �eld experiments were conducted on a winter wheat crop
over the 2016-2017 UK growing season. The �rst site was at
the Henfaes Research Station (HF), in Abergwyngregyn, North
Wales (53� 14021.300N, 4� 0050.300W; 10 m above sea level). The
second site was at Rothamsted Research North Wyke (NW),
in Devon, South West England (50� 79039.800N, 3� 95025.100E;
180 m above sea level). The former crop was barley at HF
and grassland at NW. Both sites have a temperate climate with
average annual rainfall of 1,060 and 1,107 mm, respectively.The
soil at HF is a free-draining Eutric Cambisol with a sandy clay
loam texture and at NW is a free-draining Dystric Cambisol with
a clay loam texture (IUSS, 2015). Five representative soil samples
were collected from each �eld site to a depth of 15 cm. Each
soil sample was then crumbled by hand, vegetation, roots, and
stones manually removed and the soil thoroughly mixed prior to
analysis. The main soil characteristics are shown inTable 1.

Triticum aestivum(var. KWS Siskin) was drilled on the 10th
October 2016 at both sites with a row spacing of 0.1 m. Prior to
this, the �elds were plowed to 15 cm depth and limed to increase
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TABLE 1 | Background soil properties at the Henfaes (HF) and North Wyke (NW)
sites.

Soil property (0–15 cm depth) HF NW

pH1 : 2.5 (in H2O) 6.40 � 0.03 5.80 � 0.07

EC1 : 2.5 (mS cm� 1) 28.1 � 1.6 17.2 � 0.4

Bulk density (g cm� 3) 0.87 � 0.09 0.75 � 0.08

Total soil C (g C kg� 1) 26.2 � 1.5 16.9 � 0.4

Total soil N (g N kg� 1) 2.39 � 0.08 1.95 � 0.04

Soil C:N ratio 10.9 � 0.3 8.7 � 0.1

DOC (mg C kg� 1) 92.0 � 3.7 85.4 � 3.50

DON (mg N kg� 1) 22.1 � 0.9 11.6 � 1.7

NO�
3 (mg N kg� 1) 2.66 � 0.13 2.85 � 1.45

NHC
4 (mg N kg� 1) 1.05 � 0.14 1.19 � 0.15

Mineralisable N (mg N kg� 1) 47.6 � 3.0 17.4 � 2.2

Acetic acid extractable P (mg P kg� 1) 5.80 � 0.71 8.87 � 0.75

Values represent means� standard error (nD 5) and are expressed on a dry matter basis
except pH and electrical conductivity (EC). EC, electrical conductivity;DOC, dissolved
organic carbon; DON, dissolved organic nitrogen.

the soil pH. Phosphorus (P, as Ca(H2PO4) and potassium (K,
as KCl) were applied during the same week of sowing. Kieserite
(MgSO4�H2O) was applied in March at both sites. Application
rates were based on routine soil analyses and national fertilizer
guidelines (DEFRA, 2010), so that these elements were non-
limiting. Herbicides at both sites, and insecticides and fungicides
only at NW were also applied according to manufacturers'
recommendations. See Table S1 for additional information.

A randomized complete block design was established at each
site with one replication in each block equalling �ve replications
per treatment (n D 5), with plot size 14� 1.2 m at HF and 9�
2 m at NW. There were four “digestate treatments” and a control:

1. control (C): zero-N, no digestate or fertilizer N applied
2. digestate (D);
3. digestateC the nitri�cation inhibitor 3,4-dimethylpyrazole

phosphate (DCNI): DMPP (2 l ha� 1) was added to the
digestate and gently stirred before application;

4. acidi�ed digestate (AD): digestate previously acidi�ed in1 m3

tanks;
5. acidi�ed digestate with nitri�cation inhibitor (ADCNI):

DMPP (2 l ha� 1) was added to acidi�ed digestate and gently
stirred before application.

The target application rate was 190 kg N ha� 1 as digestate,
although actual application rate achieved in the �eld varied
(Table 2). The digestate was band-spread parallel with crop rows
(30 cm between bands) at a rate equivalent to 40 m3 ha� 1

using 20 l capacity watering cans on April 19th 2017 at HF and
March 20th 2017 at NW, at the start of stem elongation and
never after early May, according toDEFRA (2010). The digestate
remained in bands in the “digestate treatments” at NW but
not at HF because of the lower DM content. The plots were
divided into two di�erent areas: (1) the harvest area, which was
used to determine grain yields and plant production; and (2)
the sampling area, which was used for periodic soil sampling,
NH3 volatilization measurements (wind tunnels) and daily N2O

emissions (manual or automatic chambers,Table 2). At HF, NH3
emission measurements were made on the main plots, whereas at
NW separate “mini-plots” (2� 0.5 m) were established for these
measurements at the prevailing wind (south westerly) edge ofthe
trial site.

Additionally, to be able to calculate the fertilizer replacement
rate of the N mitigation digestate treatments, N response plots
were included at both sites. Ammonium nitrate (NH4NO3) was
applied at four di�erent rates: 75, 150, 225, and 300 kg N ha� 1

split into three applications between March and April 2017
according to the suggestions byDEFRA (2010)for winter wheat.
The N response plots were 6.5� 1.2 m at HF, where they were
included in the randomized block design, and 4.5� 2 m at
NW, where they were established in a separate part of the �eld.
Nitrogen response plots were for yield measurement only with
no soil or gaseous emission sampling.

Table 3 gives the main properties of the anaerobic digestate
used in the �eld experiments from six (HF) and 12 (NW)
digestate samples. The digestate, based on food waste and without
separating solid and liquid fractions, was provided from local
anaerobic digestion plants. Half of the digestate used at eachsite
was acidi�ed, to a target pH of 5.5, with concentrated H2SO4
before application. Approximately 1 l of concentrated H2SO4 was
added in total per 100 l of digestate. The pH of the digestate at
application was determined in a 1:6 (v/v) fresh digestate:distilled
water suspension and was lower for the acidi�ed digestate
than in the non-acidi�ed digestate at both sites, as expected
(Table 3), although the reduction in pH to< 3 for the NW
site was greater than anticipated based on previous laboratory
tests.

Soil Sampling
During the experiment, soil was sampled from the sampling
area of each plot three times per week for the �rst 2 weeks
after digestate application, two times per week for the next 2
weeks, followed by weekly sampling thereafter. Subsequently,
soil samples were taken once per month until the end of the
experiment. On each occasion, eight soil samples were taken per
plot to 15 cm depth and pooled to provide one representative
sample per plot. At NW, soil was sampled proportionally from
within and between the digestate bands. At HF, soil was sampled
randomly, as there were no distinct digestate bands. Soil samples
were stored at 4� C and in the dark prior to analyses. Soil
moisture, pH, EC, NH4C, and NO3� were determined as
detailed previously.

Analytical Methods
Chemical Properties
Soil pH and electrical conductivity (EC) were determined
in a 1:2.5 (w/v) soil:distilled water suspension with standard
electrodes using a Model 209 pH meter (Hanna Instruments
Ltd., Leighton Buzzard, UK) and a Jenway 4520 conductivity
meter (Cole-Palmer Ltd., Stone, UK). Total soil C and N were
determined using a TruSpecR
 analyser (Leco Corp., St Joseph,
MI) and ground oven-dried soil (105� C, 24 h). A soil sub-
sample was taken to determine soil moisture and another for
mineral N extractions: a 0.5 M K2SO4 solution was used in a 1:5
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TABLE 2 | Plots dimensions, N application rates, and measurements conducted at the Henfaes (HF) and North Wyke (NW) �eld experiments.

Plot Size
(m2)

N applied a

(kg N ha � 1)
Measurements Size

(m2)
N applied a

(kg N ha � 1)
Measurements

HF NW

Control plots 14 � 1.2 9 � 2

Harvest area 6.5� 1.2 0 Yield, plant production, N
content, N offtake, NUEb

4.5 � 2 0 Yield, plant production, N
content, N offtake, NUEb

Sampling area 7.5� 1.2 0 Soil NHC
4 , NO�

3 , soil pH,
and ECc , N2O

4.5 � 2 0 Soil NHC
4 , NO�

3 , soil pH,
and ECc , N2O

Digestate plots 14� 1.2 9 � 2

Harvest area 6.5� 1.2 132 (D, DCNI),
176 (AD, ADCNI)

Yield, plant production, N
content and offtake, NUEb

4.5 � 2 177 (D, DCNI),
217 (AD, ADCNI)

Yield, plant production, N
content and offtake, NUEb

Sampling area 7.5� 1.2 132 (D, DCNI),
176 (AD, ADCNI)

Soil NHC
4 , NO�

3 , soil pH and
ECc , NH3, N2O

4.5 � 2 177 (D, DCNI),
217 (AD, ADCNI)

Soil NHC
4 , NO�

3 , soil pH and
ECc , N2O

N response plots 7.5 � 1.2 4.5 � 2

Harvest area 7.5� 1.2 75/150/225/300 Yield, plant production, N
content and offtake, NUEb

4.5 � 2 75/150/225/300 Yield, plant production, N
content and offtake, NUEb

Sampling area

Mini-plots 2 � 0.5

Harvest area

Sampling area 2 � 0.5 177 (D, DCNI),
217 (AD, ADCNI)

NH3

aN applied, Control; D, digestate; DCNI, digestate plus nitri�cation inhibitors; AD, acidi�ed digestate; ADCNI, acidi�ed digestate plus nitri�cation inhibitors.
bNUE, nitrogen use ef�ciency.
cEC, electrical conductivity.

TABLE 3 | Properties of the digestate (D) and acidi�ed digestate (AD) used at Henfaes (HF,n D 3, mean � standard error) and North Wyke (NW,n D 6; mean � standard
error) expressed on a fresh weight basis.

pH
(1:6 v/v)

Dry matter
(%)

Total N
(g kg � 1)

NHC
4 -N

(% of N)
NO�

3 -N

(mg kg � 1)

Total P
(g kg � 1)

Total K
(g kg � 1)

HF

D 8.24 � 0.01 3.08 � 0.19 3.30 � 0.12 90.3 � 2.7 < 10 0.56 � 0.02 1.55 � 0.01

AD 5.40 � 0.01 5.08 � 0.04 4.40 � 0.06 78.0 � 1.8 < 10 0.69 � 0.01 1.59 � 0.01

P < 0.001 < 0.001 0.001 0.021 na 0.005 0.077

NW

D 8.05 � 0.03 7.52 � 0.08 4.43 � 0.06 81.7 � 1.1 < 10 0.76 � 0.01 1.05 � 0.01

AD 2.88 � 0.06 9.66 � 0.03 5.43 � 0.04 79.0 � 1.1 < 10 0.75 � 0.00 1.07 � 0.01

P < 0.001 < 0.001 < 0.001 < 0.001 na 0.315 0.958

P is the P-value of the ANOVA for all the properties except for pH and dry matter for NW that is the P-value of the Kruskal-Wallis non-parametric ANOVA. na, not-applicable.

soil:extractant ratio (w:v) shaking at 150 rev min� 1 for 30 min
and then centrifuging at 10,000 g for 10 min. The supernatant
was stored at� 20� C until analyses. Total dissolved organic
C (DOC) and total dissolved N (TDN) in the extracts were
measured using a Multi N/C 2100/2100 analyser (AnalytikJena
AG, Jena, Germany). Dissolved organic N (DON) was calculated
by subtracting NHC

4 and NO�
3 from the TDN value. Ammonium

in the extract was determined colorimetrically using the salicylate
method ofMulvaney (1996)and NO�

3 following the salicylate
method of Miranda et al. (2001)in an EpochR
 microplate
spectrophotometer (Bio Tek Instruments Inc., Winooski, VT).
Mineralisable N was determined after anaerobic incubation

according toKeeney (1982)using 5 g of soil and calculating
the di�erences in NHC

4 between the initial concentrations and
the concentrations after 7 days of anaerobic incubation. Acetic
acid extractable P was used as a proxy for plant-available P,
determined after extracting the soil with 0.5 M acetic acid (1:5
w/v, 200 rev min� 1 for 1 h) by the molybdate blue method
(Murphy and Riley, 1962) following centrifugation (10,000 g,
10 min).

Total N, and NO�
3 -N in the digestates were determined as

previously described, and NHC4 -N was signi�cantly higher in the
anaerobic digestate for both sites. A digestate sub-sample was
oven-dried at 105� C for 24 h and ground to pass 1 mm sieve
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to determine the dry matter (DM) content. Dry matter content
was greater in the digestate than in the acidi�ed digestate,and
greater at NW than at HF (mean values,Table 3). A sample
of each digestate was digested with concentrated hydrochloric
and nitric acid (aqua-regia) to analyse mineral elements by
ICP-OES / ICP-MS as detailed inEPA (1996); the acidi�ed
digestate had a signi�cantly higher content in Mg at HF and in
S at both sites but a lower content in Zn at NW (Table S2).

Ammonia Volatilization
Ammonia volatilization measurements were made using a system
of small wind tunnels as described byMisselbrook et al. (2005).
One wind tunnel was placed on each of the “digestate plots” of
the four �rst blocks at HF and on each of the mini-plots at NW
directly after the application of the “digestate treatments”(n D
4 for each treatment). Ammonia concentrations of the inlet and
outlet air of each wind tunnel were determined using 0.02 M
H3PO4 acid traps (100 ml) changed every day, except for the
�rst day when higher volatilization rates were expected theywere
changed twice at HF and three times at NW. After each sampling,
the acid trap samples were made up to 100 ml with distilled water
in the laboratory and a subsample was frozen before analysis for
NHC

4 -N as described previously. Ammonia �uxes (FNH3, mg m� 2

s� 1) were calculated according to equation 1:

FNH3 D v(Co � Ci)=At (1)

where Co and Ci are the outlet and inlet concentrations,
respectively,v is the air volume (m3) drawn through the wind
tunnel over the sampling period (t, s), andA the area covered by
the wind tunnel (m2).

Cumulative NH3 emissions over the 7 day measurement
period were derived by summing the �ux from each sampling
time. Total N lost through NH3 volatilization was expressed as a
percentage of the total N applied for each treatment to normalize
for the di�erent N application rates at the two sites.

Nitrous Oxide Emissions
Nitrous oxide emissions were measured with a combination of
static manual and automated chambers at HF and only manual
chambers at NW. Speci�cally, three replicate plots with one
automated chamber (0.5� 0.5� 0.2 m) per plot were used for the
“digestate” treatment plots at HF, with one manual static chamber
(0.5 � 0.5 � 0.3 m) per plot for three control plots (i.e.,n D 3
per treatment at HF). At NW, one manual static chamber (0.5�
0.5� 0.3 m) was used on each replicate plot for all treatments (n
D 5 per treatment). The automatic chambers at HF were linked
to an Isotopic N2O Analyser (Los Gatos Research Inc., San Jose,
CA, USA) for measurement of N2O concentration. All chambers
were installed at least 1 week before digestate application, with
edges pushed at least 5 cm into the soil and packing soil around
the external edge of the chamber to ensure a proper seal. Gas
tight extensions (0.3 m height) were �tted to the chambers during
the growing season to accommodate the height of the growing
wheat. Readings from 10 (HF) and 5 (NW) SDI 12 soil moisture
sensors (Acclima Inc., USA) at 2.5 cm depth and soil bulk density
(Table 1) were used to calculate water �lled pore space (WFPS,
Figure S1) to explain daily N2O �uxes.

Sampling from the manual chambers was done at the same
frequency as the soil sampling described above, between 10:00
and 12:00 h. Lids were placed on the chambers and gas samples
were taken at 20, 40, and 60 min, and 10 ambient air samples
taken (5 before and 5 after the sampling period) away from
the plot areas as a measure of concentration at time 0 min
for each chamber. All gas samples were collected and stored
in pre-evacuated vials prior to N2O analysis. All gas samples
collected from the manual static chambers were analyzed using
a Perkin Elmer 580 Gas Chromatograph �tted with an electron-
capture detector and an automated sample injection system and
calibrated using certi�ed N2O standards. The installation of the
automatic chambers at HF was the same but metal chamber
bases were inserted in the soil to a depth of at least 5 cm and
the chambers attached to these. Chambers were programmed
to close sequentially using pneumatic actuators, for 30 min for
gas sampling, resulting in four measurements per chamber per
day. Gas was sampled from the chambers via a sampling port
at a rate of 1 l min� 1, and to avoid a negative pressure, the
chambers allowed ambient air entry via an air inlet hole of the
same diameter as the sampling one, i.e. these were through-
�ow chambers. Gas samples were delivered to an Isotopic N2O
Analyser via 0.17 mm internal diameter PFA tubing, with the
same length for all chambers. Nitrous oxide concentrationswere
recorded at 0.1 Hz during the 30 min chamber closure. N2O
concentration data for the �rst 0.5 min was discarded from
calculations to account for the dead volume in the sample lines.
Every four chambers, a standard (1.5 ppm N2O) was introduced
into the analyser for calibration.

Hourly N2O �uxes (mg N2O-N m� 2 h� 1) were calculated
using linear regression, with the assumption of linearity for
manual and automatic chambers. Calculations for the automatic
chamber determinations were made using the lm() function in R
(version 3.3.2., R Core Team 2016). The manual chamber N2O
emissions (FN2O) were calculated as described byde Klein and
Harvey (2012); (Excel, O�ce 2016) using Equation (2):

FN2O D H� (Ct � Ct0)=t (2)

where H is the ratio of chamber volume to soil surface area
(l3 to l� 2), C is the concentration of N2O within the chamber
at the time (t) of sampling andCt0 is the N2O concentration
measured at 0 min, measured after the chamber had been sealed.
Cumulative N2O emissions were calculated for each plot using
the area under a curve function “cumtrapz()” from the “pracma”
package (Hans Werner Borchers;R Core Team, 2016). Finally,
total N lost as N2O was expressed as the percentage of total N
applied in each treatment after subtracting the cumulative N2O
emissions from the control plots.

Grain, Plant Production, and Nitrogen Use
Ef�ciency
Grain and plant production were determined from the “harvest
area” of each plot at the end of the experiment (8 and 15th August
2017 at NW and HF, respectively). At HF, wheat plants from three
0.4� 0.4 m quadrats were harvested 2 cm above the ground and
grain and straw were separated by hand and weighed. At NW,
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a Sampo small-plot combine harvester was used to harvest the
wheat, separating the grain and straw, which were weighed. A
sub-sample from each plot was used to determine grain and straw
moisture. Total N was analyzed using a TruSpecR
 analyser (Leco
Corp., St Joseph, MI) from ground oven-dried plant tissue (80� C,
24 h); N o�take by the total crop was calculated by multiplying
the N content of the grain and the straw by the grain and
straw yield, respectively. Thousand-grain weight (TGW) wasalso
determined by weighing 1,000 oven-dried grains. Grain yield,
straw yield and TGW are reported at 85% dry matter.

Nitrogen Use E�ciency of the crop (total for grain and straw,
NUEc) and grain (NUEg) were calculated according to Equations
(3, 4), respectively:

NUEc D (Nt � Nc)=Napplied� 100 (3)

whereNt is the crop N o�take from N (digestate or NH4NO3)
treatment plots,Nc is the mean crop N o�take from the control
plots andNappliedis the N fertilizer applied to the plots. All units
are in kg N ha� 1.

NUEg D (Ngt� Nc)=Napplied� 100 (4)

whereNgt is the grain N o�take from N (digestate or NH4NO3)
treatment plots,Ngc is the mean grain N o�take from the C plots
andNappliedis the N fertilizer applied to the plots. All units are kg
N ha� 1.

Statistical Analyses
A factorial analysis of variance (ANOVA) with two factors
(site: HF and NW; and treatment: C, D, DCNI, AD, ADCNI)
and a blocking factor was performed for cumulative NH3
and N2O losses (expressed as % of the total N applied),
grain and straw yield, N o�take (grain, straw and total),
TGW, NUEc, and NUEg. Tukey's post-hoc was used to
detect di�erences between sites and treatments. Thet-test
was performed to examine variation between the di�erent
properties of the digestate and acidi�ed digestate used at
both sites, except for pH and DM at NW where a Kruskal-
Wallis non-parametric ANOVA was used. One-way ANOVA
was used to compare NUEc, NUEg, grain yields, and plant
production for the di�erent “digestate treatments” and fertilizer
N rates at HF. Cumulative NH3 losses, N o�take by straw,
and plant production were log transformed to ensure the
requirements for ANOVA. Statistical signi�cance is de�ned
as p < 0.05. In addition, linear (without including the
highest dose) and quadratic regressions were derived for
yield and total crop production for the fertilizer N response
plots (0 to 300 kg N ha� 1) to calculate the fertilizer N
replacement value of the di�erent digestate treatments. All
statistical analyses were performed using SPSS v22.0 (IBM Corp.,
Armonk, NY).

RESULTS

Soil Analyses
Soil pH, total C, total N, C:N ratio and mineralizable N
were higher in HF than NW (Table 1). Changes in soil pH,

NHC
4 , and NO�

3 during the experiment are presented in
Figure 1 for both sites. Soil pH decreased following addition
of the acidi�ed digestate treatments (AD and ADCNI were
between 5.2–6.3 at HF and ADCNI between 4.6–5.4 at NW)
relative to the non-acidi�ed treatments (C, D, and DCNI;
6.0–6.8 at HF, and C and D between 5.0–6.0 at NW;
Figures 1A,B). This e�ect was observed a few days after digestate
application and pH remained lower until harvest at both
sites, reaching maximum di�erence 1 month before harvest
(around 1.0 pH unit). The application of the digestate also
led to changes in soil EC, with the greatest values for AD
and ADCNI, followed by D and DCNI and, �nally, by C
(Figure S2).

Peaks in soil NHC4 -N content were observed in the �rst month
after digestate application (Figures 1C,D). Ammonium contents
between 150 and 200 mg N kg� 1 were found at NW, which
were double that measured at HF (80 mg N kg� 1) in this period.
Following the initial peaks, a general decrease in soil NHC

4 -N
content was observed with time, with a faster rate of decrease at
HF. Soil NHC

4 -N contents were greatest for ADCNI and AD. A
similar trend occurred for soil NO�3 -N content (Figures 1E,F),
however, the greatest NO�3 -N concentrations were observed
for treatments without the nitri�cation inhibitor (D and AD),
within the �rst month following digestate application. Peak soil
NO�

3 -N contents were� 90 and 60 mg N kg� 1 for D and AD
respectively at NW, and 13 and 10 mg N kg� 1 for D and AD,
and C respectively, just 1 day after digestate application at
HF. Soil NO�

3 -N contents for DCNI and ADCNI were more
constant through the whole experiment and their values were
comparable with other treatments in the last 2 months at both
sites. Soil NHC4 -N and NO�

3 -N contents were below 20 mg N
kg� 1 for the controls at both sites throughout the experiment
(Figures 1C–F).

Nitrogen Losses
The percentage of total N applied lost as NH3 and N2O averaged
across all “digestate treatments” were signi�cantly higher at
HF (17.4 and 0.45% of the total N applied, respectively) than
at NW (11.6 and 0.13% of the total N applied, respectively;
Table 4). The majority of the NH3 loss occurred during the
�rst and second days following digestate application (Figure 2).
Cumulative NH3 volatilization losses were signi�cantly reduced
by the acidi�cation of the digestate (P < 0.001), being 1.5% of
the total N applied for the mean of AD and ADCNI treatments
and 27.6% of the total N applied for the mean of D and DCNI
treatments across both sites. Mean N2O loss from digestate
treatments with the nitri�cation inhibitor (DCNI and ADCNI)
was 0.17 kg N ha� 1 and 0.35 kg N ha� 1 for those without the
nitri�cation inhibitor, a > 50% reduction although the di�erences
were not signi�cant (PD 0.097,Table 4). The peaks in daily N2O
emissions (Figure S3) were related to higher WFPS (Figure S1),
especially for the “digestate” treatments at HF. The airlineto
one of the automatic chambers used to determine N2O �uxes
at HF appeared to be blocked (Figure S4, chamber 2 for AD
treatment), so its values were replaced by the mean value of
the other two chambers from the same treatment for statistical
analysis because only three chambers per treatment were used
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FIGURE 1 | Time course of soil pH, soil NHC4 and NO�
3 contents (means� standard error) at Henfaes (HF;A,C,E) and North Wyke (NW;B,D, F) following digestate

application. C, control; D, digestate; DCNI, digestate plus nitri�cation inhibitors; AD, acidi�ed digestate; ADCNI, acidi�ed digestate plus nitri�cation inhibitors;n D 5 for
each treatment.

at HF. A similar ranking was obtained for cumulative N2O
emissions at both sites (AD> D > ADCNI > DCNI > C,
Figure S4).

Yield, Nitrogen Offtake, Nitrogen Use
Ef�ciency (NUE), and Inorganic Nitrogen
Replacement

Grain yield and total crop production were in�uenced by the
site in a di�erent way for the control and digestate treatments

(Table 4). Higher mean grain yields (P D 0.004) were measured
at NW (8.93� 0.37 t ha� 1) than at HF (7.55� 0.44 t ha� 1).
The same e�ect was observed for plant production (P < 0.001),
15.36� 0.45 t ha� 1 at NW and 11.37� 0.50 t ha� 1 at HF.
The application of the di�erent digestate treatments resultedin
a signi�cant increase in grain yield (P < 0.001) and total crop
production (P < 0.001) in relation to the control treatment
(grain yield, 5.47� 0.64 t ha� 1, and plant production, 11.09�
1.36 t ha� 1) without N application but no signi�cant di�erences
were observed between the “digestate” treatments (grain yield,
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between 8.31� 0.47 t ha� 1 for DCNI and 9.52� 0.49 t ha� 1

for AD, and plant production, between 16.21� 0.66 t ha� 1

for DCNI and 16.95� 1.06 t ha� 1 for ADCNI; Table 4). The
interaction site� treatment was not signi�cant for grain yield
because an analogous trend for the “digestate” treatments was
observed at both sites (Figure 3), however, it was signi�cant
for plant production (P D 0.024), because the highest mean
values were observed for AD> ADCNI > D > DCNI > C
at HF, and for ADCNI > DCNI > D > AD > C at NW
(Figure 4). Thousand grain weight was lower (P < 0.001) at
NW (43.9 � 0.5 g) than at HF (47.8� 0.4 g) and was reduced
(P < 0.001) in the following order in relation to the di�erent
“digestate treatments,” C> , DCNI > , D > , AD > ADCNI
(Table 4).

The mean grain N o�take and crop N o�take the means
across the `digestate' treatments were signi�cantly higher at
NW than at HF, but NUEg and NUEc were lower than that
at HF (Table 4). Digestate application signi�cantly increased
grain N o�take and crop N o�take in comparison to the
control, as expected (Table 4). Highest N o�take values were
from AD followed by ADCNI for both grain and crop, and
NUEg andNUEc were also highest for these treatments although
di�erences were not signi�cant (Table 4). There were no
signi�cant site� treatment interactions for N o�take,NUEg or
NUEc.

Fertilizer replacement value was signi�cantly greatest for AD
and signi�cantly least for DCNI for both grain and total crop
yield at HF (Table S3) and followed the same order whether
�tting a linear (or quadratic function; P < 0.100 for data
calculated with both �ttings): AD (168� 20 kg N ha� 1) >
ADCNI (154 � 18 kg N ha� 1) > D (137 � 9 kg N ha� 1)
> DCNI (111.1 � 7.7 kg N ha� 1), for the linear approach
and grain N fertilizer replacement. The di�erences between the
linear and the quadratic approaches for the calculation of the
inorganic N replacement by digestate were 4.5% for grain yield
and 8.1% for total crop production. However, when fertilizer
replacement was calculated as a function of the total N applied
per treatment, the di�erences were not signi�cant between the
“digestate treatments” (Table S3) and ranged between 84.2�
5.9% for DCNI treatment and 103.6� 6.9% for D treatment.
At NW, the fertilizer N response plots were severely a�ected by
lodging and data were subsequently not used.

DISCUSSION

Digestate and Soil Characteristics
The properties of the digestate used in our �eld experiments
were comparable to these reported elsewhere (Möller and Müller,
2012; Nkoa, 2014): high pH (> 7.0), low DM content, high
proportion of total N as NHC

4 -N, negligible NO�
3 -N content, and

similar total N, P and K contents. In general, the application
of digestate does not alter soil properties in the short-term but
can increase microbial activity and biomass (Melero et al., 2016),
N mineralization and NH3 oxidation (Odlare et al., 2008), soil
mineral N content (Möller et al., 2008), hydraulic conductivity,
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and decrease soil bulk density (Garg et al., 2005), in relation to
undigested feedstocks.

Unfortunately, the N loading rates for the di�erent treatments
in our study were not the same, and not exactly the 190 kg N ha� 1

(equivalent) that we targeted. This is something that has been
reported in other studies (Pezzolla et al., 2012; Riva et al., 2016).
To address this, the N losses were presented as a percentage of
the total N applied. The variability of the feedstocks, digestate
handling, transport, and storage in the local biogas plants and
in tanks in the �elds before the application could have caused
changes in the digestate N content between the initial sampling
time and the time of land application. It is well known that
open stores (Wang et al., 2014), and the lack of semi-permeable
materials to cover the tanks (Börjesson and Berglund, 2007) and
protective gas-tight layers (Battini et al., 2014) can lead to large
N losses, predominantly via NH3 volatilization (Petersen and
Sørensen, 2008; Fangueiro et al., 2015a), in comparison with
the undigested feedstocks. Moreover, the pH of our digestate
was 8.24� 0.01 at HF and 8.05� 0.01 at NW, and according
to Muck and Steenhuis (1982), very high losses of NH3 from
digestate occurs above pH 8.0, and small losses below pH 6.0. The
lower pH of the acidi�ed digestate applied to our �elds (5.40�
0.01 at HF and 2.88� 0.06) and the time between acidi�cation
and �eld application of the digestate (1 week at HF and 2 days
at NW) would also contribute in part to explain the higher
N content in relation to the non-acidi�ed digestate because
the equilibrium NHC

4 / NH3 favors volatilization at higher pH
(Möller, 2015). The tanks used for the storage of the digestate
in our �elds before application had a simple thread lid and were
only loosely �xed to prevent pressurization of the tanks, so were
not gas-tight, which may have contributed to greater N loss via
NH3 volatilization, especially from the non-acidi�ed treatment
(Möller, 2015).

The di�erent dry matter (DM) content (%) of the digestate
applied at HF (3.08� 0.19 for D and 5.08� 0.04 for AD)
and at NW (7.52� 0.08 for D and 9.66� 0.03 for AD)
explains the variable distribution of the applied digestate at
both sites following simulated bandspreading. The higher DM
content at NW resulted in discrete bands of digestate, whereas
the lower DM content at HF meant that the digestate did
not remain within bands resulting in a more homogeneous
distribution covering almost the whole surface of the plots
that received digestate. The higher surface area of digestate
in contact with the air at HF helps to explain the higher N
losses at HF (mainly as NH3 but also as N2O despite the
lower WFPS at HF, Figure S1 andTable 4), and di�erences
in soil NHC

4 -N and NO�
3 -N contents between NW and HF

(Figure 1), especially during the �rst months after digestate
application. In this study, the higher DM content for NW
digestate compared with that at HF did not result in higher NH3
emissions as would be expected for slurries (e.g.,Misselbrook
et al., 2004), suggesting that other factors (such as the increased
emitting surface area) were important in controlling NH3
volatilization. The greater post-harvest soil NO�

3 -N content
at NW could indicate more risk of leaching than at HF
(Figures 1E,F).

Nitrogen Losses: Acidi�cation and
Nitri�cation Inhibitors
Acidi�cation to a pH of < 6.0 reduced NH3 volatilization to
< 2.0% of the total N applied (AD and ADCNI plots), a similar
reduction to that reported by other authors when non-acidi�ed
digestate or slurries were injected into the soil (Fangueiro et al.,
2015b; Riva et al., 2016; Baral et al., 2017). These values were
signi�cantly lower than when the digestate was not acidi�ed(D
and DCNI), resulting in NH3 losses of more than 27% of the total
applied N (Table 4). High NHC

4 content and pH of the digestate
facilitate N losses via NH3 volatilization (Fangueiro et al., 2015a;
Möller, 2015) that can account up to more than a 40% of the
total applied N if not managed carefully (e.g.,Riva et al., 2016;
Nicholson et al., 2017). Our results for the digestate treatments
when the digestate was not acidi�ed (D and DCNI) are consistent
with these studies. Ammonia is quickly emitted, normally during
the �rst few hours after slurry (Ni et al., 2012) or digestate
(Figure 2of this experiment;Nicholson et al., 2017) are applied.
Consequently, measures to reduce its emission should be focused
in the �rst few hours after application (e.g., rapid incorporation)
and on production or storage phases of the digestate, to reduce
N losses at the di�erent phases. The large, signi�cant decrease
in N losses from NH3 volatilization we measured following
acidi�cation of digestate (ca. 95% reduction compared with
non-acidi�ed digestate) demonstrates the e�ectiveness of this
method to control and reduce these emissions, addressing
a key knowledge gap identi�ed byNicholson et al. (2017).
Although more experiments under di�erent weather conditions,
physico-chemical soil properties and crops are necessary, our
study supports the use of acidi�cation of food based digestate,
consistent with this technique being called the Best Available
Technology (BAT) for reducing NH3 losses from slurries in some
countries (Kai et al., 2008). Rapid soil incorporation has also been
shown to reduce NH3 losses by up to a 85% when following
application of food waste based digestate (Tiwary et al., 2015)
but it could increase N losses in the form of N2O as observed
for slurries (Thorman, 2011).

When the pH of the digestate is> 6.00 the high soil
NHC

4 contents after the application of the digestate stimulate
nitri�cation ( Muck and Steenhuis, 1982), and, consequently,
N2O emissions. The intensive frequency of N2O sampling and
analysis at HF (Figure S3), and the higher mineralizable N
measured at HF (Table 1) might explain the greater cumulative
N2O losses compared to NW, as some N2O peaks may have
been missed because of the lower frequency of sampling at NW.
Nitri�cation could have been responsible for most of the N2O
emissions because the WFPS was always< 50% at both sites
(between� 10 and 25% at HF and between 15 and 50% at NW,
Figures S1A,B) and the N2O peaks were related to higher WFPS
in soil (Figures S1, S3;Zhu et al., 2013).

Nitrous oxide emissions as a result of denitri�cation are
stimulated after the application of organic amendments with
a large content of C (Rochette et al., 2000). Therefore, we
do not discard that denitri�cation was, in part, responsible
of some N2O emissions observed after digestate application
(Figure S3), although the initial NO�3 -N contents in soil were
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FIGURE 2 | Time course of ammonia volatilization (means� standard error) during the week after digestate application at Henfaes (HF,A) and North Wyke (NW,B).
D, digestate; DCNI, digestate plus nitri�cation inhibitors; AD, acidi�ed digestate; ADCNI, acidi�ed digestate plus nitri�cation inhibitors;n D 4 for each treatment.

FIGURE 3 | Grain yields (means� standard error) at Henfaes (HF,A) and North Wyke (NW,B) at the end of the experiment as a function of the treatment. C, control;
D, digestate; DCNI, digestate plus nitri�cation inhibitors; AD, acidi�ed digestate; ADCNI, acidi�ed digestate plus nitri�cation inhibitors; and several rates of N applied
as NH4NO3, including the control treatment (C, 0 kg N ha� 1); n D 5 for each treatment. Different letters indicate differences according to Tukey's HSD test at a
probability level of 0.05.
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FIGURE 4 | Plant production (straw and grain, means� standard error) at Henfaes (HF,A) and North Wyke (NW,B) at the end of the experiment as a function of the
treatment. D, digestate; DCNI, digestate plus nitri�cation inhibitors; AD, acidi�ed digestate; ADCNI, acidi�ed digestate plus nitri�cation inhibitors; and several rates of
N applied as NH4NO3, including the control treatment (C, 0 kg N ha� 1); n D 5 for each treatment. Different letters indicate differences according to Tukey's HSD test
at a probability level of 0.05.

lower (Figures 1E,F) than in a previous study byFangueiro
et al. (2015b)where high soil NO�3 -N content (c. 80 mg kg� 1)
resulted in signi�cant N2O emissions. In addition, hot spots
where both nitri�cation and denitri�cation processes occurare
created in soil after the addition of organic manures, including
even when bulk WFPS is below 50%, resulting in N2O emissions
(MarkFoged et al., 2011; Zhu et al., 2015). Baral et al. (2017)
found that the highest N2O emissions were produced at WFPS
between 53 and 56% in a �eld experiment in which spring
barley was fertilized with manure and digestate and that coupled
nitri�cation-denitri�cation was the source of these emissions.

A decrease in the nitri�cation process was observed for the
treatments in which DMPP was added; i.e. higher NHC

4 -N and
lower NO�

3 -N contents were measured at both experimental
sites for DCNI and ADCNI treatments during the experiment
(Figures 1C–F). The addition of DMPP resulted in a reduction
of N2O emission of up to a 50% in comparison to the digestate
without the nitri�cation inhibitor (D and AD), although the
di�erences were not signi�cant (P D 0.097,Table 4). The use of
nitri�cation inhibitors such as DMPP and dicyandiamide (DCD)

have been proved to be an e�ective strategy to reduce N losses
from soils where mineral fertilizers (Liu et al., 2013) or slurries
(Vallejo et al., 2005; Fangueiro et al., 2016) are applied. The
acidi�cation of slurries has also been shown to delay nitri�cation
in some soils (Fangueiro et al., 2013) but not in others, e.g.,
soils with a high bu�ering capacity where the soil pH was not
altered after the application of the acidi�ed digestate (Fangueiro
et al., 2016). Owusu-Twum et al. (2017)recently demonstrated
in a short-term experiment under controlled conditions that
acidi�cation of slurries could signi�cantly reduce N2O emissions,
but to a lesser extent than when DMPP was used. We found some
evidence of a delay in the nitri�cation process for the acidi�ed
digestate, where peak soil NO�

3 -N content was observed a few
weeks later than for unacidi�ed digestate at HF (Figure 1E),
and soil NHC

4 -N contents were higher for AD than for D on
the majority of measurement occasions (Figures 1C,D), although
this could also be attributed to the initial higher NHC4 -N contents
of the acidi�ed digestate (Table 3). This inhibition of nitri�cation
could have been caused by the decrease in soil pH after spreading
the acidi�ed digestate, an e�ect that was persistent until the
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end of the experiment, because the population and activity of
denitrifying bacteria is a�ected by soil pH (Gandhapudi et al.,
2006). However, acidi�cation did not alter N2O emissions (these
were only a�ected by the addition of DMPP). The presence
of a substantial amount of C and inorganic N could have
promoted completed denitri�cation to N2 for AD and ADCNI
treatments (where the nitrifying bacteria activity could have been
inhibited by acidi�cation) as indicated byPezzolla et al. (2012)
with comparable WFPS values for soils amended with digestate.
The percentage of applied N lost via N2O in our experiment
ranged between 0.13 and 0.45% (Table 4), in accordance with
0.10–0.41% calculated byBaral et al. (2017)and with 0.45�
0.15% reported byNicholson et al. (2017)under comparable
conditions, all lower than the 1% default IPCC emission factor
(IPCC, 2006).

Nitrogen Uptake, Nitrogen Use Ef�ciency,
Fertilizer Replacement Rates, and Yields
Although grain and crop N o�takes were improved when
the applied digestate was acidi�ed, the di�erences were not
signi�cant for NUEg or NUEc (Table 4). The results for HF
indicate that digestate can be an e�ective replacement for
inorganic fertilizers such as NH4NO3 in terms of crop production
(Figures 3, 4). These results are in agreement with similar
experiments:Walsh et al. (2012)for a grassland,Riva et al. (2016)
for a maize silage crop in which they used manure- and crop-
based digestates,Furukawa and Hasegawa (2006)for spinach,
Haraldsen et al. (2011)for barley, andPezzolla et al. (2012)
for a grassland using food waste based digestate. On the one
hand, yields for D and DCNI treatments were similar to those
obtained for doses of inorganic N of 136.7� 9.1 and 111.1
� 7.7 kg N ha� 1, and the mean values were higher when the
digestate was acidi�ed, i.e., AD and ADCNI, which produced
similar yields to doses of 168.3� 20 and 154.2� 17.5 kg N ha� 1

at HF. However, no signi�cant di�erences were found between
the di�erent “digestate treatments” (D, DCNI, AD, and ADCNI)
when these fertilizer replacement values are based on the total N
applied with each “digestate treatment” at HF. The reduction of
yields observed in our experiment (only for the mean values, not
signi�cantly) when NI were added to the digestate in comparison
to the treatments without NI agrees withMisselbrook et al. (2014)
but not with the increase in yields reported byAbalos et al. (2014)
in their meta analysis. However, in order to achieve e�ective
mitigation of N losses and fertilizer replacement values, digestate
should be acidi�ed or rapidly incorporated into the soil following
application, as shown in this experiment and byMöller et al.
(2008), respectively.

CONCLUSIONS

Acidi�cation of digestate and the inclusion of a nitri�cation
inhibitor are good strategies for the utilization of food waste
based digestates because they contributed to the mitigation of
N losses following application to a winter wheat crop. Without
acidi�cation, NH3 volatilization accounted for almost a 30% of
the total N applied in digestate. This emission was reduced by
95% with acidi�cation. We demonstrated that wheat yields when

acidi�ed digestate was applied at HF (176 kg N ha� 1) were similar
to these produced by an inorganic N form (NH4NO3) applied
at a rate of 154–168 kg N ha� 1. Acidi�cation of the digestate
seems to be an e�ective technique after digestate spreading,
producing higher mean yields and inorganic N replacements
than when the digestate is not acidi�ed. Without the acidi�cation
of the digestate, NH3 volatilization accounted for almost a 30%
of the total N applied resulting in a serious economic cost
and environmental damage. This study encourages the use of
digestate from the anaerobic digestion of food waste alongside
acidi�cation and with the addition of a nitri�cation inhibitor, as
an environmentally sound option for N management. However,
the reduction in soil pH that was measured in the acidi�ed
treatments at both sites, suggest that the e�ect of slurry and
digestate acidi�cation on soil quality and function needs to be
assessed in the long-term.
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