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Brain functional imaging data, especially functional maggtic resonance imaging (fMRI)
data, have been employed to re ect functional integration bthe brain. Alteration in brain
functional connectivity (FC) is expected to provide poterdl biomarkers for classifying or
predicting brain disorders. In this paper, we present a compehensive review in order
to provide guidance about the available brain FC measures ahtypical classi cation

strategies. We survey the state-of-the-art FC analysis mbbds including widely used
static functional connectivity (SFC) and more recently ppmsed dynamic functional

connectivity (DFC). Temporal correlations among regionsf interest (ROIs), data-driven
spatial network and functional network connectivity (FNCGjre often computed to re ect

SFC from different angles. SFC can be extended to DFC using aliding-window

framework, and intrinsic connectivity states along the tim-varying connectivity patterns
are typically extracted using clustering or decompositiorapproaches. We also brie y

summarize window-less DFC approaches. Subsequently, we ghlight various strategies
for feature selection including the Iter, wrapper and embdded methods. In terms

of model building, we include traditional classiers as wélas more recently applied
deep learning methods. Moreover, we review representativapplications with remarkable
classi cation accuracy for psychosis and mood disorders, murodevelopmental disorder,
and neurological disorders using fMRI data. Schizophrenjabipolar disorder, autism
spectrum disorder (ASD), attention de cit hyperactivity order (ADHD), Alzheimer's
disease and mild cognitive impairment (MCI) are discusseéinally, challenges in the eld
are pointed out with respect to the inaccurate diagnosis labling, the abundant number
of possible features and the dif culty in validation. Some sggestions for future work are
also provided.
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INTRODUCTION mental disorders and other brain diseases. The challengés an

di culties as well as potential solutions are pointed out ingh
Brain disorders such as schizophrenia (SZ) and bipolar desord end.

(BP) are considered in terms of disruptions of the normal-rang

operation of brain functions. While psychiatric disordersear FUNCTIONAL CONNECTIVITY MEASURES
diagnosed based on symptom scores from clinical intervieV\‘___ROI\/I EMRI DATA

there are no existing gold standards that can be used foritigen

validation. Brain functional neuroimaging techniques linding ional - h — .
functional magnetic resonance imaging (fMRLeg et al., 2013; Fun(?tlona. connectl\{lty re ects the orga}nlzathn and inte
" ', relationship of spatially separated brain regions. Methods

Power et al., 2014ppositron emission tomography (PET), and . . . - o

) for measuring and delineating functional connectivity play
electroencephalography (EEG) have become important tools in g
. - 2 . a key role, since the used measures may greatly aect the
investigating brain diseaseAlji-Dargham and Horga, 20)6 . Do . g
There is much hope that brain functional connectivity reeshl identi cation of biomarkers and the accuracy of individual
using functional neuroimaging data can be used to charémer subject classication and prediction. Typically, functiona
brain function abnormality and in turn benet diagnosis connectivity is assumed to be stationary over the scanning

and treatment Deco and Kringelbach, 20).4Among diverse tlme_ (usuall_y severa_l mmut_es), and m(_)s_t Previous .fMRI

e . T L . studies applied a static functional connectivity (SFC) asialy
modalities, fMRI enables non-invasive investigation of brai . . "

. L . . . Until recently, more emerging exciting work have proven
function with high spatial resolution and has been widelydise . . : D :

. . - that regarding brain functional connectivity as dynamiceov

to detect and characterize brain networks or connectivitoag . ; . : .

. . . S . ~  time can be successful in uncovering the disruptions to the
functionally interconnected regions. Investigating diegrces in S -

. . . normal human brain in disease conditionCélhoun et al.,
functional network (or connectivity) between disorderschu

as SZ and BP may provide new insights into their diseasZeOM' Figure 1summarizes the primary functional connectivity

mechanisms Eirur et al., 201y, Furthermore, the identi ed analysis methods and possible connectivity features used for

. - . classi cation/prediction problem.
changes in connectivity measures may be useful as bionsarket

which can be employed to classify individual patients USina-StatiC Functional Connectivity Analyses

machine Iearnmg methods&(rbabshlranl et a!., 2017; Stephan From a view of methodology, there are generally three kirfds o

et al., 201). In this paper, we restrict c_)ur review to fMRI data, strategies analyzing SFC4lhoun and De Lacy, 20).7The rst

but some methods are able to be easily expanded to other brgl 3 model-driven strategy which uses prior knowledge to decide

functional imaging modal|t|_es as well. sets of brain regions/voxels and then limit connectivity lgses
There have been a variety of methods proposed to measufg some speci ¢ regions/voxels. The second approach is more

functional connectivity (FC) among brain regions using fMRI yata-driven and maps whole brain functional networks using

data .(\/an Den Heuvel and Hulsho Pol, 2010; Smith et al., gecomposition or clustering methods. In such case, brairei®x

2013; Calhoun and De Lacy, 201While di erent approaches ,ssigned to the same component or cluster re ect regions which

have di erent assumptions and advantages, a detailed revieye nhighly correlated. The third combines the idea of thevabo

is important to help us understand the ways in which thesqy,, strategies, which rstly extracts co-activated regiosig a

approaches have been used. How to select features fromyga_qriven method and then estimates functional conndigti

large amount of measures as biomarker for building model,,ong the regions. We outline several typical methods asbelo
to classify or predict brain disorders is an important and

challenging problem. Classi cation and prediction are twofis ~ Model-Driven Analysis for Assessing Connectivity

of analysis which are used for building models to separatémong Regions or Seeds

classes and to predict future outcomes. Generally, cla#ic  Brain functional connectivity analysis amorag priori regions

is to classify categorical disease labels that have beeadglr of interest (ROIs) or voxels Ppldrack, 200y is the most
acquired concurrently with or prior to the scan, while predoct ~ widely applied model-driven method. Three key steps include
is to predict unknown disease labels, future progressiorthe determination of locations and shapes of ROIs or the
or continuous-valued functions. Compared with classi catj locations of voxels, the computation of representative time
prediction is harder but more promising for clinical utilityn  series of ROIs or voxels, and the assessment of connectivity
the context of neuroimaging, although increasing studiasen (or coupling) among di erent ROIs or connectivity between
tended to shift their concentration to the prediction problem each seed (ROl or voxel) and all other voxels within brain.
the majority of previous studies on brain disorders focused 0 As such, the resulting functional connectivity strengtlesect
identifying neuromarkers for classifying di erent groupsi. this  the temporal uctuation relations among the selected voxels
paper, we primarily aim to present a comprehensive reviewr regions. ROI-based functional connectivity strengtha ba
summarizing various brain functional connectivity meassiand  easily taken as features in classi cation and prediction peotd,
typical classi cation strategies, in order to provide guidarin  since the corresponding connectivity features of a newiftgst
this eld. It is worth noting that most of the measures and subject can be directly computed between the brain regions (o
strategies used in the classi cation problem can also be applievoxels) selected using the training subjects. While ROIs and
or extended to the prediction problem. We also survey recentoxels are usually determined by subjective experience a@ad pr
exciting applications that employed fMRI data to di erentiate knowledge, the resulting functional connectivity can beaily
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FIGURE 1 | The primary functional connectivity analysis methods andgssible connectivity features used for classi cation/predition problem.
primary % a5 y p p

sensitive to the empirical selection and show a very di erenta ect the resulting functional connectivity strengths. Wher
pattern for small changes in the ROIs. Hence, how to decide @gressing out global mean is a controversial issuephy et al.,
reasonable region including voxels with consistent brairction  2009; Hayasaka, 201&nd how to remove out head motion also

is a challenge. Considerable research watkir(on et al., 2014; deserve further investigatiori-(iston et al., 1996; Power et al.,
Glasser et al., 20)thas attempted to delineate a parcellation20149. These shortcomings should be carefully addressed while
of brain by employing information of multiple modalities of conducting analyses using the method.

imaging, however, inconsistencies still exists. The reprasgive

time series of voxels in one region can be calculated as tlaa meData-Driven Analysis for Estimating Spatial

of all voxels' time series or the rst principal component of all Functional Network Maps

voxels' time series using principal component analysis (PCA)n contrast to model-driven methods, data-driven approaches
Although averaging and PCA can decrease the noise e ect in thestimating functional networks do not require the speci icat
representative time series of ROIs to some extent, the olztain®f prede ned brain regions or voxels. These popular approaches
functional connectivity can still be related to noise. Ftiogal  include spatial independent component analysis (ICBx(houn
connectivity between two representative time series is Iyostet al., 2001; Calhoun and Adali, 2012; Du and Fan, 2013; Dy eta
estimated by computing correlations to measure their lineaR016; Calhoun and De Lacy, 20 1grinciple component analysis
relationship, but also can be assessed by mutual information (PCA), and clustering method¥én Den Heuvel et al., 2008; Du
identify non-linear relationships\{/ang et al., 2014 Coherence etal., 2014y In particular, ICA is a widely used approach that has
estimates the linear relationship in the frequency doméinir{ shown great promise in identifying network-based biomaskef

et al., 200% and connectivity within a speci c frequency can be psychiatric disorders such as schizophrenia (SZ)r(ity et al.,
achieved by methods such as wavelet decompositiéid(nore  2007; Ongur et al., 2010; Calhoun et al., 2011; Khadka et al.,
etal., 201)L. It is worth noting that di erent measurements may 2013; Meda et al., 2014; Du et al., 2015b, p@gatial ICA of an

re ect disparate connectivity meaning. In addition to theasde  individual-subject's fMRI data decomposes the fMRI data matrix
computation steps, di erent preprocessing strategies alsodcoultime points  voxels) into a linear combination of multiple
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maximally spatially independent components (ICs), of whicheach subject while preserving the correspondence of ICsscros
meaningful ICs can be regarded as brain functional networkgli erent subjects. GIG-ICA has been shown to well represent
In each network, the voxels with greater Z-scores tend teehavindividual subject maps and provides an improved approach for
higher intra-connectivity (or co-activation){u et al., 201Band  addressing individual subject artifacts than single-eubjlICA
can be interpreted as a weighted seed mépsl(et al., 20)1The followed by group ICA Du and Fan, 2013; Du Y. H. et al.,
mixing matrix in the decomposition includes the time serids 0 20163. The tensor probabilistic ICA method stacks the original
the ICs, where each time series re ects the temporal ucwrati multi-subject fMRI data along a separate third dimension with
of each IC. In addition to less prior knowledge needed in adean a hypothesis that di erent subjects have common group spatial
other advantages of ICA relative to the ROI-based methodiCs and time courses but subject specic loading parameters
include (1) simultaneous estimation of multiple networksrit ~ (Beckmann and Smith, 2005; Lee et al., 2008
whole-brain data, (2) overlapping components, which provide Independent vector analysis (IVA) is another method which
a spatial Itering of artifacts $ochat et al., 2014; Du Y. H. optimizes the independence among each subjects components
et al., 2016¢or potentially interesting overlapping networkg{ and the dependence among corresponding components of
et al., 201} and (3) adaptivity of components among subjectsdi erent subjects. Several advancements of IVA have beeremad
allowing for inter-subject variability in regions to be captd for achieving reliable source separation for linearly depetd
(Allen etal., 201p Gaussian and non-Gaussian sourcésderson et al., 2010; Dea
The primary shortcoming of applying ICA on fMRI data et al., 2011; Li et al., 2011; Adali et al., 2014; Anderson . et
is that ICA generates ICs in an arbitrary order. To solve the2014; Boukouvalas et al., 202Bmong those, IVA-GL, which
problem, two strategies are typically adopted in fMRI studiebB wit is a combination of two IVA algorithms, IVA with multivariat
multiple subjectsCalhoun et al., 2009lto make ICs of di erent  Gaussian component vectors (IVA-GpAliderson et al., 20)2
subjects comparable. The rst strategy is to perform ICA forand IVA with multivariate Laplace component vectors (IVA-L)
each subject separately, and then establish correspondél@e o (Lee et al., 2008 provides an attractive tradeo in terms of
across subjects using methods such as subjective idetitirca complexity and performance. A direct comparison of IVA and
(McKeown et al.,, 1998; Calhoun, 20QpIlustering Moritz  GIG-ICA was performed in recent worko( et al., 201 7pwhich
et al., 2003; Esposito et al., 2005; De Martino et al., 2@nd emphasized the advantages of the two approaches. For sources
automated matching based on reproducibilityafig et al., 2008  with slight or moderate inter-subject spatial variability]Gs
These methods could be sensitive to di erent source separatio ICA obtained components with higher accuracy than IVA. For
in multiple ICA decompositions of dierent subjects. For datasets where all subjects had a subject-unique souroéangfe
instance, one single IC detected for a certain subject maplie inter-subject spatial variability, IVA showed better perfance
into several ICs including smaller active areas with closslated in the component/time courses (TC) accuracy of the unique
time courses for other subjectsi¢Keown et al., 1998 making  source, although GIG-ICA in general still performed better fo
it di cult if not impossible to establish correspondence amgn other subject-common sources compared to IVA. Therefore, a
ICs of dierent subjects. The second strategy, often refirreframework that leverages the strengths of IVA and GIG-ICA is
to as group ICA, implements one ICA on all subjects' dateexpected to achieve high accuracy for both subject-commain an
and then obtains subject-speci c ICs from the group-level ICssubject-unique networks.
somehow, which establishes direct correspondence of I@sacr  Itis also well-acknowledged that another pitfall of dataven
di erent subjects. The fMRI data of multiple subjects are tygical approaches@alhoun and De Lacy, 20L& the requirement to
grouped in three di erent ways with distinct hypotheses imposedselect a certain model order (e.g., the number of components i
upon multi-subject fMRI data, including spatial concatenation decomposition methods or the number of clusters in clustering
temporal concatenation, and tensor organization. The spatianethods) that may greatly a ect the resulting brain network
concatenation method concatenates multi-subject fMRI datanaps. While employing ICA to extract functional networks, the
along the spatial dimension supposing that corresponding ICaumber of components is typically estimated using information
of all subjects have common temporal informatioBvensén theoretic principles, such as a modi ed minimum description
etal., 200p The more frequently applied temporal concatenationlength (MDL) criteria (i et al., 200). Since di erent estimation
method concatenates the multi-subject fMRI data along thenethods result in di erent numbers of componentgio et al.,
temporal dimension Calhoun et al., 2001, 2009b; Beckmanr2010, it is important to consider the impact of the model order.
et al., 200 followed by estimation of single-subject maps andMoreover, it is likely that a single model order is not the best
time courses using an approach called back-reconstructiaolwh solution, rather one can consider evaluating the impact oh@ea
includes PCA-based method£dlhoun et al., 2001 spatio- of model orders which enables a hierarchical evaluatiorhef t
temporal (dual)-regressiorBeckmann et al., 2009; Erhardt et al.,brain's spatial organizationMa et al., 2011; Calhoun and De
2019 and group information guided ICA (GIG-ICA)[Qu and  Lacy, 201).
Fan, 2013; Du et al., 2014a, 2015b; Du Y. H. et al., 3016a It is known that features are required to be comparable
Each of these can be considered as providing a di erent balan@eross subjects for the purpose of classi cation or predictian. |
between ensuring matches via a group model and allowindecomposition-based methods, how to propagate components
individual subject variability to be captured. GIG-ICA is@f (indicating functional networks) to a new subject that istno
the more exible approaches and estimates the subject-speciiocluded in the original training set is an important issue. |
ICs by optimizing the independence measure of multiple ICs fothe case of applying individual ICA on each subject separately,
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the obtained components from each coming subject have to bBynamic (Time-Resolved) Functional
well-matched with the components from the training set USingConnectivity Analyses

some matching rules so that their used features are consiste A|| of the above mentioned analysis approaches estimate brain
In group ICA framework, there are several ways to do thisfynctional connectivity by computing an average of the full
one can use spatio-temporal regression to generate spatial afighe series (e.g., computing Pearson correlation betwean tw
temporal features from new subject&rfardt et al., 2001 ROIs using BOLD signals within 5 or 10 min) and generate a
Another approach is to use spatially constrained ICAn(et al.,  static value to re ect the connection strength. In recenagse
2010; Du and Fan, 2013; Du et al., 2014b, 2015b; Du Y. khere have been much interests in computing time-resolved
etal., 2016g The latter approach is more optimal as individual connectivity measures and successful applications in idéngjf
data sets will have results that are optimized for independencpiomarkers from dynamic connectivityhang and Glover, 2010;
and will also provide spatial and temporal features that ar&akoglu et al., 2010; Allen et al., 2014; Zalesky et al., Pad4;
adapted to each individual subject. A classi cation studings et al., 2015a: Sadaghiani et al., 2015; Du Y. H. et al., pOh6b

this framework can be found ibu et al. (2015h) such analysis, brain functional connectivity can vary witfai
) o ] short period (e.g., tens of seconds) rather than be considesed
Functional Network Connectivity Analysis static over time. Such results tend to further expand thelalab

Functional network connectivity (FNC)Jafri et al., 2008; jnformation, and avoid the strong assumption that brain sitgi
Allen et al., 201)L analysis employs a strategy that combiness static over time.

model-driven and data-driven methods. The framework tyfiica While dynamic functional connectivity (DFC) has emerged
includes two steps. It rst performs group ICA on fMRI data a5 a promising topic in the recent fMRI literature, there
of multiple subjects, resulting in subject-specic functa@n are also some critical comments on the theory of dynamic
networks (indicated by ICs) and their associated uctuaBo connectivity.Laumann et al. (20173uggested that correlations
(re ected by TCs). Then, the connectivity between any twaneasured by resting-state BOLD are relatively stable dwat s
networks can be obtained by computing connectivity measurgmescales and may not re ect moment-to-moment changes in
such as Pearson correlation between their post-processeggnitive content. Though this issue is still not completeltlsd,
TCs, resulting in a connectivity matrix including conn@dty  many new studies have shown a relationship between behavior
strengths among all networks. Similar to the ROI-based m&tho emotion, and cognition during rest with dynamic connectyvi
FNC also re ects temporal connectivity among di erent brain featyres, giving us con dence in its potential utility. Indition,
regions. The di erence between the ROI-based and FNC methogince dynamic connectivity has shown to be a useful tool for
is that a data-driven method is applied to fMRI data in thejgentifying biomarkers, we introduce some typical approaches

FNC analysis to generate brain regions that are functignallgng applications in terms of dynamic connectivity.
co-activated (i.e., regions in one network), while in ROkéd

method brain regions are usually decided via prior knowledge

(e.g., brain atlas) rather than using the in-house fMRI dataSliding Time-Window Based Dynamic Connectivity

Similar to ICA, it is necessary to determine the number ofAnalysis

components in advance in the FNC method. FNC approacheghere are numerous methods which can be used to estimate DFC
typically use, a high model order (e.g., 100 or larger) to mtexda  (Calhounetal., 2014; Chen J. E. etal., 2017; Preti et al)). A&7

more detailed parcellation of the brain. sliding time-window techniquefakoglu et al., 2010; Hutchison
et al., 2013; Hindriks et al., 2016; Shakil et al., 205 ehe most
Other Functional Connectivity Measures widely used. By assessing functional connectivity in dirgre

In addition to the typical approaches for assessing functionagime-windows, one can easily expand existing static conviécti
connectivity (e.g. correlation) other meaningful measoests  strategies to be time-resolved. DFC can then be evaluated by
have also been proposed. For example, the regional homogeneitgasuring functional connectivity among ROIls or voxels in a
(ReHo) ang et al., 2004has been proposed to re ect regional sliding window yielding multiple connectivity matrice®( Y.
functional connectivity (or co-activation) where Kendall H. et al., 2016b; Du et al., 2017g,performing ICA (or IVA)

coe cient concordance (KCC) is used to measure the similari on fMRI data in di erent windows to generate dynamic spatial
of the time series of a given voxel to those of its nearesietwork patterns iviniemi et al., 201), or segmenting time
neighbors. A similar approach is Cohe-ReHau( et al., 201p series of networks (i.e., ICs) into short time series and then
computed based on coherence metrics. Regional connectivigpmputing time-varying FNC 4llen et al., 201% The sliding-
may serve as features for di erentiating patients and healthyindow technique has also been applied to evaluate ReHo and
controls. Moreover, after functional connectivity matdcare brain graph, yielding time-varying ReHo valueSenhg et al.,
obtained from either model-driven or data-driven techni&g) 2016 and time-varying graphsYu Q. B. et al., 2015; Du Y. H.
graph-theory derived metricd (u et al., 2008; Lynall et al., 2010; et al., 2016p

Yu Q. etal., 2013such as the averaged node strength, clustering Dynamic connectivity analyses among brain regions and
coe cient, global e ciency, and local e ciency Rubinov and networks have attracted increasing interests. Various aggres
Sporns, 201)0can be calculated. These graph-based measurasfurther investigate the time-varying connectivity patis is a
provide powerful features which integrate across the whadénbr topic of ongoing work. Di erent connectivity states, re enti

and can be used in classifying and predicting individual patie  speci ¢ con gurations of connected regions, can be revealed
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by post-hocanalyses of dynamic connectivitCélhoun et al., instances of hypoconnectivity (with decreasing trends frid@
2014; Damaraju et al., 2014; Rashid et al., 2014; Du et ab,BPP to SAD to SZ) mainly involving post-central, frontal and
2015a, 2017c; Yu Q. B. et al., 2015; Du Y. H. et al., J016lcerebellar cortices as well as 34 examples of hyperconngctivit
Therefore, changes in connectivity states among di ereinichl  (with increasing trends from HC to BPP to SAD to SZ)
populations might provide unique or additional biomarkers primarily involving thalamus and temporal cortices were
of disorders not detectable with SFC measures. Research&and. Interestingly, hypoconnectivities/hyperconneitids
have applied clusteringA(len et al., 2014; Du Y. H. et al., also showed negative/positive correlations, respectiveityy w
20160, principal components analysis (PCA)gonardi et al., clinical symptom scores. Regarding frontal connectivitBP
2013, Fisher discrimination dictionary learning (FDDL)L{ resembled HC while SAD and SZ were more similar. Using a
et al., 2011 and spatial and temporal independent componentssimilar framework, whole-brain DFC from resting-state fMRI
analysis (ICA) {aesoubi et al., 2015b; Miller et al., 2p16 data of 70 HCs, 53 individuals at clinical high-risk (CHR) for
extract connectivity states. These methods typically edém psychosis, and 58 early illness schizophrenia (ESZ) patienés wer
connectivity states with discrepant patterns due to their deet  utilized to estimate the inherent connectivity states, d@hdn
assumptions Calhoun et al., 2004 Clustering approaches group di erences were identi ed u et al., 2017a The work
may fail to converge when working on “noisy” data that dofound widespread connectivity alterations in both CHR anZES
not necessarily have desirable distributions. A more s&rio groups, and ESZ patients generally showed more connectivity
shortcoming of clustering is that the method always candygl di erences with larger changes than CHR individuals relatio
partition with any given number of clusters, regardless iftised  controls. Inspired by these studies, we believe that chaofjes
features show patterns indicating clusters. The above meeti  connections within states, temporal measures such as dwell t
decomposition-based work ¢onardi et al., 2013; Li et al., 2014;in di erent states, as well as disease-speci ¢ states in dyoami
Yaesoubi et al., 2015b; Miller et al., 2Pfidcuses on group-level connectivity analysis are able to provide interesting fesguor
connectivity states that are common across subjects. Onalsa  classi cation of diseases in future.
use GIG-ICA to estimate connectivity states at both grougele Furthermore, the time-varying patterns in brain activitydn
and subject-levelqu et al., 2017a)cThe method rst computes their relationships with time-varying brain connectivityeaalso
the group-level connectivity states by analyzing multiplgiscts' important for advancing our understanding of brain networks
dynamic connectivity, and then guided by the group-leveilet@  and the underlying mechanism of brain dynamics. A recent
correspondingly estimates the subject-speci c connegtstiates study (Fu et al., 201)7 developed a framework based on the
that are independent from each other. sliding window approach for characterizing time-varying iora
There has been considerable work using DFC analysestivity and exploring its associations with time-varyingain
to investigate impairments in schizophrenia-spectrum andconnectivity. This framework was applied to a resting-state
mood disorders Pamaraju et al., 2014; Rashid et al., 2014fMRI dataset including 151 SZ patients and 163 age- and
Du Y. H. et al., 2016b; Du et al., 2017aas well as classifying gender-matched HCs, suggesting that amplitude of low fraque
individual patients based on DFC measurBsi¢hid et al., 20)6  uctuation (ALFF) and FNC were correlated along time and
Damaraju et al. (2014gomputed dynamic FNC matrices of these relationships are signi cantly changed in SZ.
healthy controls (HCs) and SZ patients, and then clustered th
time-varying FNC into dierent states, suggesting that esat Windowless Methods for Extracting Dynamic
exhibiting cortical-subcortical negative connectivitydastrong Connectivity
positive connectivity between sensory networks are thoaé thThe above mentioned sliding time-window methods have
show the group di erences of thalamic hyperconnectivity andbeen extensively used and are successful to estimate dynami
sensory hypoconnectivityRashid et al. (2014also analyzed connectivity. However, there is an apparent limit in lacking
dynamic DFC of SZ patients and BP patients using a clusteringtandards for setting the window length, although previous
method, and found that SZ patients showed more changes thastudies have suggested 30-60 s of window length that aiibleeas
BP subjects, including both hyper and hypo connectivity in onen capturing DFC Zalesky and Breakspear, 2)15the window
common connectivity stateDu Y. H. et al. (2016bgstimated length is too short, the time points in each window could be
dynamic connectivity within the default mode network (DMN) too few to generate robust estimation of connectivity sgirs.
of 82 HCs and 82 SZ patients using a ROI-based method, arid contrast, long window length might decrease the temporal
then applied K-means to extract connectivity states. Theltesu variations of functional connectivity, consequently hinidg
showed that HCs spent more time in a state that re ectedrom detecting e ective connectivity states.
stronger connectivity between anterior and posterior brain Several windowless-based methods have been proposed to
regions, while SZ patients spent more time in a disconnectedvoid the problem in selecting the window length. The regentl
state. Another studyfu et al., 2017cextracted connectivity proposed time-frequency analysisragsoubi et al., 201pa
states from whole-brain ROI-based DFC of 238 HCs, 140 bipolaxplored the connectivity by using multiple frequencies, which
disorder with psychosis (BPP), 132 schizoa ective disordecan be conceptually seen as adapting the observation window
(SAD) and 113 SZ patients using GIG-ICA. Results showed thab the frequency content of the original time courses. Beyes
DFC provided more informative measures than the SFC methodipproach Robinson et al., 2015; Taghia et al., 20h@s also
Diagnosis-related connectivity states were evident uSd§ been employed to study dynamic connectivity, which regards
analysis. For the dominant state consistent across groups, Bxtracting time-varying functional networks as selectiygamic
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models in the Bayesian setting. More recently, a new approa@s features with redundant information might be detrimenta
(Yaesoubi et al., 20)&vas proposed to estimate DFC with the to the results of classi cation. Considering this, it is inmpemnt
main advantage of capturing connectivity with arbitraryeat to incorporate good feature selection strategies to identif
of change. In the approaches based on windowing operatiomppropriate functional connectivity features for the clasation
observable rate of change is driven by the length of the windo of brain disordersTable 1summarize the properties of di erent
but in this approach there is no requirement for a windowingfeature selection methods.
operation.
Filter Methods
A widely applied feature selection strategy is Iter-basedirod,
CLASSIFICATION OR PREDICTION where feature selection is independent from classi er/model
STRATEGIES building (Guyon and Elissee, 2003 They use the general
characteristics of dataset and assign proxy measures tarésat
Brain disorders cause serious impairments or debilitatingrom which a number of features with top scores are selected.
behavior and represent a major health and nancial burdena good Iter method is sensitive to the discretionary power so
globally (igo et al., 201 In the United States, brain disorders 45 o suppress the least interesting features. The most popular
(such as the symptoms, diagnosis, and treatments) are thpicaljter method is to use group-level statistical tests. Generally
dened using the Diagnostic and Statistical Manual (DSM)gynctional connectivity with group di erence are rst idened
(American Psychiatric Association, 2Q13here are also some using di erent statistical tests such &gest, Welchg-test and
alternatives o er standard criteria for the classi catiofi lorain  gnksum-test and then these functional connections are used
disorders, such as ICD-10 Classi cation of Mental and Bebrali 54 input features of classi cation approachesa(houn et al.,
Disorders, produced by the world health organization (WHO).2008: Anderson et al., 2011: Bassett et al., 2012: Du e®a2: 2
However, over the years new knowledge is continuously addedhapshirani et al., 2013: Fekete et al., 2013: Guo H. et al.,
resulting in changes in the diagnosis and disease classirca 2014; Dyrba et al., 201.5A major problem with this strategy
(e.g., some are not valid, some are changed, and new ongsihat group di erence is sometimes investigated using whole
appear). In addition, many mental ilinesses are diagnoseebas g @rbabshirani et al., 20)7 That is, the label information
largely on symptoms, rather than biological criteria. Morefq testing samples is used for feature selection, which et
recently, there has been a focus on the importance of looking, pigsed classi cation results. Another issue is that fesgu
across disorders and also on continuous measures of ass@SSMy e often selected based on thpivalues. However, functional
in both health and disease, e.g., the research domainiorter ¢onnectivities which show smattvalues for group comparisons
(RDoC) (I.nsel ar!d Cuthbert, _20])5.In this context, there haS do not necessarily re ect those with the largest discrintiiom
been an increasing trend to identify biological markersaiBr power. One previous study in our group has shown that features
functional connectivity has been of great interestin tharek for -5 have di erent distributions but comparable group means
markers of numerous brain disorders. In the following, we Willfg, gi erent cohorts (Arbabshirani et al., 2037 This type of
review some commonly used feature selection and clas®rat featyres might have a largevalue of statistical tests but good
(or prediction) strategies in fMRI functional connectivity $&d  ¢|assi cation performance. There are also other Iter metsod
brain disorder studies. Several key aspects of featuretiselec yseq in the classi cation of brain disorders. Fisher score is
methods and classi ers are compared and their promise anginjyariate feature selection algorithm which has been applied

pitfall are discussed. to determine the discriminatory power of features between tw
) ) groups with equal probabilityGu et al., 2012; Khazaee et al.,
Feature Selection Strategies 2019. Correlation-based feature selection (CFS) is a simple

The properties of fMRI data make feature selection especialBlgorithm which ranks features based on a hypothesis that
important in the classi cation and prediction\fan Schooten good feature subsets contain features highly correlatéhd thve

et al., 201 The dimension of functional connectivity is classication {all, 1999; Shen et al., 2010; Tang et al., 2012;
large even if ones only evaluate connectivity between d& neSu et al., 2013; Challis et al., 2R1RELIEF based algorithms
ROIs. If the functional connectivity is calculated betweerare another large family of lter methods which estimate the
voxels, the number of features will go up (potentially miiio  scores of features according to how well their values distsigu
of features). Functional connectivity relating to a specicbetween instance¥{ra and Rendell, 1992These methods are
brain disorder often focuses on a small portion of allnot dependent on heuristics, run in low-order polynomial time
possible connections/associations. In that case, if alttfanal and are noise-tolerant and robust to feature interactions, elé w
connections are used as features in a classier, it woulds being applicable for binary or continuous datéré and
cause an over tting problem since algorithm tries to t the Rendell, 1992 The minimum redundancy, maximum relevance
classier to every feature even the irrelevant ones. If thdmRMR) algorithm has also been used for the feature selection
classi er variables are over tted to the training sampleseyth (Lord et al., 2012 This method uses each feature's predictive
might work poorly on the samples not in the training sets,power and the mutual information between features to rank the
resulting in unsatis ed performance in classi cation. Aredr ~ most relevant features. mRMR can achieve satisfactory sesult
problem is that functional connectivity might provide substial compared with an exhaustive search, without the increase in
redundant information for classi cation. Using all conrteans  time cost for ordering the feature list. The major advantgé
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TABLE 1 | Summary of the feature selection methods.

Feature selection ~ Popular methods Relationship Computational Models feature Over tting Other pros
with classi er complexity dependencies problem and cons
Filter methods « Statistical test Independent Lowest No Least likely Pros: scalable
« Fisher score Cons: features might not be
« Correlation coef cient optimal
Wrapper methods * RFE Dependent Highest Yes Most likely Pros: simple and less pren
« Sequential feature to local optima
selection
« Genetic algorithm
Embedded methods ¢ LASSO regularization Dependent Middle Yes Likely Cons: complexity than
« Decision tree wrapper methods, speci ¢

to a learning model

Iter methods are their e ectiveness in computation time and type of classi er. However, wrapper methods also have two
their robustness to over tting lamon, 2013 However, Iter major shortcomings. First, wrapper methods might over t ifeth
methods also have several drawbacks. First, the featleesesk number of observations is not large. And secondly, wrapper
by Iter methods are not optimized to suit any speci c classie methods are computationally much more expensive since they
Secondly, some of the Iter methods tend to select redundanteed to create classi ers recursively.

features since they ignore the relationships between featur Embedded methods, which combine classi cation and feature
selection into the decision process, have also been applied to
Wrapper Methods and Embedded Methods classi cation (al et al., 2006 Embedded methods are similar

Wrapper methods, which involve optimizing classi ers as partto wrapper methods since both of them incorporate feature
of the feature selection, have also been used in the clasisic  selection into the classier construction process. However,
(Guyon and Elissee, 2003; Fan et al.,, 2011; Venkataramamrapper methods use a learning machine to measure the quality
et al.,, 2012; Yu Y. et al., 20)3iGenerally, wrapper methods of subsets of features without incorporating knowledge @bou
use classi ers or predictive model to rank features. Thissla the speci ¢ structure of the classi cation or regression ftion;

of methods evaluates the classi cation performance of dirgre therefore they can combine with any learning machine. In
combinations of features and tries to identify the optimalembedded methods, the learning part and the feature sefectio
subset of features that can provide the largest discrimiato part cannot be separated. An intrinsic model building metric
power. Since the number of possible feature combinations grows used during the learning process for embedded methods
exponentially as the number of features increase, custdmeiza in which the feature selections are specic to given learning
heuristics and termination-conditions are typically empdolyin  machines. A common category of embedded methods is using a
wrapper methods to avoid that the selection of features ishayo regularization penalty to enforce the sparsity of featuresrideo

a computer's processing power. Various wrapper methods have identify features with more discriminatory power. The nhos
been employed in the brain disorders classication studiespopular embedded method with regularization penalty is the
Recursive feature elimination (RFE) is the most popular usettast absolute shrinkage and selection operator (LASSC)adet
wrapper method which selects features by recursively conisgle (Tibshirani, 1996; Jie et al., 2014; Watanabe et al., 2014; Rosa
smaller and smaller combinations of featur&€saétro et al., 2011, etal., 2015; Fonti and Belitser, 201The LASSO method builds
2014; Ladha and Deepa, 2011; Colby et al., 2012; Dai D. et al.linear model and penalizes the regression weights using L1
2012; Du et al., 2013bThis algorithm trains classi ers using penalty. Amount of weights are shrunk to zero and those feature
the initial set of features and ranks the features accordong with non-zero weights are selected nally. Ridge regressson
theirimportance. The least important features are then dided another embedded method used for the feature selectian (
and the procedure is recursively repeated using the remainingnd Liu, 2003; Ng, 2004 Similar to LASSO method, ridge
features until a pre-desired number of features is seleabtider  regression shrinks the regression weights by incorporating
widely used wrapper method is the genetic algorithm (GA)penalty. However, the ridge penalty behaves dierently than
family, which uses binary encoding and speci ¢ mutation forLASSO penalty. The ridge penalty would be more likely to select
feature selectionsYang and Honavar, 1998Initially, binary  features with high correlations than the LASSO penalty and
encoded subsets of predictors (a feature is either includegnd to provide better classi cation performance. The etasti
or not in the subset) are created and their correspondingnet algorithm is an extension of LASS@qu and Hastie, 2005;
tness values, such as classi cation accuracy, are cadémildhe Gheiratmand et al., 2017; Teipel et al., 201f overcomes
encoded subsets then undergo cross-over and are subject tASSO limitations on the feature number selections and the
random mutations. This process is repeated again and agastabilization of feature selection by using a combination of
to create better subsets of predictors. Wrapper methods tendASSO and ridge regression methods. Since embedded methods
to select better performing features than Iter methods andselect features speci c to the classi ers, they are muchfaste

can provide the best feature selections speci ¢ for a particuldess computationally expensive.
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Classi cation and Prediction Models is very rare in real applications. Second, although LDA can be
Traditional Classi ers used for multi-class classi cation problem, it is more suited
Awide range of classi ers has been applied in the classi catib  the two-class problem.
brain disorders. Support vector machine (SVM) is so far the most
popular method (ord et al., 2012; Anderson and Cohen, 2013Peep Learning Classi ers
YuY.etal, 2013b; Watanabe et al., 2014; Du et al., 2015baDy Deep learning methods have attracted increasing intergsti
et al., 2015; Khazaee et al., 2015; Liu et al., 2015; Satelet evarious areas and also have been applied in the classi cation
2015; Cabral et al., 20)L6BVM is a type of supervised learning of brain disorders Rlis et al., 2014; lidaka, 2015; Lecun et al.,
classi er with learning algorithms used for classi catind  2015; Calhoun and Sui, 2016; Hu et al., 2016; Kim et al., 2016;
regressionCortes and Vapnik, 199jbStandard SVMis a binary Han et al., 2017; Jang et al., 2017; Ju et al.,)20i contrast
classi er which generalizes the optimally separating hypempla to traditional machine learning methods, deep learning huets
to better separate dierent groups of data. The basic idea cire capable of learning the optimal representation directyrir
SVM is to nd an observation of one class which is closest to aithe raw data through using a hierarchical structure with deat
observation from the other class. The hyperplane is drawn in kevels of complexity Liecun et al., 2015; Schmidhuber, 2015;
way that maximizes the distance between these observamnsVieira et al., 201)/ Deep learning methods apply non-linear
that the hyperplane can separate the observations into di erertransformations to the raw data, and the transformationsypde
sides. Since a “slack variable” is used in the SVM clas8¥K  hidden features with higher levels of abstraction, which bé
allows overlaps between di erent groups. There is no assumptiowith more informatics to the original input data space at the
needed for the SVM classi er, making it a very exible method lower levels. This advantage not only helps to automatically
However, it is also hard to interpret the results from SVMsolve di culties in the feature selections, especially whee th
compared with the other traditional classi ers. The origii®/M  dimension of features is too large or when there is limitedbpri
classi eris alinear classi er. By incorporating the di erelkernel  knowledge about the data, but also can improve classi cation
functions to maximum-margin hyperplanes, SVM can becomeerformance compared with a traditional classi er.
non-linear classi ers. The kernel functions transfer theégmal The arti cial neural network (ANN) is popular in the
features space to a higher-dimensional feature space sohthat tclassi cation of patients using fMRI dates(o H. et al., 2014,
algorithm can t the maximum-margin hyperplane in a new Kim et al., 2013 ANN learns to do tasks from examples
feature space. Several common kernels are widely used in SV, constructing layers with arti cial neurons and connexts
such as polynomial kernel, sigmoid kernel, and Gaussian RBfetween them. For example, in brain disorder classi cation, it
kernel. The choice of kernel is crucial for building a sucfidss learns to identify individuals with brain disorder by anailyg
SVM-based classi er. Di erent types of the kernel will be suleab training subjects which are labeled as healthy or disordet an
for di erent studies depending on the characteristics of teas.  using this information to classify other individuals. An audt
SVM with di erent kernels will have di erent hyperparameters encoder is a type of ANN popular used for the brain disorders
needed to be optimized. For example, SVM with linear kernetlassi cations Kim etal., 2016; Guo X. etal., 2017; Juetal., 017
has only one hyperparameter to be adjusted which is called sofhis method comprises two stages. The rst stage is encoding,
margin. In addition, SVM approaches using non-linear kernelsvhich maps the input to a hidden representation. The second
have one or more additional hyperparameters to be tuned. Thstage is decoding, which maps hidden representation back to
optimization of hyperparameters is usually based on a grigbbtain the output that is as close to the input as possible. By
search over pre-provided candidate values. It is very importarimposing sparsity on the hidden layers during training, anaut
in SVM as these parameters signi cantly in uence classiioat encoder can learn useful structures from the input data. This
performance and accuracy. allows sparse representations of inputs, which are useful in pre-
Linear discriminant analysis (LDA) is another widely usedtraining for classi cation tasks. Deep belief network (DBIS)
classier Dai Z. et al., 2012; Cetin et al., 2016; De Marco et alanother class of ANN been used in the classi cation of brain
2017; Qureshi et al., 2017a; Wang et al., }0Which projects disorders using fMRI dataFarzi et al), which is composed of
features into a lower-dimensional space in which di erentgns ~ multiple layers of latent variables and the connections leetw
of data can be maximally separateljltthan et al., 199%  them (Hinton, 2009. A DBN is somewhat unique in that it allows
LDA is a generalization of Fisher's linear discriminant aisd undirected connections between some layers, called cedri
based on the concept of searching for a linear combinatioBoltzmann machines (RBM)Hjelm et al., 201} DBN usually
of features that separate two groupdifa et al., 1999 LDA trains these layers using an unsupervised learning algorsich
explains the group labels by the values of continuous independ as the gradient descent algorithm. Therefore, instead afgusi
variables. By projecting the data into a lower-dimensiopaic®, deterministic functions and the reconstruction error (likbet
LDA can avoid the over tting problem and reduce the overallauto-encoder), DBN is pre-trained using maximum-likelihood
computational costs. LDA is very similar to principal componentestimation {/ieira et al., 201)
analysis (PCA). PCA is used for nding the axes that maximize Several critical issues challenge the using of deep leaiming
the variance of data while LDA is used nd nding the axes classi cation Gchmidhuber, 2015; Vieira et al., 2)1The rst
that maximize the separation between multiple groups. LDA alsghallenge is the amount of time and computational resources.
has two major limitations. First, LDA requires the assumptio The number of layers, nodes and the function of each node
of a common covariance structure in the groups of data, whictare usually manually determined, although some automated
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optimization strategies have been proposed. A large number oihe-against-wholeNasrabadi, 20907 The former builds binary
parameters needs to be estimated in the deep learning methodsassi ers for all pairs of groups and uses a voting scheme to
which makes them cost much more computational resourcesnake the nal decision. The latter one trains a single classi
A second challenge is the potential over tting problem whenfor each class (against other classes) and generate a heal-va
using deep learning methods. Since the feature dimension @bn dence score for the nal decision. Although this strayeg
fMRI data is usually very large while the number of samplesaccompanied with traditional classi ers has been widely applied
is relatively small, deep learning methods will tend to learrin numerous neuroimaging classi cation studies, such prable
features in the data which are speci c or limited to the study.transformation is still controversial. Some other approachave
Although there are several approaches developed to addremso been proposedi6u and Lin, 2002; Fei and Liu, 200®ut
this problem, such as regularization strategies and presete  none of them have been applied to any multi-class brain disorder
of features (i.e., reducing the dimensionality of featurput), studies Kumar and Gopal, 2011; Vieira et al., 2).1Compared
these approaches also introduce other critical problems, asch with the traditional classi ers, deep learning classi ere anore
how to induce appropriate sparsity and how to select the besuitable for multi-class comparison because the application of
subset of features. The third challenge is the interpretglif these classi ers on multi-class problems is more straighifod.
results obtained from deep learning methods. The deep Iegrn In the output layer, deep learning classi ers use a softmax
methods are often treated as a black box, which use consecutiactivation function, which can be derived by extending sienpl
non-linear transformations on the raw features to map themlogistic regression, to represent a categorical distribuitistead
to another space with higher levels of abstraction. Althouglof group labels. In that case, the probabilities of each input
the model information, such as the node in the hidden layerdeature belonging to a class are obtained from the outputrjaye
and the connection between them, has been demonstrated to lpeoviding a more intuitive index of multi-class membershipse
useful for distinguishing brain disorders, it is di cult tdoack-  sophisticated indices generated from traditional classi @fieira
construct them to the original feature space, which will resulet al., 201y, Nowadays, there is a growing trend toward using
in problems of interpreting the results. Because of theseefgsu deep learning classi ers to separate di erent brain disorders
a deep learning method might work well in the classi catioh o brain disorder subtypes, or to diagnose the progression ofbrai
a brain disorder but does not provide any information abou¢th disorder.
underlying neuroanatomical or neurofunctional alterats That
would be of limited clinical utility {/ieira et al., 201)/ Although
these issues remain unsolved),/ geep learning rZethodsgaﬂre s‘ﬁ‘PPLICATIONS USING BRAIN
with a great potential to improve the diagnosis of brain disenel  FUNCTIONAL CONNECTIVITY IN THE
and could be promising tools for advancing the knowledge oCLASSIFICATION OF BRAIN DISORDERS
disrupted brain cognitive functions in brain disorders.

A summary of the properties of di erent classi er models can During the period from 1990 to 2017, more than 200 papers used
be found inTable 2 functional connectivity features alone or multi-modalfgatures

including functional connectivity to classify or predict lma

. . . . disorders. In this section, we primarily focus on studies kiwog
Binary Classi cation to Multi-Class on classifying patients with a brain disorder from healthy tots
Classi cation (i.e., a binary classi cation problem), and also include some
In the context of the classication of brain disorders, thework distinguishing multiple di erent disorders (i.e., a multi
majority of the conventional studies have just focused orabj  class classi cation problem). We mainly summarize studies
classi cation, in which only the comparison between patientselating to schizophrenia, bipolar disorder, autism spectrum
and healthy controls was taken into account. However, frondisorder (ASD), attention de cit hyperactivity disorder (AD),
the clinical perspective, it would be more critical to identif Alzheimer's disease (AD) and mild cognitive impairment (MCI
and develop biomarkers to di erentiate di erent brain diseets some of which share very similar symptoms and common
which share similar symptoms. It is also important to separatehanges in the brain that can confound diagnosis, such as SZ
patients into di erent sub-groups according to the dierent vs. BP, ASD vs. ADHD, and AD vs. MCI. Although other
stages of brain disorder progression. Therefore, the multibrain disorders such as depression also deserve review in
class classi cation problem can be a more signicant issu¢he future, our primary goal here is to provide an overview
for real clinical utility. During the recent decade, incsgay on how far brain functional connectivity features have been
brain disorder studies have drawn their attention to multi- used to classify brain disorders and how well the classi catio
class classication. Since most of the traditional clesss, frameworks have workedrigure 2 and Tables 3-6 present a
such as SVM and LDA, were originally designed for binarysummary of the existing application studies that reported their
classi cation problem Cortes and Vapnik, 1995a; Mika et al., classi cation accuracy. Regarding the performance, theameer
1999, many strategies have been developed to make thdassication accuracy is around 80% for those studiesh wit
traditional classi ers work for multi-class classi catiproblems.  AD/MCI related studies showing the highest accuracy. Irsthe
The most commonly used strategy is to transform multi-clas@pplications, there are trends from using connectivity feasur
classi cation problem to binary classi cation problem. This alone (e.g., spatial maps of ICA and functional connectivity)
strategy includes two di erent techniques, one-againse@md to using complex network properties (e.g., graph-theory based

Frontiers in Neuroscience | www.frontiersin.org 10 August 2018 | Volume 12 | Article 525


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Du et al. Classifying Disorders Using Functional Connectivity

TABLE 2 | Summary of traditional classi ers and deep learning classi es.

Classi ers Popular models Classi cation Computational Over tting Feature Sensitive to Interpretability
performance complexity selection redundant feature
Traditional classiers ¢ SVM Worse Lower Less likely Need More Simple and transparency
« LDA
« Logistic
regression
Deep learning « Autoencodes Better Higher More likely No need Less Hard and lack of trangrency
* DBN
« CNN

FIGURE 2 | Summary of the existing application studies (included ifiables 1-6). (A) Total number of papers for 2-year intervals for each diseasgpe. The legend
shows the color code for each disease type. This legend alsoplies to sub gure (B,D). (B) Scatter plot of the reported classi cation accuracy vs. the btal sample
size. In the sub gure (B), square shape indicates study using features from one moddy, while circle shape represent study using features frormultiple modalities.
(C) Histogram of the sample sizes (including all patients and ladthy controls) of the surveyed studies. Vertical dashechks indicate mean (red) and median (blue) of
the sample size among all studies(D) Disorder speci ¢ boxplot plots of reported classi cation accuracies of the surveyed papers. For each disease type, the
accuracies in different studies are shown using a boxplot. f8en shape means a 95% con dence interval for the mean while ange shape means standard deviation.

measures); from using static connectivity measures to gusincontrols to classifying multiple groups. In each of the follogvin
dynamic connectivity measures; from using features framglei  subsections, we focus on some typical works in more detalil
imaging modality to using features from multiple modalities to highlight these potential trends. If there are both binary
from using traditional classi ers to using more complex deepand multi-class classi cation works, we will describe binary
learning classi ers; and from classifying patients from lttga  classi cation studies rst. Similarly, we try to rst statstudies
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TABLE 5 | Summary of functional connectivity based ASD classi catiorstudies.

References Disorder Features Classi er Sample size Accuracy
Anderson et al. (2011) Autism  Whole brain FC between 7266 ROls Statistic based classation 40 HC and 40 ASD 79%
score

Murdaugh et al. (2012) Autism  FC between DMN ROIs Logistic regression 14 HC and 13 ASD 96.3%

Wang et al. (2012) Autism  FC between 106 ROIs (AAL atlas) Logistic regression 29C and 29 ASD 82.8%

Deshpande et al. Autism  FC from fMRI and FA from DTI SVM 15 HC and 15 ASD 95.9%

(2013)

Nielsen et al. (2013) Autism  Whole brain FC between 7266 ROIs Statistic based classation 517 HC and 447 ASD 60%

score

Uddin et al. (2013) Autism  Independent components extracted by ICA Logistic regrssion 20 HC and 20 ASD 78 83%

Zhou et al. (2014) Autism  Graph measures SVM and Bayesian network 153 HC and 12ASD 70%

Chen et al. (2015) Autism  FC between 220 ROIs from the meta-analysis Random forest 126 HC and 126 ASD 90.8%
of functional imaging studies

lidaka (2015) Autism  FC between 90 ROls (AAL atlas) Probabilistic neural meork 328 HC and 312 ASD 90%

Plitt et al. (2015) Autism  Whole brain FC from different atlas SVM 59 HC AND 59 ASD 76.6%

Chen H. etal. (2016) Autism  Frequency distribution-based FC SVM 128 HC and 112 AB 79.2%

Abraham et al. (2017) Autism  Whole brain FC from different atlas SVM 468 HC and 4033D 68%

Jahedi et al. (2017) Autism  FC between 220 ROIs from the meta-analysis Conditional random forest 126 HC and 126 ASD 71%
of functional imaging studies

Ktena et al. (2017) Autism  Graph measures Convolutional neural network 468 HCral 403 ASD 80%

Sadeghi et al. (2017)  Autism  Local and global functional network properties SVM BHC and 28 ASD 92%

Bernas et al. (2018) Autism  Time of in-phase coherence between LDA and SVM Datal:18 HC and 12 ASD; Data2: 12 86.7%
independent component extracted from ICA HC and 12 ASD

Heinsfeld et al. (2018) Autism  FC between 200 ROIs (CC200 ROl atlas) Auto-Encoder 538C and 505 ASD 70%

using simple features or classi ers and then that using moréCA to extract individual spatial maps as the initial features

complex features or classi ers. and then combined a two-level feature identi cation scheme
with kernel principal component analysis (KPCA) and Fisher's
Schizophrenia and Bipolar Disorder linear discriminant analysis (FLD) in the classi cation of SZ

Schizophrenia is a severe chronic brain disorder whos€PU et al., 201p By using a majority vote methods that use
symptoms can include delusions, disorganized thinkingmultiple features, they achieved a classi cation accuracy of
hallucinations and social withdrawat (idicott and Spitzer, 1978; 98% in the auditory oddball task and 93% in the resting-state.
Kay et al., 1987; Calhoun et al., 2008; Fu et al., 2@dthough The connectivity between identi ed networks (i.e., FNC) is
schizophrenia only a ects about 1% of the population worldwideanother important feature for the classi catior(derson and
(Bhugra, 2005; Van Os et a|_, ZQ,lthe Symptoms can be very Cohen, 2013; Arbabshirani et aI., 2013; Kaufmann et al5)201
disabling. The symptoms of schizophrenia are categorizeunctional connectivity between ROIs de ned by di erent attes
into three types: positive, negative and cognitive, and thedée., ROI-based) is also commonly used to classify SZs and
symptoms usually start in young adulthood and last a long timd1Cs (Venkataraman et al., 2012; Su et al., 2013; Yu Y. et al,
(American Psychiatric Association, 2Q1®Bipolar disorder is 2013a,b; Watanabe et al., 2014; Kim et al., pOAGtomated

a mood disorder marked by alternating episodes of mania ananatomical labeling (AAL) atlas is the most popular atlas using
depression. Bipolar disorder includes four basic subtypesadind in the classi cation, although some other atlases are alsd.use
of them involve clear changes in mood, energy, and actigitgls  Besides these straightforward connectivity features fmmmant
(https:/iwww.nimh.nih.gov/health/topics/bipolar-disoed spatial maps and functional connectivity), high-level netio
index.shtml). The root causes of bipolar disorder are noadje Organization has also been considered as important biomarker
understood, although it is known that both environmentaldan Bassett et al. (2012)sed the size of connected components
genetic factors are involved. There is no standard clinieat in graphs build from functional connectivity among time-
for either schizophrenia or bipolar disorder. Therefore, st i courses for 90 AAL regions as the input features of SVM and

important to investigate the possibility of using neuroimagii  achieved up to 75% classi cation accuracy and 85% sengitivit

data in the automatic diagnosis of these two brain disorders ~ Studies also combined functional connectivity with otheatures
Many studies have focused on distinguishing SZ and Hdrom other modalities to distinguish SZ and HC. Yang et al.

based on the fMRI functional connectivity. ICA based spatiaProposed a hybrid machine learning method to classify SZs

map is one of the most popular used functional features in th@nd HCs, using features from fMRI and single nucleotide

classi cation Demirci et al., 2008; Arribas et al., 2010; CastrdPolymorphism (SNP) data¥ang et al., 20)0 They combined

et al., 2011; Du et al., 20)2For example, Du et al. used three models (SNPs, voxels in the fMRI map contributing to
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TABLE 6 | Summary of functional connectivity-based ADHD classi catin studies.

References Disorder Features Classi er Sample size Accuracy

Zhu et al. (2008) Attention de cit hyperactivity ReHo PCA-FDA 12 HC and 12 ADHD 85%
disorder

Bohland et al. (2012) Attention de cit hyperactivity FC from fMRI and features from sSsMRISVM 168 subjects 74%
disorder and non-image features

Colby et al. (2012) Attention de cit hyperactivity FC, graph measures, ReHo from fMRISVM 491 HC, 111 ADHDI, 163 55%
disorder and features from sMRI ADHDC, and 11 ADHDH

Dai D. et al. (2012) Attention de cit hyperactivity FC, ReHo from fMRI and cortical SVM 491 HC and 285 ADHD 67.8%
disorder thickness, gray matter from sMRI

Dey et al. (2012) Attention de cit hyperactivity FC between ROlIs detected by PCA-LDA 307 HC and 180 ADHD 65.6%
disorder proposed algorithm

Sato et al. (2012) Attention de cit hyperactivity ALFF, ReHo and FC SVM 546 HC and 383 ADHD 67%
disorder

Fair et al. (2013) Attention de cit hyperactivity FC between 160 ROIs (Dosenbach SVM 455 HC and 193 ADHD 69.2%
disorder atlas)

Wang et al. (2013) Attention de cit hyperactivity ReHo SVM 23 HC and 23 ADHD 80%
disorder

Anderson A. et al. (2014) Attention de cit hyperactivity Graph measures from fMRI and Decision tree 472 HC and 476 ADHD 66.8%
disorder features from sMRI

Dey et al. (2014) Attention de cit hyperactivity Graph distance measures SVM 307 HC and 180 ADHD 73.55%
disorder

Dos Santos Siqueira Attention de cit hyperactivity Whole brain FC between 400 ROIs ~ SVM 340 HC and 269 ADHD 7%

etal. (2014) disorder

Deshpande et al. (2015) Attention de cit hyperactivity Directional and non-directional whole Arti cial neural network 744 HC, 173 ADHDI and 260 90%
disorder brain FC ADHDC

Du J. et al., 2016 Attention de cit hyperactivity FC between PCA selected regions SVM 98 HC and 118 ADHD 94.9%
disorder

Park et al. (2016) Attention de cit hyperactivity Whole brain FC between 384 ROIs SVM 13 ADHDI and 21 ADHDC 91.2%
disorder during task

Qureshi et al. (2017b)  Attention de cit hyperactivity FC from fMRI and features from sMRlI SVM 67 HC, 67 ADHDI and 67 92.9%

Riaz et al. (2017)

disorder

Attention de cit hyperactivity
disorder

Whole brain FC between ROIls
determined using the Af nity

SVM

ADHDC

NI: 23 HC and 25 ADHD; KKI: 61 86.7%
HC and 22 ADHD; Peking: 61

Propagation clustering algorithm and
non-image data

HC and 24 ADHD; NYU: 98 HC
and 118 ADHD

classi cation and network maps from ICA) into a single module patients from healthy controls. They used a leave-one-ousro
using a majority voting approach to make a nal decision.validation method to examine the classi cation accuracyeifrh
Through a leave-one-out cross-validation, they demonstta results showed that using the combined fMRI and MEG features
that this framework can provide higher classi cation acatya from FNC improved the classi cation performance (in which
(Combined: 87%; SNP: 74%, voxel: 83%, ICA: 83%). In the 24the highest accuracy is 85.71%) compared to using fMRI and
Machine Learning for Signal Processing competition (MLSPMEG FNC features separately (in which the highest accuracy is
(Silva et al., 2004 participants were asked to automatically 75.82%), and using the combined fMRI and MEG features from
di erentiate 69 schizophrenia patients from 75 healthy cotgro dynamic FNC improved more (in which the highest accuracy
using multimodal features, including FNC features from fMRIis 90.11%). Increasing studies have demonstrated the beok ts
data and component loadings using ICA from structural MRIusing deep learning in the classi cation during recent yekis
data. Performance was estimated using the area under the al. (2016used a L1-norm regularization for feature selection
receiver operating characteristic curve (AUC). No entry walea and a deep neural network (DNN) with multiple hidden layers
to attain an overall AUC of 0.9 or higher, and the median AUC isas the classi er. Their results showed that the DNN can abtai
near 0.75 across all 2087 entries. The winning team got aralbve about 86% accuracy of two-group classi cation which is much
AUC of 0.89 by means of a Gaussian process (GP) classi er withetter than that obtained by SVM.

prior distribution scaled by a probit transformation. Tempora  Functional connectivity-based features for classi catifri$Z
dynamics in the functional connectivity are widely obselwie  and BP patients at the individual level have been studied as
numerous neuroimaging studies and are suggested to be heursell (Calhoun et al., 2008; Arribas et al., 2010; Rashid et al.,
origin. Cetin et al. (2016used static FNC and dynamic FNC 2016. In a previous study Galhoun et al., 2008the distance
obtained from fMRI and MEG data to di erentiate schizophrenia to mean image for each group is constructed using ICA spatial

Frontiers in Neuroscience | www.frontiersin.org 15 August 2018 | Volume 12 | Article 525



Du et al. Classifying Disorders Using Functional Connectivity

maps of the temporal lobe and the default mode networks. Thihese results provide an interesting view on the relatigmshi
feature was used in a leave-one-out cross-validation freorke  among these symptom-related diseases in addition to accurate
and the approach classi ed schizophrenia and bipolar patientseparation. The framework and results of this study (et al.,
at the individual level with the accuracy of around 83-2015f) are shown irFigures 3 4, respectively.
95%. A supervised method for automatic classication of
healthy controls, patients with bipolar disorder, and pat&nt . . .
with schizophrenia using brain imaging data was proposedUtiSm Spectrum Disorder and Attention
in Arribas et al. (2010) The spatial maps of independent De cit Hyperactivity Disorder
components were used as the features and a dimensiokSD is a complex neurodevelopmental disorder characterized
reduction stage comprising two steps is performedt{test; 2. by a wide range of symptoms, skills, and levels of disability
singular value decomposition). The reduced features weega th that a ects how a person acts and interacts with others,
used as input of a probabilistic Bayesian classi ers classi ecommunicates, and learns\(nerican Psychiatric Association,
The experimental results showed that the average three-w&y13j. This disorder begins early in childhood and lasts
correct classi cation rate (CCR) is in the range of 70-72%throughout one’s life. It is estimated that ASD has a preveden
demonstrating their proposed method to be a reliable framéworof 1:68 in the United StatesA(itism and Developmental
on classi cation analyses of both schizophrenia and bipolaDisabilities Monitoring Network Surveillance Year 2008
disorder patients. More recently, time-varying patterns ireth Principal Investigators; Centers for Disease Control Préven
functional connectivity have been used to distinguish S#rfr 2012 and the lifetime costs of treating an American with
BP patients. Rashid et al. proposed a framework for classboati ASD has exceeded one million dollaiSréenspan, 20)5The
of schizophrenia, bipolar and healthy subjects based on theéxact cause of autism is still unknown and it might be caused
static and dynamic FNCHRashid et al., 20)6The classi cation by genetic, brain structure and function, developmental and
performance between static and dynamic connectivity fesgtur environmental factors\{/ing, 199¢. E ective treatments and
was compared through a cross-validation framework. Thealer services can moderate the symptoms and improve the lives.
results showed that dynamic FNC (with the classicationHowever, ASD is a heterogeneous condition which means there
accuracy 84.28%) signi cantly outperforms static FNC (whk t is no same pro le for the individuals with ASD and their speci ¢
classi cation accuracy 59.12%) in terms of predictive aotyyra symptoms may change with developmeni(d et al., 2000
suggesting that dynamic patterns in functional connedjivit Consequently, the diagnosis and de nition of ASD is still a
might provide distinct and more information over the SFC. challenging issue. It is common that children are diagnosed
SZ, SAD, and BPP have overlapping clinical symptomwith ASD until ages ve and six when is too late for e ective
(Cosgrove and Suppes, 2013; Cardno and Owen, 2014; Pearlsrgatments. ADHD is another commonly found brain disorder
et al.,, 201p hence it is very dicult to distinguish them in aecting children which share overlapping and confusing
clinical diagnosis. Du et al. has identi ed markers from mdt- symptoms with ASD Anckarsater et al., 2006; Happé et al.,
speci ¢ brain networks using resting-state fMRI data via GIG-2006; Rommelse et al., 2Q1Children with ADHD may be
ICA, and then classi ed healthy controls, SZ patients, BPRnattention, hyperactivity or impulsivity that interferes thi
patients, patients su ering from schizoa ective disorder with school and home life. ADHD is more common in boys than in
manic episodes (SADM) disorders, and patients su ering fromgirls and is usually diagnosed during the early school yeads a
schizoa ective disorder with depressive episodes exclusivelgst into adulthood. It is estimated that 3-10% of schoadeéhg
(SADD) (Du et al., 2015 Using the training set, the spatial children are aected by the ADHD Hiederman, 2005; Dey
maps of the typical functional networks were used as thet al., 2011 The cause of ADHD is still unclear and researchers
features in a multi-class (ve-class) SVM classier and thedemonstrate that several things, such as heredity, chémica
RFE was employed for feature selection. For each subject iofibalance, brain changes or injury, and poor nutrition might
the testing set, subject-speci ¢ networks were computed undebe involved as possible causes. Currently, a diagnosis of ADHD
the guidance of the group-level networks obtained from thds mainly based on the behavioral symptoms described in DSM
training set, and then the corresponding features were irguitt (American Psychiatric Association, 2Q1Blowever, DSM can be
to the classier trained using the original samples. Resultsnisleading since there is no valid test for ADHD and ADHD has
showed that the discriminative regions mainly includedrfiral, a high rate of comorbidity, which can confuse matters. Dughto
parietal, precuneus, cingulate, supplementary motor, cdebel di culty in diagnosis of ASD and ADHD, an increasing number
insula and supramarginal cortices, and these regions cariggov of studies are using neuroimaging data to develop approaches
68.75% classi cation accuracy for the new coming subjees ( to try to better characterize and predict these brain disosdén
the independent testing set). Based on measures from furadtio the following, we review studies using functional connettivi
networks, hierarchical clustering and projection approachese features in the classi cation of ASD and ADHD.
performed to further investigate the relationship among sho Studies using functional connectivity as features to diassi
groups. Interestingly, the linkage result from the hieraceh ASD began around 2011. Anderson et al. calculated the
clustering showed that using network measures, SADM groufunctional connectivity from 7266 ROI covering gray matter
and SADD group were closest to each other; SAD group waduring the resting-state and then used these as the feataores i
more similar to SZ group compared to other groups; and BRa thresholding leave-one-out classi eAr{derson et al., 20)1
group was closer to HC group than other patients groupsThe classi er performed at 89% accuracy for the subjects
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FIGURE 3 | Flowchart of one study Pu et al., 2015b) that includes classifying HCs, SZ patients, BPP patientSADM patients, and SADD patients. The spatial
network maps of the training set computed from GIG-ICA were use as the features in a multiclass ( ve-class) SVM classi er, tit yielded 68.75% classi cation
accuracy for the new coming subjects. The gure is reused withpermission fromDu et al. (2015b)

20 years age and at 79% for all subjects. In another studiynaging data collected from laboratories around the world
Murdaugh et al. used seed-based functional connectivitydse to accelerate the understanding of the neural bases of ASD
medial prefrontal cortex, posterior cingulate cortex andalag  (http://fcon_1000.projects.nitrc.org/indi/abidel)( Martino
gyrus) as well as whole-brain functional connectivity igistic et al., 2014, 20)7Plitt et al. used 178 age and 1Q matched
regression classi er for distinguishing ASD from controlscohorts from ABIDE and calculated the functional conneityiv
and found that both whole-brain and seed-based connegtivitbetween three di erent ROI sets. They used RFE for feature
patterns can achieve accuracy up to 96.3%urflaugh et al., selection in both logistic regression and SVM classi er and
2012. The Autism Brain Imaging Data Exchange (ABIDE)obtained an overall 76.7% accuracy of classi catigfiti( et al.,
initiative has aggregated functional and structural brain2015. Functional connectivity is also combined with the feature
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FIGURE 4 | Relationship between those original subjects evaluated isg network measures in the study ofDu et al. (2015b) (A) Distance matrix computed using the
feature vectors of 93 subjects. The x-axis and y-axis denotsubject ID. Subjects with ID 1-20 are HCs, subjects with ID 21-4@re SZ patients, subjects with ID
41-60 are BP patients, subjects with ID 61-80 are SADM patiest and subjects with ID 81-93 are SADD patients(B) The mean distance matrix obtained by
averaging the values in each inter-group and intra-group tated sub-block of the distance matrix.(C) The projection results of 93 subjects using t-distributed
stochastic neighbor embedding (t-SNE) method. Each point énotes one subject, and different colors denote different @ups. Each ellipse re ects mean (center) and
standard deviation for one group.(D) The linkage results from the hierarchical clustering metlib The x-axis denotes the subject ID, which is as same as that i(A). In
(D), “HC” denotes that most of the subjects clustered into the réated group are healthy controls. “Sz,” “BP,” “SADM,” and “&DD"” have similar meanings. The gure
is reused with permission fromDu et al. (2015b)

from other modalities in the classi cation of ASD. Deshpandeprocedure and showed that the optimized model produced
et al. identied 18 activated regions from an experimenta total accuracy of 80%. Graph-based measures of functional
involving physical and intentional causality and calcuthte connectivity are becoming important features that distirgjui
causal connectivity weights, functional connectivitynfréMRI,  ADHD from healthy controls Fair et al., 2013; Dey et al.,
and fractional anisotropy obtained from DTI data for each2019. Fair et al. used node strength based on the functional
participant Oeshpande et al., 20.T hese features were used inconnectivity network to successfully classify two subtypes o
a recursive cluster elimination based SVM classi er andliya ADHD (Combined (ADHD-C) and Inattentive (ADHD-I)) from
achieved a maximum classi cation accuracy of 95.9%. Dedpealthy controls with accuracy up to 82.7%a(r et al., 2013
learning classi ers are applied in the classi cation of ASDidg  This graphical measure is also able to separate three groups
recent years. lidaka selected more subjects from ABIDE (31 cohorts with an overall accuracy of 69.2% in the 3-group
subjects with ASD and 328 control subjects) and the ressitage  classi cation. Existing studies also use functional conivégt
functional connectivity between 90 ROIls are used as input aheasures along with other fMRI features or other modal feature
the probabilistic neural network (PNN) for classi cationNR  to classify ADHD (Colby et al., 2012; Dai D. et al., 2012;
obtained classi cation results of 90% accuracyliiaka, 201%  Sato et al., 2012; Anderson A. et al., 201Bor example,
Chen et al. constructed functional network between sigimrals Colby et al. combined morphological measures from structural
di erent frequency bands using ABIDE dataset and showed tha¥IRl and functional features such as functional connectivity
the most of the discriminative features were concentratethe and graphical measures from fMRI as the input features of
Slow-4 band (0.027-0.073 HZ)ffen H. et al., 2076 the SVM and used RFE algorithm for the feature selection.
There has also been a fair amount of work using functionallhey were able to classify the diagnosis of ADHD with 55%
connectivity to classify ADHD and healthy controlshu et al.  accuracy using this SVM-RFE classi ecdlby et al., 2012
(2008) rst used ReHo from fMRI in a PCA-based Fisher Anderson et al. used functional connectivity measures @lon
discriminative analysis (PC-FDA) to build a linear classi e with many other features such as curvature index, foldirggix
and the results showed a classi cation accuracy of 85% usir@aussian curvature, gray matter volume, mean curvaturéace
a leave-one-out cross-validationVang et al. (2013gxtracted area, thickness average, and phenotypic data in a multimodal
ReHo from resting-state fMRI signals and used as input ofeuroimaging framework and obtained 66.8% accuracy of two-
SVM. They selected features according to a cross-validatiagroup classi cation in an ADHD dataset with a large number
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of subjects (472 healthy controls and 276 ADHBn(erson A.  from individuals with MCI and 97% accuracy disambiguating
etal., 2011 individuals with MCI and individuals with AD. Not only the
Studies have shown that ASD and ADHD have bothfunctional connectivity itself, but also its extended orated
shared and disorder-speci ¢ abnormalities in brain functio metrics, such as graphic metrics, have been used as features
(Christakou et al., 2013; Chantiluke et al., 201Klowever, for the diagnosis of AD and MCI. Jie et al. have developed a
few studies have used functional connectivity features taovel framework to integrate multiple connectivity properties
distinguish ASD and ADHD and it is still a challenging issuefor improving the diagnosis of MCI Je et al., 204 A
whether functional connectivity can be a powerful biomart@r  multi-kernel learning (MKL) technique was adopted and two
distinguishing these two brain disorders. types of kernels were used to quantify the local and global
connectivity properties respectively. 91.9% classi cati@uescy
. , . . . was achieved by this method, which is much better than that
Alzheimer's Disease and Mild Cognitive in previous studies using single connectivity properties. theo
Impairment study combined graphic theoretical approaches with machine
MCI is a syndrome which causes greater memory loss thalearning method to investigate the atypical functional brai
expected by aging{authier et al., 2006t is reported that about network in patients with AD Khazaee et al., 201L5They
3-19% of adults older than 65 years su er MCI. The symptomgperformed statistical analysis on connectivity which is nueag
of MCI are not as severe as that in AD and thus people wittby correlation coe cient to search altered connectivity pans
MCI can carry out their normal daily activitiesA(bert et al., in patients and then calculated three graphic metrics, clirsger
201). There are several subtypes of MCI and one subtype callege cient, local e ciency, and normalized local e ciency hsed
amnestic MCI which is associated with memory loss has a higbn the connectivity matrix. A SVM classi er was nally used to
risk of progression to AD Gauthier et al., 2006 Research has explore diagnosis ability of these graphic metrics. Theiultss
shown that the brain areas of memory are impaired in bothshowed that those graphic metrics can well separate patients
MCI and AD, while the cognitive domains are only impaired with AD and healthy controls with 100% accuracy. Functional
in AD (Petersen et al., 19R%Ilthough the rates of progression connectivity from fMRI is also incorporated with features from
varied considerably among literature and the progressiamis other modalities in the diagnosis of AD. Dai et al. proposed a
inevitable, amnestic MCl is still considered to be a forerenof  methodological framework using features from multi-modiak
AD. AD is the most common type of dementia causes problemg discriminate patients with AD from healthy controlAi
with memory, thinking and behaviorgtrittmatter et al., 1993  Z. et al., 2012 The gray matter volume from structural MRI
AD is increasingly prevalent in individuals over the age of 6%and three functional characteristics from fMRI were used as the
and the signi cance of AD as a public health problem becaméeatures of classi ers. By using leave-one-out cross-atidid,
evident Glenner, 1990 It is estimated that 60 new case of AD this method provided satisfactory classi cation accuracy of
exists in every hour and by 2050, this number will go to double89.47% with a sensitivity of 87.50% and a speci city of 90.91%.
(Alzheimer's Association, 20)L.5Between 2000 and 2013, the Schouten et al. used measures from structural MRI, di usion
death results from AD increased remarkably 71%, making ADMRI and resting-state fMRI as the input features of elastic net
the sixth leading cause of death in the United Statésl{eimer's classier to classify AD $chouten et al., 20).6They showed
Association, 2015 the gray matter density achieved the best classi cation raayu
Traditionally, the diagnosis of AD mainly depends onamong all single modal imaging and multimodal combination
the clinical examinations and the evaluations of indivitia can signi cantly improve the classi cation performance. Thes
perception and behaviorAfbabshirani et al., 20)7Improving  ndings suggested that dierent MRI modalities provide
diagnosis of AD and MCI patients might help to identify complementary information for classifying AD. The human
diseases earlier in the disease's progress, which may belcrubrain is a dynamic system with non-stationary neural atyigind
in developing treatments for these disorders. Considering t rapidly-changing neural interaction. Increasing evidesbews
severe health impact of AD and MCI and their overall e ectthat functional connectivity is not static but varies siguwintly
on caregivers and society, there has been a large numbersioftime. There already exist studies using dynamic patterns
studies using neuroimaging features, especially the fonati in functional connectivity as features for the classi catiof
connectivity in fMRI to diagnose these brain disorders. Wanglementia and its pre-stages. A MCI study applied a sliding
et al. proposed a discriminative model of AD based orwindow approach to estimate dynamic functional correlation
the Pseudo-Fisher Linear Discriminative Analysis (pFLDA)ensors between white matters and DFC between gray matters
(Wang et al., 2006 They used the correlation/anti-correlation and used these as features to classify MCI subjecisr{ X.
coe cients of two anti-correlated networks in resting bre et al., 201). They found that the dynamic functional features
as the features of the classi cation model and obtain a CCRigni cantly improved the classi cation performance, shogin
of 83%. Challis et al. employed Bayesian Gaussian procehat the functional information in gray matter and white ntat
logistic regression (GP-LR) models with linear and non-lineais complimentary.
covariance functions in the classication of AD and MCI  Although vast majority of AD or MCI classi cation studies
(Challis et al., 200)5By using functional connectivity as features,used traditional classi ers such as SVM and LDA, increasing
they achieved 75% accuracy disambiguating healthy caentro$tudies have considered the advantages of deep learnisgaias
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over the traditional ones and started using deep learningre homogeneous within each prede ned group. However, in
models in the classi cation of AD and MCISuk et al., 2016; practice patients could be incorrectly diagnosed due to the
Meszlényi et al., 20)."Meszlenyi et al. described a convolutionaloverlapping or similar symptoms of diseases, causing that
neural network for functional connectivity classi catiotalled subjects assigned into the same group may show biologically
connectome-convolutional neural network (CCNNYészlényi inconsistent alterations. Therefore, the possible bias Ha t
et al., 201). By testing the performance of CCNN model on both diagnosis labeling will result in inaccurate biomarkers and
simulated datasets and a public MCI dataset, they showedtbat consequently a ect the discriminative power of the classier
developed model is capable of distinguishing subjects of dnér constructed based on the provided labels.
groups. Their results also demonstrated that the CCNN model There is a great need for the development of disease
can combine dierent functional connectivity metrics in the categories built on biological data and supported by objectink a
classi cation and such combination results in better penfiance  quantitative validation, i.e., the approach recently emphetsi
than other classi ers using single metric only. by the RDoC initiative (www.nimh.nih.gov/rdoc)ir(sel et al.,
2010; Cuthbert and Insel, 20Ll3Due to imperfections of the
current disease nosology (especially for psychiatric dissjder

CHALLENGES AND DIFFICULTIES IN how to identify markers/features from a large amount of
IDENTIFYING BIOMARKERS OF BRAIN possibly relevant measures (e.g., high-dimensional neuwgiima
DISORDERS AND CLASSIFICATION OF data) and then rebuild or re ne the nosology based on the
INDIVIDUAL SUBJECT neuroimaging-features is a big challenge. One way forward i
to consider identifying markers and rebuilding a nosology of
Lacking Gold Standards for Diagnoses disorders (or classifying individual subjects) as one cioreth

Analyzing fMRI data for the ultimate goal of identifying problem. The most important and dicult issue is how to
biomarkers and diagnosing brain disorders using neuroigiag propose a “mathematical, precise resolution of what constitutes
based measures is promising but challenging, due to the fatiu ciently similar' patients” (Ojulbegovic and Paul, 2011;
that the current diagnostic categorization itself used a®rpr Marquand et al., 2006
guidance could be inaccurate and need further re nement
(Insel and Cuthbert, 20)5 So far, there is no gold standard . . e
for the complex diagnosis. The diagnosis is determined solegnc cultle§ In Idemlfymg Acc,urate
by observable symptoms, and the interview and history arE’athological Features as Biomarkers From
the main factors that in uence the diagnosis. For exampleHigh Dimensional Measures
in clinical diagnosis, it can be dicult to distinguish SZ, Given that there are generally more features than samples, it
and SAD that show overlapping clinical symptomSoEgrove is advantageous to reduce the number of possible measures to
and Suppes, 2013; Malaspina et al., 2013; Cardno and Owdocus on a subset of particular interest. As discussed inaect
2019. Sz is a psychotic disorder characterized by altereeature Selection Strategies, most relevant work hasceadra
perception, loss of motivation and judgment, and impairment infeatures in the context of group labeling (e.g., SZ or HCerEv
social cognition. BP is a mood disorder marked by alterratin if feature selection is performed using a supervised methagl, th
episodes of mania and depression. SAD is diagnosed wheesulting features are not necessarily able to show a ciogter
the symptom criteria for SZ are met and during the sameproperty within each group as expected, since there are usually
continuous period there are major depressive, manic or mixedbundant unrelated and redundant measures considered.dn th
episodes. In fact, there are also overlapping symptoms such @gent the diagnosis is inaccurate, selection of featurdsasthey
social withdrawal and communication impairment between ASDcan show clustering (or similar) patterns within the sameugro
and SZ spectrum disorders-ifzgerald, 2013; Chisholm et al., and distinct patterns between di erent groups is more di cult.
2015. ASD, a neurodevelopmental disorder, is characterizeWithout using group labelingClementz et al. (201@opnstructed
by a spectrum of abnormal behaviors including persistenbiotypes using a panel of cognitive and electro physiological
de cits in social communication and interaction across ttiple  features that were selected according to known relevance to
contexts. ADHD is marked by an ongoing pattern of inattentionpsychosis and brain function. Promisingly, biotypes showed
and/or hyperactivity-impulsivity that interferes with futioning  more reasonable neurobiological heterogeneity and caottere
or development. Research work also shows a high rate stibgroups in psychosis than diagnosis-based cate@oeyrentz
overlapping symptoms between ASD and ADHDuw(rines etal., et al., 2015; Meda et al., 2Q1EHowever, the selected features
2012. Therefore, the similarities in symptoms between theselepended on subjective empirical knowledge and were not
brain disorders give rise to di culties in clinical diagniss automatically extracted from available data. In contrastne
Most existing fMRI studies Galhoun et al., 2009a; Koike research work@ates et al., 2014; Geisler et al., 2015; Sun et al.,
et al, 2013; Du et al, 20)7cwhich applied statistical 2015 used all available features and did not further re ne
analyses to investigate dierences among multiple groups dfeatures according to prior knowledge. Such selected festur
performed supervised learning approaches to explore biomarkevgorking well for one dataset may not converge to a consistent
for e ective individual diagnosis and treatment, rely on the grouping for a di erent dataset. More advanced methods which
diagnostic labeling. The assumptions in those studies aye (tan automatically select features that have a good di eatint
diagnostic groups are distinct from each other and (2) indiaals  ability under the condition of no or less guidance of diagisosi
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labeling are still under way. Semi-supervised feature th@ec generates a model that assigns di erent weights to dierent
methods Eheikhpour et al., 20),Avhich allow using both labeled features, can also be employed. Generally, the correlation
and unlabeled samples to discover the feature relevancebeaybetween predicted variables and real recorded variables in

promising and bene cial. the testing set is used to evaluate the performance of the
model.

Challenges in Validating Biomarkers and It should be noted that brain diseases can also induce spatial

Classi cation changes due to atrophy for example. In the preprocessing step,

Once the biomarkers and biologically-derived classioati inter-subject spatial alignment of fMRI data is typically acteie
are obtained, validating the biomarkers and categories (dihrough registering their co-registered structural MRI image
classi cation) is another important issue. Most related sagd an anatomic template or directly registering fMRI data to an
have classied independent subjects based on the identi e@cho planar imaging (EPI) template. However, these registrati
biomarkers and a well-trained model, and then comparednethods cannot guarantee fully accurate inter-subjecttional

the classi cation outputs with the diagnosis labels. Howgve consistency, although the following spatial smoothing of fMRI
researchers should be aware that the diagnosis labels sseddata can reduce the inter-subject functional variabilitysome
ground-truth could be inaccurate. Some worldisler et al., extent. Therefore, functional connectivity computed begwe
2015; Clementz et al., 201évaluated derived categories usinggiven brain regions may not accurately correspond across
external independent measures or other features that weribjects, although the adaptive ICA-based methods are likely
highly correlated with the used features of the same dataset more robust to this than ROI or voxel based approaches. In
see if subjects in one group showed greater similarity imger the future, advanced normalization method&h(llar et al.,

of those additional metrics. However, this kind of validati 2011; Jiang et al., 2013; Cetin et al., J(d@sed on function

is circular to some extent. A more reasonable technique is tformation directly from fMRI data can help address this
assess biomarker and cluster (or classi cation) reprodiigilpy ~ issue.

adding additional independent subjects' data or re-samplihg o

the original data, since a rational classi cation of braisatders SUMMARY

should be able to map onto pathophysiology using di erent

datasets. Mapping brain functional connectivity using fMRI data is
now a major emphasis of ongoing research, frequently with
Other Issues That Should Be Considered a goal of identifying biomarkers and classifying dierent

There are also other issues which deserve consideration hfain disorders. In this paper, we comprehensively reviewed
future clinical applications. In most neuroimaging-baseddi erent approaches which make e orts to accurately map
studies focusing on the classi cation/prediction problem,the functional connectome. We included both the traditibna
accuracy, sensitivity, and speci city were used to evaltlage Static connectivity analysis and the more recently applied
distinguishing ability of the biomarkers identi ed and theodel ~ dynamic connectivity analysis. Connectivity measurest tha
built. Unlike the screening test3rimes and Schulz, 20pthat  can be potentially taken as features (i.e., biomarkers) for
is to detect potential disorders or diseases in people who do néfassi cation and prediction were clearly summarized forreac
have any symptoms of disease, these assessing metrics@gcummethod. Furthermore, we surveyed various feature selectio
sensitivity, and speci city) cannot provide a realistic mersof ~ and classi er building strategies in order to provide guidanc
the positive (probability of having the disease given a pasitivon how to perform the classi cation and predication problem
test) and negative (probability of not having the disorderegi  In practice. After that, an updated overview on applications
a negative test) predictive valuéqstellanos et al., 20)iince  Of classifying SZ, BP, ASD, ADHD, were shown. Finally, we
prevalence of dierent diseases inuences positive/negativéiscussed gaps in the research and areas that particulagywaes
predictive value. improvement.

In addition to accurately classify the categorization cdibr
disorders, increasing studies focus on prediction of camims AUTHOR CONTRIBUTIONS
variables such as individual cognitive scores, symptonsatices
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