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Brain functional imaging data, especially functional magnetic resonance imaging (fMRI)
data, have been employed to re�ect functional integration of the brain. Alteration in brain
functional connectivity (FC) is expected to provide potential biomarkers for classifying or
predicting brain disorders. In this paper, we present a comprehensive review in order
to provide guidance about the available brain FC measures and typical classi�cation
strategies. We survey the state-of-the-art FC analysis methods including widely used
static functional connectivity (SFC) and more recently proposed dynamic functional
connectivity (DFC). Temporal correlations among regions of interest (ROIs), data-driven
spatial network and functional network connectivity (FNC)are often computed to re�ect
SFC from different angles. SFC can be extended to DFC using a sliding-window
framework, and intrinsic connectivity states along the time-varying connectivity patterns
are typically extracted using clustering or decompositionapproaches. We also brie�y
summarize window-less DFC approaches. Subsequently, we highlight various strategies
for feature selection including the �lter, wrapper and embedded methods. In terms
of model building, we include traditional classi�ers as well as more recently applied
deep learning methods. Moreover, we review representativeapplications with remarkable
classi�cation accuracy for psychosis and mood disorders, neurodevelopmental disorder,
and neurological disorders using fMRI data. Schizophrenia, bipolar disorder, autism
spectrum disorder (ASD), attention de�cit hyperactivity disorder (ADHD), Alzheimer's
disease and mild cognitive impairment (MCI) are discussed.Finally, challenges in the �eld
are pointed out with respect to the inaccurate diagnosis labeling, the abundant number
of possible features and the dif�culty in validation. Some suggestions for future work are
also provided.
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INTRODUCTION

Brain disorders such as schizophrenia (SZ) and bipolar disorder
(BP) are considered in terms of disruptions of the normal-range
operation of brain functions. While psychiatric disorders are
diagnosed based on symptom scores from clinical interview,
there are no existing gold standards that can be used for de�nitive
validation. Brain functional neuroimaging techniques including
functional magnetic resonance imaging (fMRI) (Lee et al., 2013;
Power et al., 2014b), positron emission tomography (PET), and
electroencephalography (EEG) have become important tools in
investigating brain disease (Abi-Dargham and Horga, 2016).
There is much hope that brain functional connectivity revealed
using functional neuroimaging data can be used to characterize
brain function abnormality and in turn bene�t diagnosis
and treatment (Deco and Kringelbach, 2014). Among diverse
modalities, fMRI enables non-invasive investigation of brain
function with high spatial resolution and has been widely used
to detect and characterize brain networks or connectivity among
functionally interconnected regions. Investigating di�erences in
functional network (or connectivity) between disorders such
as SZ and BP may provide new insights into their disease
mechanisms (Birur et al., 2017). Furthermore, the identi�ed
changes in connectivity measures may be useful as biomarkers
which can be employed to classify individual patients using
machine learning methods (Arbabshirani et al., 2017; Stephan
et al., 2017). In this paper, we restrict our review to fMRI data,
but some methods are able to be easily expanded to other brain
functional imaging modalities as well.

There have been a variety of methods proposed to measure
functional connectivity (FC) among brain regions using fMRI
data (Van Den Heuvel and Hulsho� Pol, 2010; Smith et al.,
2013; Calhoun and De Lacy, 2017). While di�erent approaches
have di�erent assumptions and advantages, a detailed review
is important to help us understand the ways in which these
approaches have been used. How to select features from a
large amount of measures as biomarker for building model
to classify or predict brain disorders is an important and
challenging problem. Classi�cation and prediction are two forms
of analysis which are used for building models to separate
classes and to predict future outcomes. Generally, classi�cation
is to classify categorical disease labels that have been already
acquired concurrently with or prior to the scan, while prediction
is to predict unknown disease labels, future progression,
or continuous-valued functions. Compared with classi�cation,
prediction is harder but more promising for clinical utility.In
the context of neuroimaging, although increasing studies have
tended to shift their concentration to the prediction problem,
the majority of previous studies on brain disorders focused on
identifying neuromarkers for classifying di�erent groups. In this
paper, we primarily aim to present a comprehensive review
summarizing various brain functional connectivity measures and
typical classi�cation strategies, in order to provide guidance in
this �eld. It is worth noting that most of the measures and
strategies used in the classi�cation problem can also be applied
or extended to the prediction problem. We also survey recent
exciting applications that employed fMRI data to di�erentiate

mental disorders and other brain diseases. The challenges and
di�culties as well as potential solutions are pointed out in the
end.

FUNCTIONAL CONNECTIVITY MEASURES
FROM FMRI DATA

Functional connectivity re�ects the organization and inter-
relationship of spatially separated brain regions. Methods
for measuring and delineating functional connectivity play
a key role, since the used measures may greatly a�ect the
identi�cation of biomarkers and the accuracy of individual-
subject classi�cation and prediction. Typically, functional
connectivity is assumed to be stationary over the scanning
time (usually several minutes), and most previous fMRI
studies applied a static functional connectivity (SFC) analysis.
Until recently, more emerging exciting work have proven
that regarding brain functional connectivity as dynamic over
time can be successful in uncovering the disruptions to the
normal human brain in disease condition (Calhoun et al.,
2014). Figure 1summarizes the primary functional connectivity
analysis methods and possible connectivity features used for
classi�cation/prediction problem.

Static Functional Connectivity Analyses
From a view of methodology, there are generally three kinds of
strategies analyzing SFC (Calhoun and De Lacy, 2017). The �rst
is a model-driven strategy which uses prior knowledge to decide
sets of brain regions/voxels and then limit connectivity analysis
to some speci�c regions/voxels. The second approach is more
data-driven and maps whole brain functional networks using
decomposition or clustering methods. In such case, brain voxels
assigned to the same component or cluster re�ect regions which
are highly correlated. The third combines the idea of the above
two strategies, which �rstly extracts co-activated regionsusing a
data-driven method and then estimates functional connectivity
among the regions. We outline several typical methods as below.

Model-Driven Analysis for Assessing Connectivity
Among Regions or Seeds
Brain functional connectivity analysis amonga priori regions
of interest (ROIs) or voxels (Poldrack, 2007) is the most
widely applied model-driven method. Three key steps include
the determination of locations and shapes of ROIs or the
locations of voxels, the computation of representative time
series of ROIs or voxels, and the assessment of connectivity
(or coupling) among di�erent ROIs or connectivity between
each seed (ROI or voxel) and all other voxels within brain.
As such, the resulting functional connectivity strengths re�ect
the temporal �uctuation relations among the selected voxels
or regions. ROI-based functional connectivity strengths can be
easily taken as features in classi�cation and prediction problems,
since the corresponding connectivity features of a new/testing
subject can be directly computed between the brain regions (or
voxels) selected using the training subjects. While ROIs and
voxels are usually determined by subjective experience and prior
knowledge, the resulting functional connectivity can be greatly
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FIGURE 1 | The primary functional connectivity analysis methods and possible connectivity features used for classi�cation/prediction problem.

sensitive to the empirical selection and show a very di�erent
pattern for small changes in the ROIs. Hence, how to decide a
reasonable region including voxels with consistent brain function
is a challenge. Considerable research work (Thirion et al., 2014;
Glasser et al., 2016) has attempted to delineate a parcellation
of brain by employing information of multiple modalities of
imaging, however, inconsistencies still exists. The representative
time series of voxels in one region can be calculated as the mean
of all voxels' time series or the �rst principal component of all
voxels' time series using principal component analysis (PCA).
Although averaging and PCA can decrease the noise e�ect in the
representative time series of ROIs to some extent, the obtained
functional connectivity can still be related to noise. Functional
connectivity between two representative time series is mostly
estimated by computing correlations to measure their linear
relationship, but also can be assessed by mutual informationto
identify non-linear relationships (Wang et al., 2014). Coherence
estimates the linear relationship in the frequency domain (Sun
et al., 2004), and connectivity within a speci�c frequency can be
achieved by methods such as wavelet decomposition (Skidmore
et al., 2011). It is worth noting that di�erent measurements may
re�ect disparate connectivity meaning. In addition to the above
computation steps, di�erent preprocessing strategies also could

a�ect the resulting functional connectivity strengths. Whether
regressing out global mean is a controversial issue (Murphy et al.,
2009; Hayasaka, 2013) and how to remove out head motion also
deserve further investigation (Friston et al., 1996; Power et al.,
2014a). These shortcomings should be carefully addressed while
conducting analyses using the method.

Data-Driven Analysis for Estimating Spatial
Functional Network Maps
In contrast to model-driven methods, data-driven approaches
estimating functional networks do not require the speci�cation
of prede�ned brain regions or voxels. These popular approaches
include spatial independent component analysis (ICA) (Calhoun
et al., 2001; Calhoun and Adali, 2012; Du and Fan, 2013; Du et al.,
2016; Calhoun and De Lacy, 2017), principle component analysis
(PCA), and clustering methods (Van Den Heuvel et al., 2008; Du
et al., 2014c). In particular, ICA is a widely used approach that has
shown great promise in identifying network-based biomarkers of
psychiatric disorders such as schizophrenia (SZ) (Garrity et al.,
2007; Ongür et al., 2010; Calhoun et al., 2011; Khadka et al.,
2013; Meda et al., 2014; Du et al., 2015b, 2018). Spatial ICA of an
individual-subject's fMRI data decomposes the fMRI data matrix
(time points � voxels) into a linear combination of multiple
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maximally spatially independent components (ICs), of which
meaningful ICs can be regarded as brain functional networks.
In each network, the voxels with greater Z-scores tend to have
higher intra-connectivity (or co-activation) (Du et al., 2018) and
can be interpreted as a weighted seed maps (Joel et al., 2011). The
mixing matrix in the decomposition includes the time series of
the ICs, where each time series re�ects the temporal �uctuation
of each IC. In addition to less prior knowledge needed in advance,
other advantages of ICA relative to the ROI-based method
include (1) simultaneous estimation of multiple networks from
whole-brain data, (2) overlapping components, which provide
a spatial �ltering of artifacts (Sochat et al., 2014; Du Y. H.
et al., 2016a) or potentially interesting overlapping networks (Xu
et al., 2013), and (3) adaptivity of components among subjects,
allowing for inter-subject variability in regions to be captured
(Allen et al., 2012).

The primary shortcoming of applying ICA on fMRI data
is that ICA generates ICs in an arbitrary order. To solve the
problem, two strategies are typically adopted in fMRI studies with
multiple subjects (Calhoun et al., 2009b) to make ICs of di�erent
subjects comparable. The �rst strategy is to perform ICA for
each subject separately, and then establish correspondence of ICs
across subjects using methods such as subjective identi�cation
(McKeown et al., 1998; Calhoun, 2001), clustering (Moritz
et al., 2003; Esposito et al., 2005; De Martino et al., 2007), and
automated matching based on reproducibility (Yang et al., 2008).
These methods could be sensitive to di�erent source separations
in multiple ICA decompositions of di�erent subjects. For
instance, one single IC detected for a certain subject may besplit
into several ICs including smaller active areas with closely related
time courses for other subjects (McKeown et al., 1998), making
it di�cult if not impossible to establish correspondence among
ICs of di�erent subjects. The second strategy, often referred
to as group ICA, implements one ICA on all subjects' data
and then obtains subject-speci�c ICs from the group-level ICs
somehow, which establishes direct correspondence of ICs across
di�erent subjects. The fMRI data of multiple subjects are typically
grouped in three di�erent ways with distinct hypotheses imposed
upon multi-subject fMRI data, including spatial concatenation,
temporal concatenation, and tensor organization. The spatial
concatenation method concatenates multi-subject fMRI data
along the spatial dimension supposing that corresponding ICs
of all subjects have common temporal information (Svensén
et al., 2002). The more frequently applied temporal concatenation
method concatenates the multi-subject fMRI data along the
temporal dimension (Calhoun et al., 2001, 2009b; Beckmann
et al., 2009), followed by estimation of single-subject maps and
time courses using an approach called back-reconstruction which
includes PCA-based methods (Calhoun et al., 2001), spatio-
temporal (dual)-regression (Beckmann et al., 2009; Erhardt et al.,
2011) and group information guided ICA (GIG-ICA) (Du and
Fan, 2013; Du et al., 2014a, 2015b; Du Y. H. et al., 2016a).
Each of these can be considered as providing a di�erent balance
between ensuring matches via a group model and allowing
individual subject variability to be captured. GIG-ICA is one of
the more �exible approaches and estimates the subject-speci�c
ICs by optimizing the independence measure of multiple ICs for

each subject while preserving the correspondence of ICs across
di�erent subjects. GIG-ICA has been shown to well represent
individual subject maps and provides an improved approach for
addressing individual subject artifacts than single-subject ICA
followed by group ICA (Du and Fan, 2013; Du Y. H. et al.,
2016a). The tensor probabilistic ICA method stacks the original
multi-subject fMRI data along a separate third dimension with
a hypothesis that di�erent subjects have common group spatial
ICs and time courses but subject speci�c loading parameters
(Beckmann and Smith, 2005; Lee et al., 2008).

Independent vector analysis (IVA) is another method which
optimizes the independence among each subject's components
and the dependence among corresponding components of
di�erent subjects. Several advancements of IVA have been made
for achieving reliable source separation for linearly dependent
Gaussian and non-Gaussian sources (Anderson et al., 2010; Dea
et al., 2011; Li et al., 2011; Adali et al., 2014; Anderson M. etal.,
2014; Boukouvalas et al., 2015). Among those, IVA-GL, which
is a combination of two IVA algorithms, IVA with multivariate
Gaussian component vectors (IVA-G) (Anderson et al., 2012)
and IVA with multivariate Laplace component vectors (IVA-L)
(Lee et al., 2008), provides an attractive tradeo� in terms of
complexity and performance. A direct comparison of IVA and
GIG-ICA was performed in recent work (Du et al., 2017b) which
emphasized the advantages of the two approaches. For sources
with slight or moderate inter-subject spatial variability, GIG-
ICA obtained components with higher accuracy than IVA. For
datasets where all subjects had a subject-unique source with large
inter-subject spatial variability, IVA showed better performance
in the component/time courses (TC) accuracy of the unique
source, although GIG-ICA in general still performed better for
other subject-common sources compared to IVA. Therefore, a
framework that leverages the strengths of IVA and GIG-ICA is
expected to achieve high accuracy for both subject-common and
subject-unique networks.

It is also well-acknowledged that another pitfall of data-driven
approaches (Calhoun and De Lacy, 2017) is the requirement to
select a certain model order (e.g., the number of components in
decomposition methods or the number of clusters in clustering
methods) that may greatly a�ect the resulting brain network
maps. While employing ICA to extract functional networks, the
number of components is typically estimated using information-
theoretic principles, such as a modi�ed minimum description
length (MDL) criteria (Li et al., 2007). Since di�erent estimation
methods result in di�erent numbers of components (Zuo et al.,
2010), it is important to consider the impact of the model order.
Moreover, it is likely that a single model order is not the best
solution, rather one can consider evaluating the impact of a range
of model orders which enables a hierarchical evaluation of the
brain's spatial organization (Ma et al., 2011; Calhoun and De
Lacy, 2017).

It is known that features are required to be comparable
across subjects for the purpose of classi�cation or prediction. In
decomposition-based methods, how to propagate components
(indicating functional networks) to a new subject that is not
included in the original training set is an important issue. In
the case of applying individual ICA on each subject separately,
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the obtained components from each coming subject have to be
well-matched with the components from the training set using
some matching rules so that their used features are consistent.
In group ICA framework, there are several ways to do this,
one can use spatio-temporal regression to generate spatial and
temporal features from new subjects (Erhardt et al., 2011).
Another approach is to use spatially constrained ICA (Lin et al.,
2010; Du and Fan, 2013; Du et al., 2014b, 2015b; Du Y. H.
et al., 2016a). The latter approach is more optimal as individual
data sets will have results that are optimized for independence,
and will also provide spatial and temporal features that are
adapted to each individual subject. A classi�cation study using
this framework can be found inDu et al. (2015b).

Functional Network Connectivity Analysis
Functional network connectivity (FNC) (Jafri et al., 2008;
Allen et al., 2011) analysis employs a strategy that combines
model-driven and data-driven methods. The framework typically
includes two steps. It �rst performs group ICA on fMRI data
of multiple subjects, resulting in subject-speci�c functional
networks (indicated by ICs) and their associated �uctuations
(re�ected by TCs). Then, the connectivity between any two
networks can be obtained by computing connectivity measure
such as Pearson correlation between their post-processed
TCs, resulting in a connectivity matrix including connectivity
strengths among all networks. Similar to the ROI-based method,
FNC also re�ects temporal connectivity among di�erent brain
regions. The di�erence between the ROI-based and FNC method
is that a data-driven method is applied to fMRI data in the
FNC analysis to generate brain regions that are functionally
co-activated (i.e., regions in one network), while in ROI-based
method brain regions are usually decided via prior knowledge
(e.g., brain atlas) rather than using the in-house fMRI data.
Similar to ICA, it is necessary to determine the number of
components in advance in the FNC method. FNC approaches
typically use, a high model order (e.g., 100 or larger) to provide a
more detailed parcellation of the brain.

Other Functional Connectivity Measures
In addition to the typical approaches for assessing functional
connectivity (e.g. correlation) other meaningful measurements
have also been proposed. For example, the regional homogeneity
(ReHo) (Zang et al., 2004) has been proposed to re�ect regional
functional connectivity (or co-activation) where Kendall's
coe�cient concordance (KCC) is used to measure the similarity
of the time series of a given voxel to those of its nearest
neighbors. A similar approach is Cohe-ReHo (Liu et al., 2010)
computed based on coherence metrics. Regional connectivity
may serve as features for di�erentiating patients and healthy
controls. Moreover, after functional connectivity matrices are
obtained from either model-driven or data-driven techniques,
graph-theory derived metrics (Liu et al., 2008; Lynall et al., 2010;
Yu Q. et al., 2013) such as the averaged node strength, clustering
coe�cient, global e�ciency, and local e�ciency (Rubinov and
Sporns, 2010) can be calculated. These graph-based measures
provide powerful features which integrate across the whole brain
and can be used in classifying and predicting individual patients.

Dynamic (Time-Resolved) Functional
Connectivity Analyses
All of the above mentioned analysis approaches estimate brain
functional connectivity by computing an average of the full
time series (e.g., computing Pearson correlation between two
ROIs using BOLD signals within 5 or 10 min) and generate a
static value to re�ect the connection strength. In recent years,
there have been much interests in computing time-resolved
connectivity measures and successful applications in identifying
biomarkers from dynamic connectivity (Chang and Glover, 2010;
Sakoglu et al., 2010; Allen et al., 2014; Zalesky et al., 2014;Du
et al., 2015a; Sadaghiani et al., 2015; Du Y. H. et al., 2016b). In
such analysis, brain functional connectivity can vary within a
short period (e.g., tens of seconds) rather than be consideredas
static over time. Such results tend to further expand the available
information, and avoid the strong assumption that brain activity
is static over time.

While dynamic functional connectivity (DFC) has emerged
as a promising topic in the recent fMRI literature, there
are also some critical comments on the theory of dynamic
connectivity.Laumann et al. (2017)suggested that correlations
measured by resting-state BOLD are relatively stable over short
timescales and may not re�ect moment-to-moment changes in
cognitive content. Though this issue is still not completely settled,
many new studies have shown a relationship between behavior,
emotion, and cognition during rest with dynamic connectivity
features, giving us con�dence in its potential utility. In addition,
since dynamic connectivity has shown to be a useful tool for
identifying biomarkers, we introduce some typical approaches
and applications in terms of dynamic connectivity.

Sliding Time-Window Based Dynamic Connectivity
Analysis
There are numerous methods which can be used to estimate DFC
(Calhoun et al., 2014; Chen J. E. et al., 2017; Preti et al., 2017). The
sliding time-window technique (Sakoglu et al., 2010; Hutchison
et al., 2013; Hindriks et al., 2016; Shakil et al., 2016) is the most
widely used. By assessing functional connectivity in di�erent
time-windows, one can easily expand existing static connectivity
strategies to be time-resolved. DFC can then be evaluated by
measuring functional connectivity among ROIs or voxels in a
sliding window yielding multiple connectivity matrices (Du Y.
H. et al., 2016b; Du et al., 2017a,c), performing ICA (or IVA)
on fMRI data in di�erent windows to generate dynamic spatial
network patterns (Kiviniemi et al., 2011), or segmenting time
series of networks (i.e., ICs) into short time series and then
computing time-varying FNC (Allen et al., 2014). The sliding-
window technique has also been applied to evaluate ReHo and
brain graph, yielding time-varying ReHo values (Deng et al.,
2016) and time-varying graphs (Yu Q. B. et al., 2015; Du Y. H.
et al., 2016b).

Dynamic connectivity analyses among brain regions and
networks have attracted increasing interests. Various approaches
to further investigate the time-varying connectivity patterns is a
topic of ongoing work. Di�erent connectivity states, re�ecting
speci�c con�gurations of connected regions, can be revealed
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by post-hocanalyses of dynamic connectivity (Calhoun et al.,
2014; Damaraju et al., 2014; Rashid et al., 2014; Du et al.,
2015a, 2017c; Yu Q. B. et al., 2015; Du Y. H. et al., 2016b).
Therefore, changes in connectivity states among di�erent clinical
populations might provide unique or additional biomarkers
of disorders not detectable with SFC measures. Researchers
have applied clustering (Allen et al., 2014; Du Y. H. et al.,
2016b), principal components analysis (PCA) (Leonardi et al.,
2013), Fisher discrimination dictionary learning (FDDL) (Li
et al., 2014), and spatial and temporal independent components
analysis (ICA) (Yaesoubi et al., 2015b; Miller et al., 2016) to
extract connectivity states. These methods typically estimate
connectivity states with discrepant patterns due to their di�erent
assumptions (Calhoun et al., 2014). Clustering approaches
may fail to converge when working on “noisy” data that do
not necessarily have desirable distributions. A more serious
shortcoming of clustering is that the method always can yield a
partition with any given number of clusters, regardless if theused
features show patterns indicating clusters. The above mentioned
decomposition-based work (Leonardi et al., 2013; Li et al., 2014;
Yaesoubi et al., 2015b; Miller et al., 2016) focuses on group-level
connectivity states that are common across subjects. One can also
use GIG-ICA to estimate connectivity states at both group-level
and subject-level (Du et al., 2017a,c). The method �rst computes
the group-level connectivity states by analyzing multiple subjects'
dynamic connectivity, and then guided by the group-level states it
correspondingly estimates the subject-speci�c connectivity states
that are independent from each other.

There has been considerable work using DFC analyses
to investigate impairments in schizophrenia-spectrum and
mood disorders (Damaraju et al., 2014; Rashid et al., 2014;
Du Y. H. et al., 2016b; Du et al., 2017a,c) as well as classifying
individual patients based on DFC measures (Rashid et al., 2016).
Damaraju et al. (2014)computed dynamic FNC matrices of
healthy controls (HCs) and SZ patients, and then clustered the
time-varying FNC into di�erent states, suggesting that states
exhibiting cortical-subcortical negative connectivity and strong
positive connectivity between sensory networks are those that
show the group di�erences of thalamic hyperconnectivity and
sensory hypoconnectivity.Rashid et al. (2014)also analyzed
dynamic DFC of SZ patients and BP patients using a clustering
method, and found that SZ patients showed more changes than
BP subjects, including both hyper and hypo connectivity in one
common connectivity state.Du Y. H. et al. (2016b)estimated
dynamic connectivity within the default mode network (DMN)
of 82 HCs and 82 SZ patients using a ROI-based method, and
then applied K-means to extract connectivity states. The results
showed that HCs spent more time in a state that re�ected
stronger connectivity between anterior and posterior brain
regions, while SZ patients spent more time in a disconnected
state. Another study (Du et al., 2017c) extracted connectivity
states from whole-brain ROI-based DFC of 238 HCs, 140 bipolar
disorder with psychosis (BPP), 132 schizoa�ective disorder
(SAD) and 113 SZ patients using GIG-ICA. Results showed that
DFC provided more informative measures than the SFC method.
Diagnosis-related connectivity states were evident usingDFC
analysis. For the dominant state consistent across groups, 22

instances of hypoconnectivity (with decreasing trends fromHC
to BPP to SAD to SZ) mainly involving post-central, frontal and
cerebellar cortices as well as 34 examples of hyperconnectivity
(with increasing trends from HC to BPP to SAD to SZ)
primarily involving thalamus and temporal cortices were
found. Interestingly, hypoconnectivities/hyperconnectivities
also showed negative/positive correlations, respectively, with
clinical symptom scores. Regarding frontal connectivities,BPP
resembled HC while SAD and SZ were more similar. Using a
similar framework, whole-brain DFC from resting-state fMRI
data of 70 HCs, 53 individuals at clinical high-risk (CHR) for
psychosis, and 58 early illness schizophrenia (ESZ) patients were
utilized to estimate the inherent connectivity states, andthen
group di�erences were identi�ed (Du et al., 2017a). The work
found widespread connectivity alterations in both CHR and ESZ
groups, and ESZ patients generally showed more connectivity
di�erences with larger changes than CHR individuals relative to
controls. Inspired by these studies, we believe that changesof
connections within states, temporal measures such as dwell time
in di�erent states, as well as disease-speci�c states in dynamic
connectivity analysis are able to provide interesting features for
classi�cation of diseases in future.

Furthermore, the time-varying patterns in brain activity and
their relationships with time-varying brain connectivity are also
important for advancing our understanding of brain networks
and the underlying mechanism of brain dynamics. A recent
study (Fu et al., 2017) developed a framework based on the
sliding window approach for characterizing time-varying brain
activity and exploring its associations with time-varying brain
connectivity. This framework was applied to a resting-state
fMRI dataset including 151 SZ patients and 163 age- and
gender-matched HCs, suggesting that amplitude of low frequency
�uctuation (ALFF) and FNC were correlated along time and
these relationships are signi�cantly changed in SZ.

Windowless Methods for Extracting Dynamic
Connectivity
The above mentioned sliding time-window methods have
been extensively used and are successful to estimate dynamic
connectivity. However, there is an apparent limit in lacking
standards for setting the window length, although previous
studies have suggested 30–60 s of window length that are feasible
in capturing DFC (Zalesky and Breakspear, 2015). If the window
length is too short, the time points in each window could be
too few to generate robust estimation of connectivity strengths.
In contrast, long window length might decrease the temporal
variations of functional connectivity, consequently hindering
from detecting e�ective connectivity states.

Several windowless-based methods have been proposed to
avoid the problem in selecting the window length. The recently
proposed time-frequency analysis (Yaesoubi et al., 2015a)
explored the connectivity by using multiple frequencies, which
can be conceptually seen as adapting the observation window
to the frequency content of the original time courses. Bayesian
approach (Robinson et al., 2015; Taghia et al., 2017) has also
been employed to study dynamic connectivity, which regards
extracting time-varying functional networks as selectingdynamic
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models in the Bayesian setting. More recently, a new approach
(Yaesoubi et al., 2018) was proposed to estimate DFC with the
main advantage of capturing connectivity with arbitrary rates
of change. In the approaches based on windowing operation,
observable rate of change is driven by the length of the window,
but in this approach there is no requirement for a windowing
operation.

CLASSIFICATION OR PREDICTION
STRATEGIES

Brain disorders cause serious impairments or debilitating
behavior and represent a major health and �nancial burden
globally (Vigo et al., 2016). In the United States, brain disorders
(such as the symptoms, diagnosis, and treatments) are typically
de�ned using the Diagnostic and Statistical Manual (DSM)
(American Psychiatric Association, 2013). There are also some
alternatives o�er standard criteria for the classi�cation of brain
disorders, such as ICD-10 Classi�cation of Mental and Behavioral
Disorders, produced by the world health organization (WHO).
However, over the years new knowledge is continuously added,
resulting in changes in the diagnosis and disease classi�cation
(e.g., some are not valid, some are changed, and new ones
appear). In addition, many mental illnesses are diagnosed based
largely on symptoms, rather than biological criteria. More
recently, there has been a focus on the importance of looking
across disorders and also on continuous measures of assessment
in both health and disease, e.g., the research domain criterion
(RDoC) (Insel and Cuthbert, 2015). In this context, there has
been an increasing trend to identify biological markers. Brain
functional connectivity has been of great interest in the search for
markers of numerous brain disorders. In the following, we will
review some commonly used feature selection and classi�cation
(or prediction) strategies in fMRI functional connectivity based
brain disorder studies. Several key aspects of feature selection
methods and classi�ers are compared and their promise and
pitfall are discussed.

Feature Selection Strategies
The properties of fMRI data make feature selection especially
important in the classi�cation and prediction (Van Schooten
et al., 2014). The dimension of functional connectivity is
large even if ones only evaluate connectivity between de�ned
ROIs. If the functional connectivity is calculated between
voxels, the number of features will go up (potentially millions
of features). Functional connectivity relating to a speci�c
brain disorder often focuses on a small portion of all
possible connections/associations. In that case, if all functional
connections are used as features in a classi�er, it would
cause an over�tting problem since algorithm tries to �t the
classi�er to every feature even the irrelevant ones. If the
classi�er variables are over�tted to the training samples, they
might work poorly on the samples not in the training sets,
resulting in unsatis�ed performance in classi�cation. Another
problem is that functional connectivity might provide substantial
redundant information for classi�cation. Using all connections

as features with redundant information might be detrimental
to the results of classi�cation. Considering this, it is important
to incorporate good feature selection strategies to identify
appropriate functional connectivity features for the classi�cation
of brain disorders.Table 1summarize the properties of di�erent
feature selection methods.

Filter Methods
A widely applied feature selection strategy is �lter-based method,
where feature selection is independent from classi�er/model
building (Guyon and Elissee�, 2003). They use the general
characteristics of dataset and assign proxy measures to features
from which a number of features with top scores are selected.
A good �lter method is sensitive to the discretionary power so
as to suppress the least interesting features. The most popular
�lter method is to use group-level statistical tests. Generally,
functional connectivity with group di�erence are �rst identi�ed
using di�erent statistical tests such ast-test, Welch'st-test and
ranksum-test and then these functional connections are used
as input features of classi�cation approaches (Calhoun et al.,
2008; Anderson et al., 2011; Bassett et al., 2012; Du et al., 2012;
Arbabshirani et al., 2013; Fekete et al., 2013; Guo H. et al.,
2014; Dyrba et al., 2015). A major problem with this strategy
is that group di�erence is sometimes investigated using whole
data (Arbabshirani et al., 2017). That is, the label information
for testing samples is used for feature selection, which will result
in biased classi�cation results. Another issue is that features
are often selected based on theirp-values. However, functional
connectivities which show smallp-values for group comparisons
do not necessarily re�ect those with the largest discrimination
power. One previous study in our group has shown that features
can have di�erent distributions but comparable group means
for di�erent cohorts (Arbabshirani et al., 2017). This type of
features might have a largep-value of statistical tests but good
classi�cation performance. There are also other �lter methods
used in the classi�cation of brain disorders. Fisher score isa
univariate feature selection algorithm which has been applied
to determine the discriminatory power of features between two
groups with equal probability (Gu et al., 2012; Khazaee et al.,
2015). Correlation-based feature selection (CFS) is a simple
algorithm which ranks features based on a hypothesis that
good feature subsets contain features highly correlated with the
classi�cation (Hall, 1999; Shen et al., 2010; Tang et al., 2012;
Su et al., 2013; Challis et al., 2015). RELIEF based algorithms
are another large family of �lter methods which estimate the
scores of features according to how well their values distinguish
between instances (Kira and Rendell, 1992). These methods are
not dependent on heuristics, run in low-order polynomial time,
and are noise-tolerant and robust to feature interactions, as well
as being applicable for binary or continuous data (Kira and
Rendell, 1992). The minimum redundancy, maximum relevance
(mRMR) algorithm has also been used for the feature selection
(Lord et al., 2012). This method uses each feature's predictive
power and the mutual information between features to rank the
most relevant features. mRMR can achieve satisfactory results
compared with an exhaustive search, without the increase in
time cost for ordering the feature list. The major advantages of
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TABLE 1 | Summary of the feature selection methods.

Feature selection Popular methods Relationship
with classi�er

Computational
complexity

Models feature
dependencies

Over�tting
problem

Other pros
and cons

Filter methods • Statistical test
• Fisher score
• Correlation coef�cient

Independent Lowest No Least likely Pros: scalable
Cons: features might not be
optimal

Wrapper methods • RFE
• Sequential feature

selection
• Genetic algorithm

Dependent Highest Yes Most likely Pros: simple and less prone
to local optima

Embedded methods • LASSO regularization
• Decision tree

Dependent Middle Yes Likely Cons: complexity than
wrapper methods, speci�c
to a learning model

�lter methods are their e�ectiveness in computation time and
their robustness to over�tting (Hamon, 2013). However, �lter
methods also have several drawbacks. First, the features selected
by �lter methods are not optimized to suit any speci�c classi�er.
Secondly, some of the �lter methods tend to select redundant
features since they ignore the relationships between features.

Wrapper Methods and Embedded Methods
Wrapper methods, which involve optimizing classi�ers as part
of the feature selection, have also been used in the classi�cation
(Guyon and Elissee�, 2003; Fan et al., 2011; Venkataraman
et al., 2012; Yu Y. et al., 2013b). Generally, wrapper methods
use classi�ers or predictive model to rank features. This class
of methods evaluates the classi�cation performance of di�erent
combinations of features and tries to identify the optimal
subset of features that can provide the largest discriminatory
power. Since the number of possible feature combinations grows
exponentially as the number of features increase, customizable
heuristics and termination-conditions are typically employed in
wrapper methods to avoid that the selection of features is beyond
a computer's processing power. Various wrapper methods have
been employed in the brain disorders classi�cation studies.
Recursive feature elimination (RFE) is the most popular used
wrapper method which selects features by recursively considering
smaller and smaller combinations of features (Castro et al., 2011,
2014; Ladha and Deepa, 2011; Colby et al., 2012; Dai D. et al.,
2012; Du et al., 2015b). This algorithm trains classi�ers using
the initial set of features and ranks the features accordingto
their importance. The least important features are then discarded
and the procedure is recursively repeated using the remaining
features until a pre-desired number of features is select. Another
widely used wrapper method is the genetic algorithm (GA)
family, which uses binary encoding and speci�c mutation for
feature selections (Yang and Honavar, 1998). Initially, binary
encoded subsets of predictors (a feature is either included
or not in the subset) are created and their corresponding
�tness values, such as classi�cation accuracy, are calculated. The
encoded subsets then undergo cross-over and are subject to
random mutations. This process is repeated again and again
to create better subsets of predictors. Wrapper methods tend
to select better performing features than �lter methods and
can provide the best feature selections speci�c for a particular

type of classi�er. However, wrapper methods also have two
major shortcomings. First, wrapper methods might over�t if the
number of observations is not large. And secondly, wrapper
methods are computationally much more expensive since they
need to create classi�ers recursively.

Embedded methods, which combine classi�cation and feature
selection into the decision process, have also been applied to
classi�cation (Lal et al., 2006). Embedded methods are similar
to wrapper methods since both of them incorporate feature
selection into the classi�er construction process. However,
wrapper methods use a learning machine to measure the quality
of subsets of features without incorporating knowledge about
the speci�c structure of the classi�cation or regression function;
therefore they can combine with any learning machine. In
embedded methods, the learning part and the feature selection
part cannot be separated. An intrinsic model building metric
is used during the learning process for embedded methods
in which the feature selections are speci�c to given learning
machines. A common category of embedded methods is using a
regularization penalty to enforce the sparsity of features in order
to identify features with more discriminatory power. The most
popular embedded method with regularization penalty is the
least absolute shrinkage and selection operator (LASSO) method
(Tibshirani, 1996; Jie et al., 2014; Watanabe et al., 2014; Rosa
et al., 2015; Fonti and Belitser, 2017). The LASSO method builds
a linear model and penalizes the regression weights using L1
penalty. Amount of weights are shrunk to zero and those features
with non-zero weights are selected �nally. Ridge regressionis
another embedded method used for the feature selection (Yu
and Liu, 2003; Ng, 2004). Similar to LASSO method, ridge
regression shrinks the regression weights by incorporatinga
penalty. However, the ridge penalty behaves di�erently than
LASSO penalty. The ridge penalty would be more likely to select
features with high correlations than the LASSO penalty and
tend to provide better classi�cation performance. The elastic
net algorithm is an extension of LASSO (Zou and Hastie, 2005;
Gheiratmand et al., 2017; Teipel et al., 2017). It overcomes
LASSO limitations on the feature number selections and the
stabilization of feature selection by using a combination of
LASSO and ridge regression methods. Since embedded methods
select features speci�c to the classi�ers, they are much faster and
less computationally expensive.
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Classi�cation and Prediction Models
Traditional Classi�ers
A wide range of classi�ers has been applied in the classi�cation of
brain disorders. Support vector machine (SVM) is so far the most
popular method (Lord et al., 2012; Anderson and Cohen, 2013;
Yu Y. et al., 2013b; Watanabe et al., 2014; Du et al., 2015b; Dyrba
et al., 2015; Khazaee et al., 2015; Liu et al., 2015; Sacchet et al.,
2015; Cabral et al., 2016). SVM is a type of supervised learning
classi�er with learning algorithms used for classi�cationand
regression (Cortes and Vapnik, 1995b). Standard SVM is a binary
classi�er which generalizes the optimally separating hyperplane
to better separate di�erent groups of data. The basic idea of
SVM is to �nd an observation of one class which is closest to an
observation from the other class. The hyperplane is drawn in a
way that maximizes the distance between these observationsso
that the hyperplane can separate the observations into di�erent
sides. Since a “slack variable” is used in the SVM classi�er,SVM
allows overlaps between di�erent groups. There is no assumption
needed for the SVM classi�er, making it a very �exible method.
However, it is also hard to interpret the results from SVM
compared with the other traditional classi�ers. The original SVM
classi�er is a linear classi�er. By incorporating the di�erent kernel
functions to maximum-margin hyperplanes, SVM can become
non-linear classi�ers. The kernel functions transfer the original
features space to a higher-dimensional feature space so that the
algorithm can �t the maximum-margin hyperplane in a new
feature space. Several common kernels are widely used in SVM,
such as polynomial kernel, sigmoid kernel, and Gaussian RBF
kernel. The choice of kernel is crucial for building a successful
SVM-based classi�er. Di�erent types of the kernel will be suitable
for di�erent studies depending on the characteristics of features.
SVM with di�erent kernels will have di�erent hyperparameters
needed to be optimized. For example, SVM with linear kernel
has only one hyperparameter to be adjusted which is called soft
margin. In addition, SVM approaches using non-linear kernels
have one or more additional hyperparameters to be tuned. The
optimization of hyperparameters is usually based on a grid
search over pre-provided candidate values. It is very important
in SVM as these parameters signi�cantly in�uence classi�cation
performance and accuracy.

Linear discriminant analysis (LDA) is another widely used
classi�er (Dai Z. et al., 2012; Cetin et al., 2016; De Marco et al.,
2017; Qureshi et al., 2017a; Wang et al., 2017), which projects
features into a lower-dimensional space in which di�erent groups
of data can be maximally separately (Altman et al., 1994).
LDA is a generalization of Fisher's linear discriminant andis
based on the concept of searching for a linear combination
of features that separate two groups (Mika et al., 1999). LDA
explains the group labels by the values of continuous independent
variables. By projecting the data into a lower-dimensional space,
LDA can avoid the over�tting problem and reduce the overall
computational costs. LDA is very similar to principal component
analysis (PCA). PCA is used for �nding the axes that maximize
the variance of data while LDA is used �nd �nding the axes
that maximize the separation between multiple groups. LDA also
has two major limitations. First, LDA requires the assumption
of a common covariance structure in the groups of data, which

is very rare in real applications. Second, although LDA can be
used for multi-class classi�cation problem, it is more suitedto
the two-class problem.

Deep Learning Classi�ers
Deep learning methods have attracted increasing interesting in
various areas and also have been applied in the classi�cation
of brain disorders (Plis et al., 2014; Iidaka, 2015; Lecun et al.,
2015; Calhoun and Sui, 2016; Hu et al., 2016; Kim et al., 2016;
Han et al., 2017; Jang et al., 2017; Ju et al., 2017). In contrast
to traditional machine learning methods, deep learning methods
are capable of learning the optimal representation directly from
the raw data through using a hierarchical structure with di�erent
levels of complexity (Lecun et al., 2015; Schmidhuber, 2015;
Vieira et al., 2017). Deep learning methods apply non-linear
transformations to the raw data, and the transformations provide
hidden features with higher levels of abstraction, which will be
with more informatics to the original input data space at the
lower levels. This advantage not only helps to automatically
solve di�culties in the feature selections, especially when the
dimension of features is too large or when there is limited prior
knowledge about the data, but also can improve classi�cation
performance compared with a traditional classi�er.

The arti�cial neural network (ANN) is popular in the
classi�cation of patients using fMRI data (Guo H. et al., 2014;
Kim et al., 2016). ANN learns to do tasks from examples
by constructing layers with arti�cial neurons and connections
between them. For example, in brain disorder classi�cation, it
learns to identify individuals with brain disorder by analyzing
training subjects which are labeled as healthy or disorder and
using this information to classify other individuals. An auto-
encoder is a type of ANN popular used for the brain disorders
classi�cations (Kim et al., 2016; Guo X. et al., 2017; Ju et al., 2017).
This method comprises two stages. The �rst stage is encoding,
which maps the input to a hidden representation. The second
stage is decoding, which maps hidden representation back to
obtain the output that is as close to the input as possible. By
imposing sparsity on the hidden layers during training, an auto-
encoder can learn useful structures from the input data. This
allows sparse representations of inputs, which are useful in pre-
training for classi�cation tasks. Deep belief network (DBN)is
another class of ANN been used in the classi�cation of brain
disorders using fMRI data (Farzi et al.), which is composed of
multiple layers of latent variables and the connections between
them (Hinton, 2009). A DBN is somewhat unique in that it allows
undirected connections between some layers, called restricted
Boltzmann machines (RBM) (Hjelm et al., 2014). DBN usually
trains these layers using an unsupervised learning algorithmsuch
as the gradient descent algorithm. Therefore, instead of using
deterministic functions and the reconstruction error (like the
auto-encoder), DBN is pre-trained using maximum-likelihood
estimation (Vieira et al., 2017).

Several critical issues challenge the using of deep learningin
classi�cation (Schmidhuber, 2015; Vieira et al., 2017). The �rst
challenge is the amount of time and computational resources.
The number of layers, nodes and the function of each node
are usually manually determined, although some automated
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optimization strategies have been proposed. A large number of
parameters needs to be estimated in the deep learning methods,
which makes them cost much more computational resources.
A second challenge is the potential over�tting problem when
using deep learning methods. Since the feature dimension of
fMRI data is usually very large while the number of samples
is relatively small, deep learning methods will tend to learn
features in the data which are speci�c or limited to the study.
Although there are several approaches developed to address
this problem, such as regularization strategies and pre-selection
of features (i.e., reducing the dimensionality of feature input),
these approaches also introduce other critical problems, suchas
how to induce appropriate sparsity and how to select the best
subset of features. The third challenge is the interpretability of
results obtained from deep learning methods. The deep learning
methods are often treated as a black box, which use consecutive
non-linear transformations on the raw features to map them
to another space with higher levels of abstraction. Although
the model information, such as the node in the hidden layers
and the connection between them, has been demonstrated to be
useful for distinguishing brain disorders, it is di�cult toback-
construct them to the original feature space, which will result
in problems of interpreting the results. Because of these issues,
a deep learning method might work well in the classi�cation of
a brain disorder but does not provide any information about the
underlying neuroanatomical or neurofunctional alterations. That
would be of limited clinical utility (Vieira et al., 2017). Although
these issues remain unsolved, deep learning methods are still
with a great potential to improve the diagnosis of brain disorders
and could be promising tools for advancing the knowledge of
disrupted brain cognitive functions in brain disorders.

A summary of the properties of di�erent classi�er models can
be found inTable 2.

Binary Classi�cation to Multi-Class
Classi�cation
In the context of the classi�cation of brain disorders, the
majority of the conventional studies have just focused on binary
classi�cation, in which only the comparison between patients
and healthy controls was taken into account. However, from
the clinical perspective, it would be more critical to identify
and develop biomarkers to di�erentiate di�erent brain disorders
which share similar symptoms. It is also important to separate
patients into di�erent sub-groups according to the di�erent
stages of brain disorder progression. Therefore, the multi-
class classi�cation problem can be a more signi�cant issue
for real clinical utility. During the recent decade, increasing
brain disorder studies have drawn their attention to multi-
class classi�cation. Since most of the traditional classi�ers,
such as SVM and LDA, were originally designed for binary
classi�cation problem (Cortes and Vapnik, 1995a; Mika et al.,
1999), many strategies have been developed to make the
traditional classi�ers work for multi-class classi�cation problems.
The most commonly used strategy is to transform multi-class
classi�cation problem to binary classi�cation problem. This
strategy includes two di�erent techniques, one-against-one and

one-against-whole (Nasrabadi, 2007). The former builds binary
classi�ers for all pairs of groups and uses a voting scheme to
make the �nal decision. The latter one trains a single classi�er
for each class (against other classes) and generate a real-value
con�dence score for the �nal decision. Although this strategy
accompanied with traditional classi�ers has been widely applied
in numerous neuroimaging classi�cation studies, such problem
transformation is still controversial. Some other approaches have
also been proposed (Hsu and Lin, 2002; Fei and Liu, 2006), but
none of them have been applied to any multi-class brain disorder
studies (Kumar and Gopal, 2011; Vieira et al., 2017). Compared
with the traditional classi�ers, deep learning classi�ers are more
suitable for multi-class comparison because the application of
these classi�ers on multi-class problems is more straightforward.
In the output layer, deep learning classi�ers use a softmax
activation function, which can be derived by extending simple
logistic regression, to represent a categorical distribution instead
of group labels. In that case, the probabilities of each input
feature belonging to a class are obtained from the output layer,
providing a more intuitive index of multi-class membership those
sophisticated indices generated from traditional classi�ers (Vieira
et al., 2017). Nowadays, there is a growing trend toward using
deep learning classi�ers to separate di�erent brain disordersor
brain disorder subtypes, or to diagnose the progression of brain
disorder.

APPLICATIONS USING BRAIN
FUNCTIONAL CONNECTIVITY IN THE
CLASSIFICATION OF BRAIN DISORDERS

During the period from 1990 to 2017, more than 200 papers used
functional connectivity features alone or multi-modalityfeatures
including functional connectivity to classify or predict brain
disorders. In this section, we primarily focus on studies working
on classifying patients with a brain disorder from healthy controls
(i.e., a binary classi�cation problem), and also include some
work distinguishing multiple di�erent disorders (i.e., a multi-
class classi�cation problem). We mainly summarize studies
relating to schizophrenia, bipolar disorder, autism spectrum
disorder (ASD), attention de�cit hyperactivity disorder (ADHD),
Alzheimer's disease (AD) and mild cognitive impairment (MCI),
some of which share very similar symptoms and common
changes in the brain that can confound diagnosis, such as SZ
vs. BP, ASD vs. ADHD, and AD vs. MCI. Although other
brain disorders such as depression also deserve review in
the future, our primary goal here is to provide an overview
on how far brain functional connectivity features have been
used to classify brain disorders and how well the classi�cation
frameworks have worked.Figure 2 and Tables 3–6 present a
summary of the existing application studies that reported their
classi�cation accuracy. Regarding the performance, the average
classi�cation accuracy is around 80% for those studies, with
AD/MCI related studies showing the highest accuracy. In these
applications, there are trends from using connectivity features
alone (e.g., spatial maps of ICA and functional connectivity)
to using complex network properties (e.g., graph-theory based
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TABLE 2 | Summary of traditional classi�ers and deep learning classi�ers.

Classi�ers Popular models Classi�cation
performance

Computational
complexity

Over�tting Feature
selection

Sensitive to
redundant feature

Interpretability

Traditional classi�ers • SVM
• LDA
• Logistic

regression

Worse Lower Less likely Need More Simple and transparency

Deep learning • Autoencodes
• DBN
• CNN

Better Higher More likely No need Less Hard and lack of transparency

FIGURE 2 | Summary of the existing application studies (included inTables 1 –6). (A) Total number of papers for 2-year intervals for each diseasetype. The legend
shows the color code for each disease type. This legend also applies to sub�gure (B,D). (B) Scatter plot of the reported classi�cation accuracy vs. the total sample
size. In the sub�gure (B), square shape indicates study using features from one modality, while circle shape represent study using features frommultiple modalities.
(C) Histogram of the sample sizes (including all patients and healthy controls) of the surveyed studies. Vertical dashed lines indicate mean (red) and median (blue) of
the sample size among all studies.(D) Disorder speci�c boxplot plots of reported classi�cation accuracies of the surveyed papers. For each disease type, the
accuracies in different studies are shown using a boxplot. Green shape means a 95% con�dence interval for the mean while orange shape means standard deviation.

measures); from using static connectivity measures to using
dynamic connectivity measures; from using features from single
imaging modality to using features from multiple modalities;
from using traditional classi�ers to using more complex deep
learning classi�ers; and from classifying patients from healthy

controls to classifying multiple groups. In each of the following
subsections, we focus on some typical works in more detail
to highlight these potential trends. If there are both binary
and multi-class classi�cation works, we will describe binary
classi�cation studies �rst. Similarly, we try to �rst statestudies
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TABLE 5 | Summary of functional connectivity based ASD classi�cationstudies.

References Disorder Features Classi�er Sample size Accuracy

Anderson et al. (2011) Autism Whole brain FC between 7266 ROIs Statistic based classi�cation
score

40 HC and 40 ASD 79%

Murdaugh et al. (2012) Autism FC between DMN ROIs Logistic regression 14 HC and 13 ASD 96.3%

Wang et al. (2012) Autism FC between 106 ROIs (AAL atlas) Logistic regression 29HC and 29 ASD 82.8%

Deshpande et al.
(2013)

Autism FC from fMRI and FA from DTI SVM 15 HC and 15 ASD 95.9%

Nielsen et al. (2013) Autism Whole brain FC between 7266 ROIs Statistic based classi�cation
score

517 HC and 447 ASD 60%

Uddin et al. (2013) Autism Independent components extracted by ICA Logistic regression 20 HC and 20 ASD 78� 83%

Zhou et al. (2014) Autism Graph measures SVM and Bayesian network 153 HC and 127ASD 70%

Chen et al. (2015) Autism FC between 220 ROIs from the meta-analysis
of functional imaging studies

Random forest 126 HC and 126 ASD 90.8%

Iidaka (2015) Autism FC between 90 ROIs (AAL atlas) Probabilistic neural network 328 HC and 312 ASD 90%

Plitt et al. (2015) Autism Whole brain FC from different atlas SVM 59 HC AND 59 ASD 76.6%

Chen H. et al. (2016) Autism Frequency distribution-based FC SVM 128 HC and 112 ASD 79.2%

Abraham et al. (2017) Autism Whole brain FC from different atlas SVM 468 HC and 403 ASD 68%

Jahedi et al. (2017) Autism FC between 220 ROIs from the meta-analysis
of functional imaging studies

Conditional random forest 126 HC and 126 ASD 71%

Ktena et al. (2017) Autism Graph measures Convolutional neural network 468 HC and 403 ASD 80%

Sadeghi et al. (2017) Autism Local and global functional network properties SVM 31 HC and 28 ASD 92%

Bernas et al. (2018) Autism Time of in-phase coherence between
independent component extracted from ICA

LDA and SVM Data1:18 HC and 12 ASD; Data2: 12
HC and 12 ASD

86.7%

Heinsfeld et al. (2018) Autism FC between 200 ROIs (CC200 ROI atlas) Auto-Encoder 530HC and 505 ASD 70%

using simple features or classi�ers and then that using more
complex features or classi�ers.

Schizophrenia and Bipolar Disorder
Schizophrenia is a severe chronic brain disorder whose
symptoms can include delusions, disorganized thinking,
hallucinations and social withdrawal (Endicott and Spitzer, 1978;
Kay et al., 1987; Calhoun et al., 2008; Fu et al., 2017). Although
schizophrenia only a�ects about 1% of the population worldwide
(Bhugra, 2005; Van Os et al., 2010), the symptoms can be very
disabling. The symptoms of schizophrenia are categorized
into three types: positive, negative and cognitive, and these
symptoms usually start in young adulthood and last a long time
(American Psychiatric Association, 2013). Bipolar disorder is
a mood disorder marked by alternating episodes of mania and
depression. Bipolar disorder includes four basic subtypes andall
of them involve clear changes in mood, energy, and activity levels
(https://www.nimh.nih.gov/health/topics/bipolar-disorder/
index.shtml). The root causes of bipolar disorder are not clearly
understood, although it is known that both environmental and
genetic factors are involved. There is no standard clinicaltest
for either schizophrenia or bipolar disorder. Therefore, it is
important to investigate the possibility of using neuroimaging
data in the automatic diagnosis of these two brain disorders.

Many studies have focused on distinguishing SZ and HC
based on the fMRI functional connectivity. ICA based spatial
map is one of the most popular used functional features in the
classi�cation (Demirci et al., 2008; Arribas et al., 2010; Castro
et al., 2011; Du et al., 2012). For example, Du et al. used

ICA to extract individual spatial maps as the initial features
and then combined a two-level feature identi�cation scheme
with kernel principal component analysis (KPCA) and Fisher's
linear discriminant analysis (FLD) in the classi�cation of SZ
(Du et al., 2012). By using a majority vote methods that use
multiple features, they achieved a classi�cation accuracy of
98% in the auditory oddball task and 93% in the resting-state.
The connectivity between identi�ed networks (i.e., FNC) is
another important feature for the classi�cation (Anderson and
Cohen, 2013; Arbabshirani et al., 2013; Kaufmann et al., 2015).
Functional connectivity between ROIs de�ned by di�erent atlases
(i.e., ROI-based) is also commonly used to classify SZs and
HCs (Venkataraman et al., 2012; Su et al., 2013; Yu Y. et al.,
2013a,b; Watanabe et al., 2014; Kim et al., 2016). Automated
anatomical labeling (AAL) atlas is the most popular atlas using
in the classi�cation, although some other atlases are also used.
Besides these straightforward connectivity features (component
spatial maps and functional connectivity), high-level network
organization has also been considered as important biomarkers.
Bassett et al. (2012)used the size of connected components
in graphs build from functional connectivity among time-
courses for 90 AAL regions as the input features of SVM and
achieved up to 75% classi�cation accuracy and 85% sensitivity.
Studies also combined functional connectivity with other features
from other modalities to distinguish SZ and HC. Yang et al.
proposed a hybrid machine learning method to classify SZs
and HCs, using features from fMRI and single nucleotide
polymorphism (SNP) data (Yang et al., 2010). They combined
three models (SNPs, voxels in the fMRI map contributing to
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TABLE 6 | Summary of functional connectivity-based ADHD classi�cation studies.

References Disorder Features Classi�er Sample size Accuracy

Zhu et al. (2008) Attention de�cit hyperactivity
disorder

ReHo PCA-FDA 12 HC and 12 ADHD 85%

Bohland et al. (2012) Attention de�cit hyperactivity
disorder

FC from fMRI and features from sMRI
and non-image features

SVM 168 subjects 74%

Colby et al. (2012) Attention de�cit hyperactivity
disorder

FC, graph measures, ReHo from fMRI
and features from sMRI

SVM 491 HC, 111 ADHDI, 163
ADHDC, and 11 ADHDH

55%

Dai D. et al. (2012) Attention de�cit hyperactivity
disorder

FC, ReHo from fMRI and cortical
thickness, gray matter from sMRI

SVM 491 HC and 285 ADHD 67.8%

Dey et al. (2012) Attention de�cit hyperactivity
disorder

FC between ROIs detected by
proposed algorithm

PCA-LDA 307 HC and 180 ADHD 65.6%

Sato et al. (2012) Attention de�cit hyperactivity
disorder

ALFF, ReHo and FC SVM 546 HC and 383 ADHD 67%

Fair et al. (2013) Attention de�cit hyperactivity
disorder

FC between 160 ROIs (Dosenbach
atlas)

SVM 455 HC and 193 ADHD 69.2%

Wang et al. (2013) Attention de�cit hyperactivity
disorder

ReHo SVM 23 HC and 23 ADHD 80%

Anderson A. et al. (2014) Attention de�cit hyperactivity
disorder

Graph measures from fMRI and
features from sMRI

Decision tree 472 HC and 476 ADHD 66.8%

Dey et al. (2014) Attention de�cit hyperactivity
disorder

Graph distance measures SVM 307 HC and 180 ADHD 73.55%

Dos Santos Siqueira
et al. (2014)

Attention de�cit hyperactivity
disorder

Whole brain FC between 400 ROIs SVM 340 HC and 269 ADHD 77%

Deshpande et al. (2015) Attention de�cit hyperactivity
disorder

Directional and non-directional whole
brain FC

Arti�cial neural network 744 HC, 173 ADHDI and 260
ADHDC

90%

Du J. et al., 2016 Attention de�cit hyperactivity
disorder

FC between PCA selected regions SVM 98 HC and 118 ADHD 94.9%

Park et al. (2016) Attention de�cit hyperactivity
disorder

Whole brain FC between 384 ROIs
during task

SVM 13 ADHDI and 21 ADHDC 91.2%

Qureshi et al. (2017b) Attention de�cit hyperactivity
disorder

FC from fMRI and features from sMRI SVM 67 HC, 67 ADHDI and 67
ADHDC

92.9%

Riaz et al. (2017) Attention de�cit hyperactivity
disorder

Whole brain FC between ROIs
determined using the Af�nity
Propagation clustering algorithm and
non-image data

SVM NI: 23 HC and 25 ADHD; KKI: 61
HC and 22 ADHD; Peking: 61
HC and 24 ADHD; NYU: 98 HC
and 118 ADHD

86.7%

classi�cation and network maps from ICA) into a single module
using a majority voting approach to make a �nal decision.
Through a leave-one-out cross-validation, they demonstrated
that this framework can provide higher classi�cation accuracy
(Combined: 87%; SNP: 74%, voxel: 83%, ICA: 83%). In the 24th
Machine Learning for Signal Processing competition (MLSP)
(Silva et al., 2014), participants were asked to automatically
di�erentiate 69 schizophrenia patients from 75 healthy controls
using multimodal features, including FNC features from fMRI
data and component loadings using ICA from structural MRI
data. Performance was estimated using the area under the
receiver operating characteristic curve (AUC). No entry was able
to attain an overall AUC of 0.9 or higher, and the median AUC is
near 0.75 across all 2087 entries. The winning team got an overall
AUC of 0.89 by means of a Gaussian process (GP) classi�er with
prior distribution scaled by a probit transformation. Temporal
dynamics in the functional connectivity are widely observed in
numerous neuroimaging studies and are suggested to be neural
origin. Cetin et al. (2016)used static FNC and dynamic FNC
obtained from fMRI and MEG data to di�erentiate schizophrenia

patients from healthy controls. They used a leave-one-out cross
validation method to examine the classi�cation accuracy. Their
results showed that using the combined fMRI and MEG features
from FNC improved the classi�cation performance (in which
the highest accuracy is 85.71%) compared to using fMRI and
MEG FNC features separately (in which the highest accuracy is
75.82%), and using the combined fMRI and MEG features from
dynamic FNC improved more (in which the highest accuracy
is 90.11%). Increasing studies have demonstrated the bene�tsof
using deep learning in the classi�cation during recent years. Kim
et al. (2016)used a L1-norm regularization for feature selection
and a deep neural network (DNN) with multiple hidden layers
as the classi�er. Their results showed that the DNN can obtain
about 86% accuracy of two-group classi�cation which is much
better than that obtained by SVM.

Functional connectivity-based features for classi�cationof SZ
and BP patients at the individual level have been studied as
well (Calhoun et al., 2008; Arribas et al., 2010; Rashid et al.,
2016). In a previous study (Calhoun et al., 2008), the distance
to mean image for each group is constructed using ICA spatial
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maps of the temporal lobe and the default mode networks. This
feature was used in a leave-one-out cross-validation framework,
and the approach classi�ed schizophrenia and bipolar patients
at the individual level with the accuracy of around 83–
95%. A supervised method for automatic classi�cation of
healthy controls, patients with bipolar disorder, and patients
with schizophrenia using brain imaging data was proposed
in Arribas et al. (2010). The spatial maps of independent
components were used as the features and a dimension
reduction stage comprising two steps is performed (1.t-test; 2.
singular value decomposition). The reduced features were then
used as input of a probabilistic Bayesian classi�ers classi�er.
The experimental results showed that the average three-way
correct classi�cation rate (CCR) is in the range of 70–72%,
demonstrating their proposed method to be a reliable framework
on classi�cation analyses of both schizophrenia and bipolar
disorder patients. More recently, time-varying patterns in the
functional connectivity have been used to distinguish SZ from
BP patients. Rashid et al. proposed a framework for classi�cation
of schizophrenia, bipolar and healthy subjects based on their
static and dynamic FNC (Rashid et al., 2016). The classi�cation
performance between static and dynamic connectivity features
was compared through a cross-validation framework. The overall
results showed that dynamic FNC (with the classi�cation
accuracy 84.28%) signi�cantly outperforms static FNC (with the
classi�cation accuracy 59.12%) in terms of predictive accuracy,
suggesting that dynamic patterns in functional connectivity
might provide distinct and more information over the SFC.

SZ, SAD, and BPP have overlapping clinical symptoms
(Cosgrove and Suppes, 2013; Cardno and Owen, 2014; Pearlson
et al., 2016), hence it is very di�cult to distinguish them in
clinical diagnosis. Du et al. has identi�ed markers from subject-
speci�c brain networks using resting-state fMRI data via GIG-
ICA, and then classi�ed healthy controls, SZ patients, BPP
patients, patients su�ering from schizoa�ective disorder with
manic episodes (SADM) disorders, and patients su�ering from
schizoa�ective disorder with depressive episodes exclusively
(SADD) (Du et al., 2015b). Using the training set, the spatial
maps of the typical functional networks were used as the
features in a multi-class (�ve-class) SVM classi�er and the
RFE was employed for feature selection. For each subject of
the testing set, subject-speci�c networks were computed under
the guidance of the group-level networks obtained from the
training set, and then the corresponding features were inputted
to the classi�er trained using the original samples. Results
showed that the discriminative regions mainly included frontal,
parietal, precuneus, cingulate, supplementary motor, cerebellar,
insula and supramarginal cortices, and these regions can provide
68.75% classi�cation accuracy for the new coming subjects (i.e.,
the independent testing set). Based on measures from functional
networks, hierarchical clustering and projection approacheswere
performed to further investigate the relationship among those
groups. Interestingly, the linkage result from the hierarchical
clustering showed that using network measures, SADM group
and SADD group were closest to each other; SAD group was
more similar to SZ group compared to other groups; and BP
group was closer to HC group than other patients groups.

These results provide an interesting view on the relationship
among these symptom-related diseases in addition to accurate
separation. The framework and results of this study (Du et al.,
2015b) are shown inFigures 3, 4, respectively.

Autism Spectrum Disorder and Attention
De�cit Hyperactivity Disorder
ASD is a complex neurodevelopmental disorder characterized
by a wide range of symptoms, skills, and levels of disability
that a�ects how a person acts and interacts with others,
communicates, and learns (American Psychiatric Association,
2013). This disorder begins early in childhood and lasts
throughout one's life. It is estimated that ASD has a prevalence
of 1:68 in the United States (Autism and Developmental
Disabilities Monitoring Network Surveillance Year 2008
Principal Investigators; Centers for Disease Control Prevention,
2012) and the lifetime costs of treating an American with
ASD has exceeded one million dollars (Greenspan, 2015). The
exact cause of autism is still unknown and it might be caused
by genetic, brain structure and function, developmental and
environmental factors (Wing, 1996). E�ective treatments and
services can moderate the symptoms and improve the lives.
However, ASD is a heterogeneous condition which means there
is no same pro�le for the individuals with ASD and their speci�c
symptoms may change with development (Lord et al., 2000).
Consequently, the diagnosis and de�nition of ASD is still a
challenging issue. It is common that children are diagnosed
with ASD until ages �ve and six when is too late for e�ective
treatments. ADHD is another commonly found brain disorder
a�ecting children which share overlapping and confusing
symptoms with ASD (Anckarsäter et al., 2006; Happé et al.,
2006; Rommelse et al., 2010). Children with ADHD may be
inattention, hyperactivity or impulsivity that interferes with
school and home life. ADHD is more common in boys than in
girls and is usually diagnosed during the early school years and
last into adulthood. It is estimated that 3–10% of school-aged
children are a�ected by the ADHD (Biederman, 2005; Dey
et al., 2014). The cause of ADHD is still unclear and researchers
demonstrate that several things, such as heredity, chemical
imbalance, brain changes or injury, and poor nutrition might
be involved as possible causes. Currently, a diagnosis of ADHD
is mainly based on the behavioral symptoms described in DSM
(American Psychiatric Association, 2013). However, DSM can be
misleading since there is no valid test for ADHD and ADHD has
a high rate of comorbidity, which can confuse matters. Due tothe
di�culty in diagnosis of ASD and ADHD, an increasing number
of studies are using neuroimaging data to develop approaches
to try to better characterize and predict these brain disorders. In
the following, we review studies using functional connectivity
features in the classi�cation of ASD and ADHD.

Studies using functional connectivity as features to classify
ASD began around 2011. Anderson et al. calculated the
functional connectivity from 7266 ROI covering gray matter
during the resting-state and then used these as the features in
a thresholding leave-one-out classi�er (Anderson et al., 2011).
The classi�er performed at 89% accuracy for the subjects<
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FIGURE 3 | Flowchart of one study (Du et al., 2015b) that includes classifying HCs, SZ patients, BPP patients,SADM patients, and SADD patients. The spatial
network maps of the training set computed from GIG-ICA were used as the features in a multiclass (�ve-class) SVM classi�er, that yielded 68.75% classi�cation
accuracy for the new coming subjects. The �gure is reused withpermission fromDu et al. (2015b).

20 years age and at 79% for all subjects. In another study,
Murdaugh et al. used seed-based functional connectivity (seed:
medial prefrontal cortex, posterior cingulate cortex and angular
gyrus) as well as whole-brain functional connectivity in a logistic
regression classi�er for distinguishing ASD from controls
and found that both whole-brain and seed-based connectivity
patterns can achieve accuracy up to 96.3% (Murdaugh et al.,
2012). The Autism Brain Imaging Data Exchange (ABIDE)
initiative has aggregated functional and structural brain

imaging data collected from laboratories around the world
to accelerate the understanding of the neural bases of ASD
(http://fcon_1000.projects.nitrc.org/indi/abide/)(Di Martino
et al., 2014, 2017). Plitt et al. used 178 age and IQ matched
cohorts from ABIDE and calculated the functional connectivity
between three di�erent ROI sets. They used RFE for feature
selection in both logistic regression and SVM classi�er and
obtained an overall 76.7% accuracy of classi�cation (Plitt et al.,
2015). Functional connectivity is also combined with the features
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FIGURE 4 | Relationship between those original subjects evaluated using network measures in the study ofDu et al. (2015b). (A) Distance matrix computed using the
feature vectors of 93 subjects. The x-axis and y-axis denotesubject ID. Subjects with ID 1–20 are HCs, subjects with ID 21–40are SZ patients, subjects with ID
41–60 are BP patients, subjects with ID 61–80 are SADM patients, and subjects with ID 81–93 are SADD patients.(B) The mean distance matrix obtained by
averaging the values in each inter-group and intra-group related sub-block of the distance matrix.(C) The projection results of 93 subjects using t-distributed
stochastic neighbor embedding (t-SNE) method. Each point denotes one subject, and different colors denote different groups. Each ellipse re�ects mean (center) and
standard deviation for one group.(D) The linkage results from the hierarchical clustering method. The x-axis denotes the subject ID, which is as same as that in(A). In
(D), “HC” denotes that most of the subjects clustered into the related group are healthy controls. “SZ,” “BP,” “SADM,” and “SADD” have similar meanings. The �gure
is reused with permission fromDu et al. (2015b).

from other modalities in the classi�cation of ASD. Deshpande
et al. identi�ed 18 activated regions from an experiment
involving physical and intentional causality and calculated
causal connectivity weights, functional connectivity from fMRI,
and fractional anisotropy obtained from DTI data for each
participant (Deshpande et al., 2013). These features were used in
a recursive cluster elimination based SVM classi�er and �nally
achieved a maximum classi�cation accuracy of 95.9%. Deep
learning classi�ers are applied in the classi�cation of ASD during
recent years. Iidaka selected more subjects from ABIDE (312
subjects with ASD and 328 control subjects) and the resting-state
functional connectivity between 90 ROIs are used as input of
the probabilistic neural network (PNN) for classi�cation. PNN
obtained classi�cation results of� 90% accuracy (Iidaka, 2015).
Chen et al. constructed functional network between signalsin
di�erent frequency bands using ABIDE dataset and showed that
the most of the discriminative features were concentrated on the
Slow-4 band (0.027–0.073 Hz) (Chen H. et al., 2016).

There has also been a fair amount of work using functional
connectivity to classify ADHD and healthy controls.Zhu et al.
(2008) �rst used ReHo from fMRI in a PCA-based Fisher
discriminative analysis (PC-FDA) to build a linear classi�er
and the results showed a classi�cation accuracy of 85% using
a leave-one-out cross-validation.Wang et al. (2013)extracted
ReHo from resting-state fMRI signals and used as input of
SVM. They selected features according to a cross-validation

procedure and showed that the optimized model produced
a total accuracy of 80%. Graph-based measures of functional
connectivity are becoming important features that distinguish
ADHD from healthy controls (Fair et al., 2013; Dey et al.,
2014). Fair et al. used node strength based on the functional
connectivity network to successfully classify two subtypes of
ADHD (Combined (ADHD-C) and Inattentive (ADHD-I)) from
healthy controls with accuracy up to 82.7% (Fair et al., 2013).
This graphical measure is also able to separate three groups
of cohorts with an overall accuracy of 69.2% in the 3-group
classi�cation. Existing studies also use functional connectivity
measures along with other fMRI features or other modal features
to classify ADHD (Colby et al., 2012; Dai D. et al., 2012;
Sato et al., 2012; Anderson A. et al., 2014). For example,
Colby et al. combined morphological measures from structural
MRI and functional features such as functional connectivity
and graphical measures from fMRI as the input features of
the SVM and used RFE algorithm for the feature selection.
They were able to classify the diagnosis of ADHD with 55%
accuracy using this SVM-RFE classi�er (Colby et al., 2012).
Anderson et al. used functional connectivity measures along
with many other features such as curvature index, folding index,
Gaussian curvature, gray matter volume, mean curvature, surface
area, thickness average, and phenotypic data in a multimodal
neuroimaging framework and obtained 66.8% accuracy of two-
group classi�cation in an ADHD dataset with a large number
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of subjects (472 healthy controls and 276 ADHD) (Anderson A.
et al., 2014).

Studies have shown that ASD and ADHD have both
shared and disorder-speci�c abnormalities in brain function
(Christakou et al., 2013; Chantiluke et al., 2014). However,
few studies have used functional connectivity features to
distinguish ASD and ADHD and it is still a challenging issue
whether functional connectivity can be a powerful biomarkerfor
distinguishing these two brain disorders.

Alzheimer's Disease and Mild Cognitive
Impairment
MCI is a syndrome which causes greater memory loss than
expected by aging (Gauthier et al., 2006). It is reported that about
3–19% of adults older than 65 years su�er MCI. The symptoms
of MCI are not as severe as that in AD and thus people with
MCI can carry out their normal daily activities (Albert et al.,
2011). There are several subtypes of MCI and one subtype called
amnestic MCI which is associated with memory loss has a high
risk of progression to AD (Gauthier et al., 2006). Research has
shown that the brain areas of memory are impaired in both
MCI and AD, while the cognitive domains are only impaired
in AD (Petersen et al., 1999). Although the rates of progression
varied considerably among literature and the progression isnot
inevitable, amnestic MCI is still considered to be a forerunner of
AD. AD is the most common type of dementia causes problems
with memory, thinking and behavior (Strittmatter et al., 1993).
AD is increasingly prevalent in individuals over the age of 65
and the signi�cance of AD as a public health problem became
evident (Glenner, 1990). It is estimated that 60 new case of AD
exists in every hour and by 2050, this number will go to double
(Alzheimer's Association, 2015). Between 2000 and 2013, the
death results from AD increased remarkably 71%, making AD
the sixth leading cause of death in the United States (Alzheimer's
Association, 2015).

Traditionally, the diagnosis of AD mainly depends on
the clinical examinations and the evaluations of individuals'
perception and behavior (Arbabshirani et al., 2017). Improving
diagnosis of AD and MCI patients might help to identify
diseases earlier in the disease's progress, which may be crucial
in developing treatments for these disorders. Considering the
severe health impact of AD and MCI and their overall e�ect
on caregivers and society, there has been a large numbers of
studies using neuroimaging features, especially the functional
connectivity in fMRI to diagnose these brain disorders. Wang
et al. proposed a discriminative model of AD based on
the Pseudo-Fisher Linear Discriminative Analysis (pFLDA)
(Wang et al., 2006). They used the correlation/anti-correlation
coe�cients of two anti-correlated networks in resting brains
as the features of the classi�cation model and obtain a CCR
of 83%. Challis et al. employed Bayesian Gaussian process
logistic regression (GP-LR) models with linear and non-linear
covariance functions in the classi�cation of AD and MCI
(Challis et al., 2015). By using functional connectivity as features,
they achieved 75% accuracy disambiguating healthy controls

from individuals with MCI and 97% accuracy disambiguating
individuals with MCI and individuals with AD. Not only the
functional connectivity itself, but also its extended or related
metrics, such as graphic metrics, have been used as features
for the diagnosis of AD and MCI. Jie et al. have developed a
novel framework to integrate multiple connectivity properties
for improving the diagnosis of MCI (Jie et al., 2014). A
multi-kernel learning (MKL) technique was adopted and two
types of kernels were used to quantify the local and global
connectivity properties respectively. 91.9% classi�cation accuracy
was achieved by this method, which is much better than that
in previous studies using single connectivity properties. Another
study combined graphic theoretical approaches with machine
learning method to investigate the atypical functional brain
network in patients with AD (Khazaee et al., 2015). They
performed statistical analysis on connectivity which is measured
by correlation coe�cient to search altered connectivity patterns
in patients and then calculated three graphic metrics, clustering
coe�cient, local e�ciency, and normalized local e�ciency based
on the connectivity matrix. A SVM classi�er was �nally used to
explore diagnosis ability of these graphic metrics. Their results
showed that those graphic metrics can well separate patients
with AD and healthy controls with 100% accuracy. Functional
connectivity from fMRI is also incorporated with features from
other modalities in the diagnosis of AD. Dai et al. proposed a
methodological framework using features from multi-modalities
to discriminate patients with AD from healthy controls (Dai
Z. et al., 2012). The gray matter volume from structural MRI
and three functional characteristics from fMRI were used as the
features of classi�ers. By using leave-one-out cross-validation,
this method provided satisfactory classi�cation accuracy of
89.47% with a sensitivity of 87.50% and a speci�city of 90.91%.
Schouten et al. used measures from structural MRI, di�usion
MRI and resting-state fMRI as the input features of elastic net
classi�er to classify AD (Schouten et al., 2016). They showed
the gray matter density achieved the best classi�cation accuracy
among all single modal imaging and multimodal combination
can signi�cantly improve the classi�cation performance. These
�ndings suggested that di�erent MRI modalities provide
complementary information for classifying AD. The human
brain is a dynamic system with non-stationary neural activity and
rapidly-changing neural interaction. Increasing evidenceshows
that functional connectivity is not static but varies signi�cantly
in time. There already exist studies using dynamic patterns
in functional connectivity as features for the classi�cation of
dementia and its pre-stages. A MCI study applied a sliding
window approach to estimate dynamic functional correlation
tensors between white matters and DFC between gray matters
and used these as features to classify MCI subjects (Chen X.
et al., 2017). They found that the dynamic functional features
signi�cantly improved the classi�cation performance, showing
that the functional information in gray matter and white matter
is complimentary.

Although vast majority of AD or MCI classi�cation studies
used traditional classi�ers such as SVM and LDA, increasing
studies have considered the advantages of deep learning classi�ers
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over the traditional ones and started using deep learning
models in the classi�cation of AD and MCI (Suk et al., 2016;
Meszlényi et al., 2017). Meszlenyi et al. described a convolutional
neural network for functional connectivity classi�cationcalled
connectome-convolutional neural network (CCNN) (Meszlényi
et al., 2017). By testing the performance of CCNN model on both
simulated datasets and a public MCI dataset, they showed thatthe
developed model is capable of distinguishing subjects of di�erent
groups. Their results also demonstrated that the CCNN model
can combine di�erent functional connectivity metrics in the
classi�cation and such combination results in better performance
than other classi�ers using single metric only.

CHALLENGES AND DIFFICULTIES IN
IDENTIFYING BIOMARKERS OF BRAIN
DISORDERS AND CLASSIFICATION OF
INDIVIDUAL SUBJECT

Lacking Gold Standards for Diagnoses
Analyzing fMRI data for the ultimate goal of identifying
biomarkers and diagnosing brain disorders using neuroimage-
based measures is promising but challenging, due to the fact
that the current diagnostic categorization itself used as prior
guidance could be inaccurate and need further re�nement
(Insel and Cuthbert, 2015). So far, there is no gold standard
for the complex diagnosis. The diagnosis is determined solely
by observable symptoms, and the interview and history are
the main factors that in�uence the diagnosis. For example,
in clinical diagnosis, it can be di�cult to distinguish SZ, BP,
and SAD that show overlapping clinical symptoms (Cosgrove
and Suppes, 2013; Malaspina et al., 2013; Cardno and Owen,
2014). SZ is a psychotic disorder characterized by altered
perception, loss of motivation and judgment, and impairment in
social cognition. BP is a mood disorder marked by alternating
episodes of mania and depression. SAD is diagnosed when
the symptom criteria for SZ are met and during the same
continuous period there are major depressive, manic or mixed
episodes. In fact, there are also overlapping symptoms such as
social withdrawal and communication impairment between ASD
and SZ spectrum disorders (Fitzgerald, 2013; Chisholm et al.,
2015). ASD, a neurodevelopmental disorder, is characterized
by a spectrum of abnormal behaviors including persistent
de�cits in social communication and interaction across multiple
contexts. ADHD is marked by an ongoing pattern of inattention
and/or hyperactivity-impulsivity that interferes with functioning
or development. Research work also shows a high rate of
overlapping symptoms between ASD and ADHD (Taurines et al.,
2012). Therefore, the similarities in symptoms between these
brain disorders give rise to di�culties in clinical diagnosis.

Most existing fMRI studies (Calhoun et al., 2009a; Koike
et al., 2013; Du et al., 2017c), which applied statistical
analyses to investigate di�erences among multiple groups or
performed supervised learning approaches to explore biomarkers
for e�ective individual diagnosis and treatment, rely on the
diagnostic labeling. The assumptions in those studies are (1)
diagnostic groups are distinct from each other and (2) individuals

are homogeneous within each prede�ned group. However, in
practice patients could be incorrectly diagnosed due to the
overlapping or similar symptoms of diseases, causing that
subjects assigned into the same group may show biologically
inconsistent alterations. Therefore, the possible bias in the
diagnosis labeling will result in inaccurate biomarkers and
consequently a�ect the discriminative power of the classi�er
constructed based on the provided labels.

There is a great need for the development of disease
categories built on biological data and supported by objective and
quantitative validation, i.e., the approach recently emphasized
by the RDoC initiative (www.nimh.nih.gov/rdoc) (Insel et al.,
2010; Cuthbert and Insel, 2013). Due to imperfections of the
current disease nosology (especially for psychiatric disorders),
how to identify markers/features from a large amount of
possibly relevant measures (e.g., high-dimensional neuroimaging
data) and then rebuild or re�ne the nosology based on the
neuroimaging-features is a big challenge. One way forward is
to consider identifying markers and rebuilding a nosology of
disorders (or classifying individual subjects) as one combined
problem. The most important and di�cult issue is how to
propose a “mathematical, precise resolution of what constitutes
`su�ciently similar' patients” (Djulbegovic and Paul, 2011;
Marquand et al., 2016).

Dif�culties in Identifying Accurate
Pathological Features as Biomarkers From
High Dimensional Measures
Given that there are generally more features than samples, it
is advantageous to reduce the number of possible measures to
focus on a subset of particular interest. As discussed in section
Feature Selection Strategies, most relevant work has extracted
features in the context of group labeling (e.g., SZ or HC). Even
if feature selection is performed using a supervised method, the
resulting features are not necessarily able to show a clustering
property within each group as expected, since there are usually
abundant unrelated and redundant measures considered. In the
event the diagnosis is inaccurate, selection of features sothat they
can show clustering (or similar) patterns within the same group
and distinct patterns between di�erent groups is more di�cult.
Without using group labeling,Clementz et al. (2016)constructed
biotypes using a panel of cognitive and electro physiological
features that were selected according to known relevance to
psychosis and brain function. Promisingly, biotypes showed
more reasonable neurobiological heterogeneity and coherent
subgroups in psychosis than diagnosis-based category (Clementz
et al., 2015; Meda et al., 2016). However, the selected features
depended on subjective empirical knowledge and were not
automatically extracted from available data. In contrast,some
research work (Gates et al., 2014; Geisler et al., 2015; Sun et al.,
2015) used all available features and did not further re�ne
features according to prior knowledge. Such selected features
working well for one dataset may not converge to a consistent
grouping for a di�erent dataset. More advanced methods which
can automatically select features that have a good di�erentiating
ability under the condition of no or less guidance of diagnosis
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labeling are still under way. Semi-supervised feature selection
methods (Sheikhpour et al., 2017), which allow using both labeled
and unlabeled samples to discover the feature relevance, maybe
promising and bene�cial.

Challenges in Validating Biomarkers and
Classi�cation
Once the biomarkers and biologically-derived classi�cation
are obtained, validating the biomarkers and categories (or
classi�cation) is another important issue. Most related studies
have classi�ed independent subjects based on the identi�ed
biomarkers and a well-trained model, and then compared
the classi�cation outputs with the diagnosis labels. However,
researchers should be aware that the diagnosis labels used as
ground-truth could be inaccurate. Some work (Geisler et al.,
2015; Clementz et al., 2016) evaluated derived categories using
external independent measures or other features that were
highly correlated with the used features of the same datasetto
see if subjects in one group showed greater similarity in terms
of those additional metrics. However, this kind of validation
is circular to some extent. A more reasonable technique is to
assess biomarker and cluster (or classi�cation) reproducibility by
adding additional independent subjects' data or re-sampling of
the original data, since a rational classi�cation of brain disorders
should be able to map onto pathophysiology using di�erent
datasets.

Other Issues That Should Be Considered
There are also other issues which deserve consideration in
future clinical applications. In most neuroimaging-based
studies focusing on the classi�cation/prediction problem,
accuracy, sensitivity, and speci�city were used to evaluatethe
distinguishing ability of the biomarkers identi�ed and themodel
built. Unlike the screening test (Grimes and Schulz, 2002) that
is to detect potential disorders or diseases in people who do not
have any symptoms of disease, these assessing metrics (accuracy,
sensitivity, and speci�city) cannot provide a realistic measure of
the positive (probability of having the disease given a positive
test) and negative (probability of not having the disorder given
a negative test) predictive value (Castellanos et al., 2013), since
prevalence of di�erent diseases in�uences positive/negative
predictive value.

In addition to accurately classify the categorization of brain
disorders, increasing studies focus on prediction of continuous
variables such as individual cognitive scores, symptomaticscores
and behavioral performance using fMRI data (Meskaldji et al.,
2016; Meng et al., 2017; Shen et al., 2017; Yoo et al., 2018).
These studies used di�erent brain connectivity features as
the inputs and generate predictors of these features for new
coming subjects. Linear regression and partial least square(PLS)
regression are the most commonly used methods to achieve
the goal. PLS, in which the predictor variables are projected to
a new space of components with regard to response variables,
is particularly useful, since the number of features is usually
much larger than the number of observations/subjects. Support
vector regression (Dosenbach et al., 2010), a supervised learning
algorithm, which considers all features simultaneously and

generates a model that assigns di�erent weights to di�erent
features, can also be employed. Generally, the correlation
between predicted variables and real recorded variables in
the testing set is used to evaluate the performance of the
model.

It should be noted that brain diseases can also induce spatial
changes due to atrophy for example. In the preprocessing step,
inter-subject spatial alignment of fMRI data is typically achieved
through registering their co-registered structural MRI images to
an anatomic template or directly registering fMRI data to an
echo planar imaging (EPI) template. However, these registration
methods cannot guarantee fully accurate inter-subject functional
consistency, although the following spatial smoothing of fMRI
data can reduce the inter-subject functional variability to some
extent. Therefore, functional connectivity computed between
given brain regions may not accurately correspond across
subjects, although the adaptive ICA-based methods are likely
more robust to this than ROI or voxel based approaches. In
the future, advanced normalization methods (Khullar et al.,
2011; Jiang et al., 2013; Cetin et al., 2015) based on function
information directly from fMRI data can help address this
issue.

SUMMARY

Mapping brain functional connectivity using fMRI data is
now a major emphasis of ongoing research, frequently with
a goal of identifying biomarkers and classifying di�erent
brain disorders. In this paper, we comprehensively reviewed
di�erent approaches which make e�orts to accurately map
the functional connectome. We included both the traditional
static connectivity analysis and the more recently applied
dynamic connectivity analysis. Connectivity measures that
can be potentially taken as features (i.e., biomarkers) for
classi�cation and prediction were clearly summarized for each
method. Furthermore, we surveyed various feature selection
and classi�er building strategies in order to provide guidance
on how to perform the classi�cation and predication problem
in practice. After that, an updated overview on applications
of classifying SZ, BP, ASD, ADHD, were shown. Finally, we
discussed gaps in the research and areas that particularly deserve
improvement.
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