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Mathematical modeling is a key process to describe the behawr of biological networks.
One of the most dif cult challenges is to build models that dbw quantitative predictions
of the cells' states along time. Recently, this issue start to be tackled through
novel in silico approaches, such as the reconstruction of dynamic models, e use
of phenotype prediction methods, and pathway design via etient strain optimization
algorithms. The use of dynamic models, which include detal kinetic information of
the biological systems, potentially increases the scope ofhe applications and the
accuracy of the phenotype predictions. New efforts in metablic engineering aim at
bridging the gap between this approach and other different pradigms of mathematical
modeling, as constraint-based approaches. These strategis take advantage of the
best features of each method, and deal with the most remarkale limitation—the
lack of available experimental information—which affectshe accuracy and feasibility
of solutions. Parameter estimation helps to solve this prdem, but adding more
computational cost to the overall process. Moreover, the eisting approaches include
limitations such as their scalability, exibility, convegence time of the simulations, among
others. The aim is to establish a trade-off between the sizefahe model and the level of
accuracy of the solutions. In this work, we review the state tdhe art of dynamic modeling
and related methods used for metabolic engineering applidéons, including approaches
based on hybrid modeling. We describe approaches developedo undertake issues
regarding the mathematical formulation and the underlyingptimization algorithms,
and that address the phenotype prediction by including avéable kinetic rate laws of
metabolic processes. Then, we discuss how these have been wed and combined as
the basis to build computational strain optimization methds for metabolic engineering
purposes, how they lead to bi-level schemes that can be usedhithe industry, including
a consideration of their limitations.
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INTRODUCTION restrictions (constraints) and assumptions (objectivediions)
to be able to nd an optimal solutionl{ewis et al., 20)2This

Systems biology and bioinformatics tools help to analyzgormulation is based on the stoichiometry, via constrairtsbd
relevant data and properties (e.g., genome sequencing) ffodeling (CBM), helping to de ne limits on the behavior of a
biological and biomedical research to make model-driversystem depending on physical and chemical restrictions, asch
discoveries. This has stimulated the interest to build geaeom yxes, mass balance and thermodynamics_ This approach y|e|ds
scale networks, allowing to perfornin silico simulations solutions that might not be unique, represented as steadg-sta
of complex biological systems, and to understand the wayx distributions, which are within the space of feasibletgains
metabolic ux distributions change within a particular bi@eal  called the ux hypercone\{/agner and Urbanczik, 20)5While
network for predicting cellular phenotypes/¢Closkey et al., CBM approaches do not include physiological knowledge about
2013 Moreover, mathematical mOdeling of cellular metabonsmmetabo"te concentrations in time nor transient behavi'tb‘rey
studied under various environmental and genetic condiion remove the need for a detailed mechanistic knowledge, since
has started to reasonably support metabolic engineering (MEjnly parameters for minimum and maximum ux bounds are
tasks, such as design of desirable strains, by optimal ®elexdft  required. As a consequence, a solution space from a dynamic
gene deletions or expression modulation for the overprodutti - formulation is a subset of a constraint-based solution, sithey
of industrial compounds $tephanopoulos et al., 1998; Burgardyse the same core constraints, knowing that the dynamic model
etal., 2008 adds other constraints from speci ¢ values of kinetic infation

Metabolic network modeling can be based on the knowledg@viachado et al., 20)2
of enzyme mechanisms and experimental data to build a Mathematical modeling can be used to explain or to predict
representation of a dynamic system, able to describe chang@® behavior of a system. This work is mainly focused on
on concentrations of metabolites over time by using systemgodeling frameworks based on the knowledge of systems'
of ordinary di erential equations (ODEs). These ODEs contai dynamics to increase the accuracy of the predictions of rstrai
initial values for metabolite concentrations, reactiontera optimization methods, considering the limitations that the
equations and kinetic parameters. These representations Wespproaches can present. Computational strain optimization
applied to model small-scale central metabolic pathways df welmethods (CSOMs) depend both on mathematical models and
known organisms, such &accharomyces cerevigfaezi etal., phenotype prediction methods. We will review phenotype
1997 and Escherichia collChassagnole et al., 2Q0However, prediction methods that use kinetic rate laws for certain
dynamic representations for large-scale systems are netyalw metabolites, and these will be used to support CSOMs for
possible due to the lack of experimental kinetic informatien t ME purposes. Additionally, hybrid approaches that include
build proper reaction rate equations. the use of kinetic and stoichiometric information will als@ b

This framework, that tackles cell metabolism modeling taskgevised Figure 1 describes the overall perspective of this review,
using a formulation based on the dynamics of metaboligyhich can be divided in three main parts: models, simulation
processes, gives detailed and unique solutions in time fer thiphenotype prediction) and strain optimization algorithms.
transient and the equilibrium states, from any initial metdite
concentration condition. It is based on kinetic rate lawgeimed
from biochemical and mechanistic information, while thdues
of the nal uxes are obtained directly from the rate laws MODELING FORMALISMS AND
and the metabolite concentrations at equilibrium. Howeteis  pPHENOTYPE PREDICTION
type of modeling requires considerable amounts of data that
are not always available, such as kinetic parameters or totgjathematical modeling is used to understand internal and
enzyme concentrationsS(nallbone et al., 2010, 2Q1and the external cell interactions, and how they a ect cell metabolism.
parameterization task for larger models can be time-consgmi This is studied through the analysis and modeling of phenasype
and computationally intensive. as metabolite concentrations and reaction uxes over meliab

Opposite to the dynamic case, an alternative is to restriggathways, regulated by enzymes under dierent internal and
models to contain only reaction stoichiometry and reveilg}y  external conditions. The idea is to translate processes to
based on the assumption of steady-state operation, thus enathumerical problems with formal representations, aiming ahhig
to express transient behaviors. In this approach, models usgvel of accuracy and detail, since the goal is to reach énoug
formulations based on linear equation systems, which argomplexity and completeness on the description of the behavior
typically underdetermined, i.e., the number of equationaiger  of a metabolic network.
than the number of variables, translated into an in nite nier The two types of approaches for mathematical representation
of possible solutions. This leads to the imposition of certainf biological networks di er on the state at which the system
is analyzed. Stationary modeling considers the system wgrkin
Abbreviations:CBM, constraint-based model; CHO, chinese hamster ovary; CSQat an equilibrium point, where metabolite concentrations are
computational strain optimization; CSOM, (?omputational. strain omﬁgtion constant over time. On the other hand, dynamic modeling
method; DFBA, dynamic ux balance analysis: EA, evolutionary aligon EC, acknowledges the changes metabolite concentrations suer ov
elasticity coe cient; FBA, ux balance analysis; FCC, ux cooit coe cient; . o X 1
MCA, metabolic control analysis; ME, metabolic engineering; ODjnary  time. Both approaches for phenotype prediction will be discussed
di erential equation. and compared in this section.
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FIGURE 1 | Modeling framework based on dynamic systems. The process oéngineering a wild-type strain starts by reconstructing a mdel from its genome
sequence complemented with information extracted from bitgical databases and literature. Then, the process can beidided in three main interacting blocks(A)
Model: it can include stoichiometric information only, or @ombination with kinetics, whose parameters need to be esthated. Both types are validated and improved
within an iterative process of curation(B) Simulation: the model is used to predict the phenotype of thesystem. For kinetic approaches, the behavior of the steady
and transient states of metabolite concentrations and uxesare calculated, while with purely stoichiometry approache typically, a sensible ux distribution obeying
the imposed constraints and optimizing a given biological ssumption is sought. This ux distribution can be further demited, in a hybrid fashion, by using information
from the solution of the ordinary differential equation (OF) system, if available(C) Strain optimization: the phenotype is evaluated and optiraed until meeting a
termination criterion. The cycle consists in integratingautions as perturbations to the model, in the form of changs to the kinetic parameters or to the constraints,
so that a new phenotype can be simulated. In the end, a set of catlidate designs is obtained.

A straightforward approach for the prediction of metabolic mathematical approach to nd an optimal value for the objective
phenotypes is using CBM, in the stationary case, which yieldsinction and a relevant ux distribution is Flux Balance Ansily
predictions usually close to experimental observations, an(FBA) (Orth et al., 201 The main premise is to consider
more importantly, avoiding the hard task of estimating kiizet the internal metabolite concentrations to be in quasi-diea
rate equations and kinetic parameters, while requiring miai  state under certain constraints, and formulating an optiniza
knowledge to infer systemic properties. The most widely usedroblem by means of the inclusion of an objective function
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with a biological meaning, for example assuming organisma system. Examples of these perturbations are the modulafion o
evolve toward the maximization of their growth, whichisafly  the expression of a metabolic enzyme, or changing the parasnete
modeled as a biomass formation arti cial ux that includes of bioreactor processes, such as dilution rate or substiatizke.
proportions of cell constituents and their coe cientsF¢ist Models built for specic applications, in particular for strain
and Palsson, 20)0The assumption of microbes maximizing design, are focused in the production of industrial compounds
growth has been hard to assert, but it has been showwith an interest in maximizing the ux of the reaction relate
that under experimental conditions, such as nutritionallghri to the desired product among all outputs of the system. In
environments, there is a consistence between the optinoizati the real world, the desired amount of a product can also be
of growth rates and evolutionary principlesgrma and Palsson, a ected by cost, size of the model, initial substrates, ratur
1994. However, under certain media/environment conditions orof the process (metabolism, regulation and signaling) and
after genetic perturbations, the assumption might not bedvali environmental conditions (temperature, pH, type of bioreacto
Thus, other methods have been developed, namely: minimizati and timescale)l{emin and Goryanin, 2010
of metabolic adjustment (MOMA), to test the hypothesis that The de nition of the composition of a dynamic model entails
knockout metabolic uxes undergo a minimal redistributiovith ~ the determination of the interaction mechanism subjacenttte
respect to the ux con guration of the wild typeSegre et al., network and the decision on the type of representation for the
2002); and regulatory on/o minimization (ROOM), to minimize kinetic rate expressions. Then, the model can be described as
the number of signi cant ux changes that have high growthea a set of ODEs, commonly non-linear, which outlines the time
with respect to the wild typeShlomi et al., 2005 trajectories of the represented processes and gets outputs tha
In these CBM formulations, constraints are typically linearcan be corroborated by experimental data for multiple time
such as capacity/reversibility constraints imposed by beumu  points, when they are available. In a deterministic and cartis
the values of the uxes, and ux balance constraints imposgd bcontext, ODEs combine stoichiometric information from the
stoichiometry. These constraints de ne an admissible sofut network organization, initial conditions and mathematica
space, with a general form of a polytope. Then, through thexpressions for reaction rates as followstefano, 201)3
formulation of an optimization problem with a linear objecév

function, FBA identi es an optimal ux distribution by solvig a dx.t/ DSrx.thutlp
linear programming problem. dt T
Reviews and comparative analyses on available CBM methods y.t/ D g(x.t/, u.t/, p)
have been performed, including procedures using dierent withx.0/ D Xo p 1)

constraints, types of data and objective functiohs\is et al.,

2019, as well as studies on variants to address possiblghere S is a matrix with dimensioni j that contains the
issues such as solution redundancy by internal cycles nvithistoichiometric coe cients for all the kinetic reactions ithe
networks Emallbone and Simeonidis, 2Q00#owever, besides network; x(t) is a vector of dimension containing the time-
the development of CBM methods, the need of having morelependent state variableg;) is a vector with dimension
detailed descriptions of biological networks has increasedncluding: reaction rates that depend on the state varialkdes

leading to the addition of kinetic information. vector with input variablesi(t) and a set of kinetic parameters
_ o p; andg() is a vector to relate model outpuygt) with x(t). For
Dynamic Models for Phenotype Prediction certain models, this representation is equipped with algebraic

Dynamic models (also known as kinetics-based models) tequations to complement the ODEs or with further di erential
represent complex biochemical systems or processes hawagstaquations that include volume changes, such as intracellula
to create a wide impact in the biotechnology industry for thedilution for Equation (1) @Imquist et al., 201}
design of novel cell factorie$\{echert and Noack, 20)1This One of the most used approaches to build a dynamic system
is due to their potential in accurately predicting the e ects ofis the forward or bottom-up modeling, which helps to integrat
changing components in a metabolic network and to describall the components and their interactions through mechanist
processes such as variation in metabolite concentratiorts ardescriptions of the behavior, and characterizing the propsrtf
enzyme kinetics $oh et al., 20)2 The kinetics of a natural the particular entities, from molecular to systemic levielbowed
process, such as cell metabolism, along time are not usualby experimental validation and re nement of the model. The
linear or stationary; their representation inside a modeésis components of kinetic models, seen as networks, are the rate
mathematical expressions that describe the rates at whiaxpressions and parameter values that can be obtained from
reactions are performed in the biochemical system in tramtsie literature, experimental practices or data repositories. Haxe
or stationary phasesA(mquist et al., 2010 In fact, e orts  sometimes, parameters are unknown or unde ned within certai
to systematically construct dynamic models from genomeéescaranges, which require the application of methods for parameter
metabolic models have been developed recently, based onghe estimation, often a requirement of bottom-up approaches.
of data, such as reaction uxes, metabolite concentratiand In contrast, top-down approaches, another way to address
kinetic constants$tanford et al., 20)3 the reconstruction of dynamic models, use experimental data
In the context of industrial biotechnology, the goal for nhos to improve pre-existing models that predict measured data
cell factory models is linked to the comprehension and predict successfully. In this way, unidenti ed mechanisms, intécats
ofthe e ects of genetic or environmental perturbations appled and properties can be integrated into the model. The trend
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will always be to formulate objectives using models able téorm to describe the rate of the enzymatic reaction:
capture high-level mechanisms with simpler rate expressions,
taking into account essential links between network compasie 'D d[x] D Imax [S @)
(Bruggeman and Westerho , 20D7 dt [9 C km

In the next subsections, we will examine two key points ) ) ] )
to build dynamic models for phenotype prediction: the wherer is the reaction rate[S] is the concentration of the
network structure, including interactions, and the mathatical ~ SubstratefX] is the concentration of the produatmax represents
expressions to represent the change in reactions. Afterwtitds (he maximum rate reached by the system, and the Michaelis
possible techniques to study kinetic parameters are studied. ~ constantkm represents the substrate concentration at which the

reaction rate is at half-maximunt O 0.5max). The mechanisms

Interaction Network in this for_mulatlon are often very c_o_mplex an_d _n_ot well-known,
. and can include nutrients and inhibitors as limiting substes;
The internal and external components of the model

communicate through a network that can be reI:)resemeéhesecon3|derat|onsand analytical derivation of lawslateiled

using a diagram, as a group of links between metabolitel” Bertolazzi (2005 )or this reason, the determination of kinetic

. . ) rate expressions is complex and processes have to be carefully
enzymes, reactions, among others. This representatioeatsl|

. . X N ) studied by experimental means under the same conditions
the required and available biological information to be gerted
. . . . . assumed by the model. In these cases, there are a large number
into a mathematical system, allowing functionality to be

of parameters to determine, usually a set of maximum rates

derived from the structure_. Biological systems are usuallg d kinetic constants for each reaction. In addition, theele
seen as networks, since di erent properties can be analyzecruncertainty has to be analyzed, because predicted uxes an

. 0
n engineer m h r n | -l n . . o
?nsogulaeritg (s/ﬁlzf\?ersg;tznd s;;n 25 2%?&?_}[03::\}; ozegaggs fetabolite concentrations should be within acceptable eang
y 9a, Y '(Ij'he uncertainty of mathematical models represents limitasiin
pplicability and in completeness, as well as in the e ect of other

behavior, stoichiometry and parameters are not accounte
for in interaction-based approaches, for which the use o -

actors, such as temperature, pH, ionic strength, among sther
GAImquist etal., 2014

di erent mathematical tools is introduced to improve their
description, according to the type of analysis. An overview o
the key computational and statistical concepts and methods tgjjj| rate laws.Hill rate laws are used as a modeling

reconstruct cellular networks has been provided\Mgrkowetz  gpproximation for transfer functions that involve regulatio

and Spang (2007) within a biological system{iStefano, 2013 A Hill function of
order n with associated parametepsD {n, k, } can represent

Kinetic Rate Expressions activity as follows:

Mathematical expressions can describe behavior of intiersst

as rates of change. Their complexity depends on the degree dXac(t) D faet X(t,p) D X" ®)

of detail of the reactions and on the scope of the model, dt act P xn C k"

taking into account that future model reductions can be dXinn(t) kn

D fiyn X(t,p) D (4)

performed after nding a balance between the model and dt
the validation data. Kinetic rates are representations veeri

from deterministic or stochastic formulations. Howevehis ~Where Equation (3) represents an activation, Equation (4)
distinction can be arbitrary, since all types of kinetic exgsiens represents an inhibitionXact and Xy are (respectively) the
are approximations, as will be described next. In the deteistim ~ activated and inhibited substrates (depending on time amthae
case, there are mechanistic expressions from physico-cakmi@arameters), is the maximum regulation ratdis the activation

reaction processes, or approximate kinetic expressions tleat a@r inhibition coe cient, and x is the substrate concentration. It
mostly qualitative Demin and Goryanin, 2000 is noticeable that iff D 1, the Hill function for activation is the

same as the Michaelis-Menten equation (known also as Monod
equation).

x" C kn

Mechanistic expressions
The primary kind of mechanistic reaction kinetics is based orApproximate kinetic expressions
the mass action law, stating that a reaction rate is propogion In comparison with mechanistic expressions, there are some
to the concentrations of the reactants. This representation alternatives to describe the behavior of biological systéma
used for one-step or elementary reactions, or the combamadif ~ simpler way, using analytic functions as power series thatyswa
their mass actions for multi-step reactions, e.qg., for ematjc or ~ converge avoiding unstable systems. Also, a small amount of
transporter reactions. parameters needs to be determined, since most rate expression
are not known or are dicult to quantify, but a universal
Michaelis-MentenThe basic mechanistic expressions are théormula can be applied to the reaction kinetidSofger et al.,
Michaelis-Menten kineticsKertolazzi, 200§ that are derived 2007. This is translated into less e orts to estimate parameter
from one-step reactions by splitting fast and slow dynaniit®y values, added to a possible few experimental data availaldseTh
are commonly used for cases where the enzyme concentrationdpproximate formulations were compared with mechanistic
much lower than the substrate concentration, using the feify  approaches for some modeling cases, resulting in similar model
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behavior with respect to transient and steady states, evén wiConvenience rate law$hese approximations are derived
the use of general formulations and less parameters. Additip, from an enzyme mechanism without order, assuming a fast
hybrid approaches have been studied to combine mechanistequilibrium between substrates, products and enzymes. The
and approximate kinetics having also suitable resulislik  formulation allows concentrations close to zero, which can
et al., 200 Relevant approximate rate expressions for dynamibring problems with logarithmic representations. The rate
modeling are described next. laws assume an enzyme mechanism of random order and
can be applied to reactions with any number of substrates
Lin-log kineticsLin-log kinetics is a linear representation gpq products. This is a more general form of Michaelis—

of logarithms for large concentrations of species, such Jenten kinetics that involves extensive reaction stoictétries
enzyme mechanisms, with the rate of catalyzed enzyme 08acti(| jehermeister and Klipp, 2006

proportional to its concentration and dependent on parameters

and metabolite concentrationsi¢ijnen, 200} These are afactor Modular rate lawsThese expressions are approximate kinetics
of the linear sum and are able to provide analytic solutionglier that involves the representation of a family of semi-mechaai
steady statesi¢l Rosario et al., 2008The Lin-log rate law of  approachesl(ebermeister et al., 20)Lih the standard form:

thej" enzyme catalyzed reactid, in a network withM species,

is expressed as: f
| rD TiDECO D:EQ @)
N !
pa "0 jog Nk
rj D F]p%o 1Cle klog NE ®) where r is the modular rate law,T is a stoichiometric

parameterization termEp is the initial concentration of the
enzymef; is a complete or partial regulatiob,is a denominator

where superscripts denote steady-staté) is the enzyme term for every rate law anB"™Yis the particular regulation term.

activity relative to the reference steady-sta®,(J is the ux

for the corresponding reaction is the elasticity coe cient cogperativity and saturatiorBiochemical networks and their
(EC) that measures sensitivities of metabolite conceiuinat rgcesses can be modeled with cooperativity and saturation by
on the reaction rate, andl/NO is the relative concentration of \sing a canonical formalism including equations similar tdlH
metabolites for metabolite. rate laws. They include a local representation given an ojpeyat
point, based on a functional form derived from Taylor series
approximations in a special transformation space, de ned by
ower-inverses and logarithms of power-inversesr(ibas et al.,

Log-lin kinetics Similar to lin-log, this formulation allows to get
analytic solutions through linear and logarithmic express

on reactants and e ectors to approximate reaction rate 007. Moreover, the formalism can be used as an extension of

(Hatzimanikatis and Bailey, 1991n this case, the reaction rate owe.r laws With,abi er accuracy for numerical simulati

is not proportional to the enzyme concentrations since the las” ' abigger al - Jatiar sl
S - to explore predicted solutions coming from constraints of loca

ones are inside the linear terms.

sensitivities and di erent saturation fractions.
Power-lawsHere, substrates and products are related to

approximate the reactions rates as: Stochastic kinetic expressions
| | Deterministic formulations of reaction kinetics are restit when
Rgubs S L Rprod Pk. Nk the number of reacting molecules is large per reactant, wisich
rD —= 0 (6) the case of the most common modeled cell factories. However,
jD1 %O kD1 K for small numbers of chemical species in relevant applications,

stochastic behavior may happen, such as in signaling or gene

where and are the aggregations of the forward andexpression, for which stochastic simulation approaches &enta
reverse rates that interact with substraBeand product P, into account. The most common formulation for stochastic
respectively, superscripts denote areference stedadn arethe  models is the chemical master equatiailéh and Wolkenhauer,
kinetic orders of the respective compound, corresponding ® th201(Q. This approach introduces new insights to the eld since
exponents in the reaction equation by which each concemmati solutions can satisfy conditions that change in time. Déwiss,
term is powered to, whileg,ps and nproq are the number of inthe form of noise, are included in a chemically reactingeys
substrates and products, respectively. which can explain connections between stochastic equatinds

There are two main types of forms for power-law kineticsdeterministic rate laws. This kind of biochemical netwodan
(Savageau, 19)01) Generalized mass-action, describingexistin continuous or discrete state spaces as explained next
reactions with non-integer exponents and rates unfolded for For continuous spaces, stochastic simulations use analytic
each reaction that interacts with the species (similar to snas approximations for the inuence of randomness on the
action formulation), allowing at the same time an analyticbehavior of a system. The representation is through stoahast
solution at steady-state; 2) S-systems, for forward anérsev di erential (or Langevin) equations, which can be derivedrfro
kinetics, where individual reaction rates aggregate tvaations corresponding deterministic partial di erential equationsrf
for every mass balanced species, capturing non-linearitidgeat the kinetics of the probability distribution of the molecules
local state, and giving analytic solutions of steady-state (Gillespie, 2000
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In the case of discrete spaces, the basic idea is that the stéte value of the corresponding elasticity. Time-response of
of the system comes from the exact numbers of molecules,avheluxes show an excellent agreement between the original non-
the changes of reaction states are described by the praiebili linear model and the log-linear modeHétzimanikatis and
of the transitions between every possible state (property knowBailey, 199) However, the average performance has limitations
as reaction propensity). The formulation also includes a ®erast under quasi steady-state, for which the prediction of metigbo
di erential equation that holds the time evolution of the $t¢a functions can be deteriorated.

probabilities, which can be described by a non-trivial sttt Stochastic modeling methods are commonly applied for

simulation algorithm Gillespie, 1976 systems with small number of chemical species, to describe
processes that present deviations, e.g., noise in gene erpessi

Discussion or signaling, giving solutions that can satisfy conditiotiat

To summarize approaches for phenotype predictidaple 1 change in time. Moreover, applied as a non-deterministic
provides an overview of the dynamic modeling methodsapproach in continuous spaces, these methods can be used
described in this review. It provides information about theto describe common sti reaction motifs in cellular metabolic
reasons for using the dierent algorithms, their advantagesystems, for instance, the enzyme-catalyzed conversioa of
and disadvantages, and proposes illustrative examples of theubstrate into a product or its decay into its original congtints.
application. In the three following paragraphs, one exampl&he reactions can be divided in fast and slow time scales, and
from each class of methods—mechanistic, approximate arithe simulations can reach very accurate levels under certai
stochastic—is detailed showing how each modeling approaadonditions Cao et al., 2005 The time trajectories of the
helped to better understand metabolic pathways for phenotypspecies of the model are simulated using random sampling, an
prediction. approach that results in satisfying the formulation given bg t
Mechanistic modeling methods do not demand knowledgaleterministic Michaelis-Menten derivation. Thus, this dtastic
of the detailed mechanisms of a system by using conventionalethod is useful when a di erence of speed can be found in the
expressions to describe structural features of metabaditesys, stages of the reaction, with the advantage of having sinwlat
as well as to model the added e ect of two or more reversiblelramatically faster without noticeable loss of computatibn
inhibitors or activators. This approach is combined with theaccuracy.
fact of kinetic parameters able to be estimated with tradiio The dierent classes of kinetics-based methods used for
methods since they are not always available. One notabfe@&a phenotype prediction (explained in the previous subsections)
is the generalized Hill function that can be used when mdi@cu are illustrated inFigure 2 and a qualitative comparison is
mechanisms are not well understood. The methods considenade with respect to interaction networks, constraint-based
experimental data regarding structural/functional feasirof methods and hybrid approaches. The classi cation takes into
a system, and descriptive data of its dynamics. For instancaccount the complexity in size (vertical axis) and the level of
available data was used to describe the expression regutstio detail/accuracy (horizontal axis) to describe the systemsd, a
the cydABoperon in E. colito further understand metabolic places each method within these coordinates, where positions
activity of its cells under dierent conditions L(khoshvai toward upper levels mean genome-scale networks. Interaction
and Ratushny, 2007 The method describes the changes ofhetworks are placed at the top in terms of network complexity,
transcription factor concentrations that aect the rate of but contain few information and details of the behavior oeth
enzymatic reactions, depending on oxygen concentratiohs. T entities. Similarly, constraint-based models not only sider a
result is a model predicting the level aydAB expression big amount of interactions, but also provide more information
in agreement with available experimental data and simutatio about the properties of reaction rates happening; however, the
results. The use of generalized Hill functions allowed tpdss detail on how the behavior of the reactions in time is low.
the problems of reconstructing the detailed mechanisms ef thOn the other hand, kinetics-based models are split in the
molecular subsystems. graph space according to their deterministic or non-deteristic
Approximate modeling methods are typically used to facilitatenature. Deterministic approaches include approximate and
the analysis and design of strongly non-linear pathwaysjgusi mechanistic methods, which have in average a medium level of
simpler universal expressions in the form of analytical fumasi. complexity and degree of detail/accuracy, since they take int
One example of their use is the log-linear approach, used tegethaccount dynamic information. Non-deterministic methodsfer
with available data on elasticities and control coe cients to stochastic approaches, which can describe the operatidreof t
to understand glycolytic pathways in yeast, which present aystems with high detail and accuracy, but are typicallytéohi
strong non-linear behaviorHatzimanikatis and Bailey, 1997 in network size. Finally, hybrid approaches, a combination of
The analytical solution of the log-linear model for a numberstoichiometric and dynamic information, are positioned with
of metabolites and enzymatically catalyzed reactions, ritpe high level of accuracy on the description of high-sized nekspr
explicitly on information from metabolic control analysis @A)  since the best features of two approaches are integrated into
(Fell, 1992 This solution considers a linearization around aa single one. The trend of research is to nd methods that
steady-state using logarithmic deviations of the stateéabdes can predict behavior of bigger networks with more detail and
and parameters. Studies can be performed regarding the e eatcuracy. Examples of applications of kinetics-based anddybr
of modi cations of the catalytic properties of an enzyme withapproaches are shown in the graph. Interaction networks and
respect to its substrate (or regulatory e ector), by changingsonstraint-based approaches are only included in the qualéa
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TABLE 1 | Classi cation of kinetic rate expressions.

Type Rate When to use it? Advantages ( C)/Disadvantages (-) Example References
law
Mechanistic Michaelis- To have the basic mechanistic (C) For very complex and not Pharmacokinetic model Sheiner and Beal,
expressions. With kinetics where fully-understood mechanisms. 1980
Menten enzyme concentration is much (C) Knowledge of kinetic constants
lower than the substrate for substrates or regulators is not
concentration. To model the required since they can be estimated
summation of the effects of two
or more reversible inhibitors or
activators
Hill rate To model structure functional (C) Suitable for not well-known Regulation of the Likhoshvai and
laws features of molecular genetic molecular mechanisms by using expression of the Ratushny, 2007
systems that do not demand generalized functions cydAB operon in E. coli
knowledge of their detailed
mechanism
Approximate  Lin-log In gene regulatory systems (C) Analytic solution of steady-state Glycolisis in del Rosario et al.,
where rates are proportional to network balances are desirable. Lactococcus lactis 2008
enzyme levels. With number of (-) Parameter estimation methods not
parameters as small as possible always t satisfactory the data,
especially when having small
concentrations.
Log-lin For metabolic systems subject to (C) Accurately describes dynamic Yeast glycolytic system Hatzimanikatis and
spatiotemporal variations of responses of strongly non-linear Bailey, 1997
system parameters and the systems with analytic solutions.
process operating conditions. (C) Based on metabolic control
analysis data to study parameters.
(-) Quasi-steady-state approximation.
Power For arbitrary systems of (C) Suitable solution approximation Basic growth of Savageau, 1979
laws enzyme-catalyzed reactions. for enormous non-linear chemical complex systems

Convenience

Able to simply model aggregation
and consumption processes

To represent enzyme saturation

systems using conventional numerical
methods

(C) Small number of parameters that

Chinese hamster ovary

Nolan and Lee,

rate laws and regulation by activators and can be easily computed with cell metabolism 2011
inhibitors. It uses least-squares estimation methods
thermodynamically independent
system parameters
Modular In reversible rate laws for (C) Simpli es thermodynamic-kinetic Cycle of three reactions Liebermeister
rate laws reactions with arbitrary modeling formalisms being exible (illustrative example) etal., 2010
stoichiometries and various and biochemically plausible. () Less
types of regulation accurate than detailed kinetic
equations
Cooperativity To t experimental data using (C) Expected to be accurate over a lllustrative example of Sorribas et al.,
and systems with saturable form wider range around the operating metabolic network with 2007
saturation point if the approximated functions one positive
are saturated. () Need of a large feedforward and one
number of parameters (increased negative feedback
estimation efforts). () Common
canonical formalisms do not have
saturable form
Stochastic Continuous For stiff systems, which can (C) Able to describe the common Simulation of the Cao et al., 2005
space evolve on slow and fast time enzyme-catalyzed conversion of a general stiff
scales, and having stability in the substrate into a product. Dramatically enzyme-substrate
fastest modes speeds up the stiff reactions. reaction
Discrete For problems with identi ability (C) Capture variability for bistable Isomerization of Ullah and
space issues, when changes in the systems; able to deal with noise proteins Wolkenhauer,

species are discrete and
random, rather than continuous
and deterministic

(randomness)

2010

A summary of dynamic modeling methods, condensing information about theases for using the different methods, their advantages and disadvantagesand an illustrative example of

their application.
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comparisons and are not considered further, since they atefou and gradient of an objective function, usually computed by
the scope of this review and have been thoroughly examined imumerical methods, such as nite di erence approximations.
other reviewsl(larkowetz and Spang, 2007; Lewis et al., 2012 However, this can bring problems with speed of convergence
for complex structures. In addition, local methods nd optimal
Parameterization Techniques solutions in some feasible neighborhood that are not alwhgs t
The measurements obtained from experiments help to deteeminglobal solution, unless the region of feasible solutionsoisvex
the values of individual parameters for kinetic rate exp@ssi (Nocedal and Wright, 2006
initial conditions and outputs. These values can be found in On the other hand, global methods are based on
data repositories that compile this information such as BRENDAMetaheuristics, such as simulated annealingirkpatrick
which gives a collection of enzyme and metabolic informatio et al., 198§ genetic or evolutionary algorithms (EAspdrkar
(Schomburg et al., 20)4and SABIO-RK, that stores information and Modak, 2003; Yuzgec et al., 2J0%he combination of
about biochemical reactions and their kinetic propertiggittig ~ global and local methods has been the most successful tool
et al., 201p In case measurements are not available, parameté® explore the parameter space when solutions are close to an
values can be estimated by inference, using existing expatah optimal (Moles et al., 2003 The objective of metaheuristic
data, and estimation methods that can be constrained wittnethods used for the parameter estimation task is to accelerat
thermodynamic and physical/chemical conditions to asshe t the process for large-scale systems biology models (that are
values are uniquehakrabarti et al., 20)3 usually non-linear dynamic systems). This can be achieve wit
Kinetic parameters are found either all simultaneously, byarallel and self-adaptive cooperative strategies basedatieisc
making the model t the measurements of the whole system, ogearch optimization, which can signi cantly reduce compidgat
one by one considering individual components and processetimes, and improve performance and robustneBgrfas et al.,
Furthermore, both approaches are usually combined by xing2017.
parameters to already known values and tting the remaining The classical approach for the objective function, when
ones. However, di erent parameter values are often found fronperforming the estimation of parameters, consists in minimggin
di erent sources, in distinct experimental conditions, whic the dierence between the model output and the experimental
brings compatibility problems. In addition to the parameter data Chou and Voit, 200 The formulation considers model
estimation, a study can be done on how changes on paramete®stputs in vectory(), M data points in a vectop D (pz... )
a ect the behavior of a model. Both methods will be reviewed inmeasured at time¢t;...ty), as the set of parameters to be

the next subsections. estimated, and an objective function( ) de ned by the distance
of the vector residualspf - y(t1, ), ... , pu - Y(tm, )], that
Parameter Estimation usually is seen as the weighted sum of squares. The forronlati

To avoid compatibility problems from nding parameters from of the objective function is described as follows:
di erent sources, parameter estimation techniques are used,

indirect methods allowing optimal values of parameters to be oo (ti, ) 2

. ) L ) SERAVE
calibrated as a solution to an estimation problem, making 8./D > (8)
the model reproduce experimental measurements of di erent jb1 i

values instead of the parameter themselves. Moreover, there
are numerical optimization algorithms, with stochastic orwhere j2 is the error weight for thg-th data point. Then, the
deterministic approaches, that allow to determine the quality values to be estimated, are the ones that minimize ( ) (Raue
experimental data in an e cient and automated way, makinget al., 200p
the data generated by di erent measurement methods reliable Furthermore, the parameter estimation can be seen as a
for quantitative dynamic modelingRaue et al., 20)3The geometrical problem, as stated previously, or also as a statisti
critical consequences of the limited availability of kinetata in  formulation (Ljung. L., 198y that takes the experimental data
metabolic dynamic modeling have been discussed with respectas events of random variables. The model deviation on the
speci ¢ organisms. The study concludes a remarkable negessprediction is de ned asj and added to the output for each data
for producing curated data to approximaievitro conditions to  point asp; D y(t) C ", with which the observed output in Eq. (1)
the in vivo ones, so that an integration of available kinetic datdgs modi ed to y(t) D g(x(t), u(t), ) C ". Assuming independent
into a complete large scale model is possiblegta et al., 20)1  and normally distributed deviations, the likeliho&dof observed
Parameter estimation follows an optimization algorithm tha data pointsp with the rest of variables de ned in Equation (8) is:
searches through a large set of possible values, underrcertai

constraints and non-linear structures, which can imply comple W ' by, ) 2%
objective functions with multiple solutions in the form ofdal 3./Dk exp % 9)
optima. The goal of optimization algorithms is to locate a glbb jb1 2]

optimal in a feasible time, using local or global methods.

Local methods have to initiate the optimization with refecen wherek is a constant that does not a ect the optimal likelihood.
parameters that can be measured experimentally or found iAdditionally, is de ned as the maximum likelihood estimate
literature, and then improved after repeating the executibthe  for  that optimizes3 ( ), which leads to rewrite the problem
algorithm. The algorithms are commonly based on the Hessiaas the minimization of the negative logarithm of the likeldgtb
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FIGURE 2 | Phenotype prediction approaches: interaction networks, onstraint-based and kinetics-based methods can be classi @ qualitatively according to the
level of detail and accuracy (horizontal axis), and the uslsize of network (vertical axis). Position toward upper lels means genome-scale networks.
Constraint-based and kinetics-based approaches can be jaied in hybrid methods that aim at taking the best advantages beach of them. Examples of applications
of kinetics-based and hybrid approaches are given (fronfables 1, 3, respectively).

function, that is equivalent to the geometrical formulatio event triggered observation&rphlich et al., 2017b Further,
Likelihood theory is equivalent to least squares theoryd @n there are computational optimization tools available that
yields identical estimators of the structural parameterscépt  implement metaheuristic methods for parameter estimatiosith
for the variance) for linear and nonlinear models when theoerr can be applied to multiple domains of systems biology and
terms are assumed to be independent and normally distributefioinformatics, such as the MEIGO toolbokdea et al., 20)4
(Burnham and Anderson, 2092 Finally, global optimization for non-linear dynamic modéias
Other ways to nd optimal values for parameters includebeen presented as a solution for improving computation times
using adjoint sensitivity analysis for the purpose of acauratin comparison with deterministic global method&¢driguez-
gradient estimation, with a superior scalability comparedite  Fernandez et al., 2006
standard forward sensitivity-based optimization, whichsha An important procedure performed in parallel to parameter
level of complexity of systems independent of the number oéstimation is to study the uniqueness and level of con deote
parameters to estimate~(ohlich et al., 2017%a Additionally, the variables that are going to be computed. For that, perfogmi
optimal parameters can be found by exploiting the locaidenti ability analysis, local or global, is essential to leade the
geometry of the steady-state manifold and its stability props, goodness of experimental data to determine model parameters.
due to the dynamics of the process restricted by steady-stakéowever, certain models are not identi able according toithe
constraints, such as initial conditions at equilibriunri¢dler  structure, based on known inputs and measured outputs, which
et al., 2015 Moreover, optimization of parameters can beturns parameter estimation meaningless. Structural idehbtiity
achieved by describing the sensitivity equations for a igrdd analysis helps to know which quantities have to be measured
computation problem that includes event-resolved data usingnd which are able to be estimated. Theory and tools availabl
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for the study of identi ability have been previously reviewedthe degree of control of enzymes on the pathway of that speci ¢
and discussed, together with related concepts such asisépsit ux.
to parameter perturbations, observability, distinguistighiand ECs and FCCs help to connect properties of the system and
optimal experimental design/{llaverde and Barreiro, 20)6 components, using the fact that for each metabdiit¢he sum

Many algorithms have been developed for this task, one iof the product of ECs and FCCs is zero with respect to that
particular using observability, to know how the internalte® metabolite. Larger values of FCCs indicate that the corneding
of a rational model can be inferred by the nature of its outputsreactions are primarily controlling the ux, leading to targe
This method is based on computing the rank of a numericallithose enzymes for a successful ME of the corresponding
instantiated Jacobian matrix (observability/identi éiby matrix)  pathways; details on MCA method are further discusseééfi
to evaluate the local structural identi abilitySedoglavic, 2002; (1992) Moreover, MCA can be applied to steady-state uxes
Karlsson et al., 20)2Moreover, computational tools have beenand metabolite concentrations, and combined with parameter
exploited to analyze the structural identi ability of a veggneral sampling approaches to analyze parameter uncertainti&sig
class of nonlinear models by extending previous methods, anet al., 2004 Some extensions of MCA have been developed
also showing how to modify unidenti able models to make themfor more signi cant modi cations (Nikolaev, 201)) since a
identi able (Villaverde et al., 2019zBesides these tools, methodsmodel with good predictive power is required to simulate large
to analyze global structural identi ability for arbitrarynodel changes in structure or parameters of the model, which means
parameterization have been developé@i(g and Glad, 199 robustness with respect to di erent operating references. For
as well as to assess local structural identi ability for aegal instance, candidate targets, after MCA increases the ptauc
non-linear state-space modeélt{gter and Molenaar, 2015 of some compound, can suggest large changes in two or more

Furthermore, to evaluate the accuracy of estimate@nzyme concentrations by rstly simulating a deletion ségy.
parameters, it is common to analyze standard parameteFhen, by overexpressing an enzyme and analyzing how pathways
con dence intervals, de ned as a quadratic approximation ofwere a ected, this results in a combination of two modi cati®
the logarithmic likelihood around the optimal valuRue et al., thatcanimprove a certain uxinthe desired direction, compér
201) or, alternatively, calculating exact con dence intesval to the results of the wild-type straindpefnagel et al., 2002
from a threshold level in the likelihood, where parameter
directions are explored, while likelihood is minimized with . .
respect to other parametergfue et al., 2009 Efforts on Modeling the Metabolism of

The general parameter estimation procedure is describel. coli
in Figure 3 considering the main types of approaches. Befor@he development of dynamic models to quantitatively deserib
estimating parameters, a study of the dynamic data has tthe systemic behavior of essential microbial functionsriial
be performed using structural identiability. This processfor the rational design of ME applications. The study of the
helps to qualitatively assess if the available data is useful central carbon metabolism of species, which redirects garbo
make suitable predictions. After this, the search for optimaluxes to the formation of carbon products, has become of great
values that follows depends on the type of approach chosemportance for systems biology approachEs.coliis the most
geometrical, minimizing the distance between the modepatit widely studied microbial organism, and an important species
and experimental data, which is equivalent to the statiktican the elds of microbiology and biotechnology, because it is
formulation that minimizes the likelihood function of obseed  used to produce useful materials in the industry and its caintr
data, or metaheuristic, that performs a parallel and selfpida  carbon metabolism has been studied for many years as the hub
search within a solution space. on which many catabolic and biosynthetic processes are built

(Kurata et al., 2014
The use and improvement of dierent mathematical

Local Parameter Sensitivity Analysis techniques to describe the kinetics of the central carbon
This type of study allows to identify how a model variesmetabolism ofE. colihas been increasing considerably over
its behavior, such as changes in uxes and metabolitéime. This can be seen as a case study to discuss the insights o
concentrations, in response to a perturbation around somehis review regarding the use and evolution of dynamic models
points in the parameter space. This analysis can be dore E. colj often describing its aerobic growth in continuous
through genetic modi cations a ecting enzyme concentratg) culture with a limiting concentration of carbon source. One
which will allow to identify reasonable ME targets that a ectof the rst remarkable attempts was made by Chassagnole
positively the behavior of a cell factory. This kind of sem@tit and coworkers, who presented the design and experimental
analysis for dynamic models can be performed through methodgalidation of a dynamic model that deals with the lack of
such as MCA [cell, 199, MCA quanties, through two kinetic information on the dynamics of the metabolic reaciso
di erent dimensionless indices, how the control of a ux in This model uses experimental observations of intracellular
equilibrium state is distributed among the enzyme reactiona metabolite and co-metabolite concentrations to validate th
particular pathway, namely elasticity coe cients (ECs) angk  model structure and to estimate kinetic parametersgssagnole
control coe cients (FCCs). ECs are de ned using metaboliteet al., 2002 The kinetic types and regulations of the di erent
concentrations and reaction rates catalyzed by enzymds wienzymatic reactions, with non-linear feedback/feedfadya
particular concentrations. FCCs for any ux in steady-stsitew linked for the rst time the sugar transport system with the
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FIGURE 3 | Description of the overall parameter estimation procedure-irst, quality of experimental data is studied to determisuitable parameters via structural
identi ability analysis. Then, parameter estimation is pé&srmed, locally or globally, according to the type of proble formulation. The equivalence between the
geometrical and statistical formulations is noted.

reactions of glycolysis and the pentose-phosphate pathway, To model the kinetic behavior of the system, the reactioe rat
using reversible Michaelis-Menten equations, Hill equationcomplexities depend on the catalytic mechanism, the regujator
allosteric regulation and activation, among others. Somary properties allowed and the amount of experimental data avigilab
later, a similar approach was developed, with the integratiofor evaluation of the predictions. Therefore, they use four
of pathways for the tricarboxylic acid cycle and anaplerotidevels of detail: (1) when the mode of action is simple, not
reactions, and including analysis of metabolic change&léns metabolic regulated or when no experimental data is availabl
the cell in response to specic pathway gene knockoutgvaluate the e ect of parameters (Michaelis-Menten equations);
(Kadir etal., 201D (2) when di erent quantitative data is available, and enzgme
Although these kinetic models study and evaluate in detaihave complex catalytic or regulatory mechanisms, but without
many biochemical pathways, reactions and cycles, they shaaay allosteric properties (generalized Cleland equatior®); (
drawbacks, and use simplications of complex enzymatiavhen enzymes have allosteric properties (Hill equation, Monod
activities. Also, they disregard system regulatory propsrisuch equation, among others); and, (4) when reaction rates ofemwes
as metabolic regulation networks, and a weak evaluation afannot be expressed by a single equation, rather with a seplarat
the models by insu cient or limited types of experimental ODE system, considering e ect of pH on enzyme activity, and
data. Peskov and collaborators proposed a more extensive ansingin vitro experimental data (Cornish and Bowden approach,
detailed model to solve these problems. They use severalsstagornish-Bowden, 1979This model is capable to suggest better
according to Cleland's classi cation to develop and evidua hypotheses about system regulatory and functional properties
their model Cleland, 1968 which allowed to usén vitro and  since it uses analyses of dierent types of experimental data.
in vivoexperimental data, based on uxomics and metabolomicstHowever, it takes into account a small number of reactions
to avoid the ambiguity shown in previous models caused bgompared with the thousands present in a genome-scale model.
comparing the coincidence between predicted and experiment& more detailed descriptions of the formalisms used can be found
data Peskov et al., 20).2 in (Peskov et al., 20).2
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Later on, Khodayari and his team made a good e ortthat deeper analyses have to be performed to ensure the validity
to facilitate the construction of a larger-scale kinetic deb of proposed structures.
of E. coli, introducing an ensemble modeling procedure to We have seen that di erent mathematical models describing
address the challenge of identifying kinetic parameter eslu the same organism, do not ensure full capabilities indivijua
and kinetic rate laws. The model integrates all the reastionDi erent studies and considerations at local and global Isvel
used in previous discussed modeish@ssagnole et al., 2002;have to be evaluated for a dynamic model to be competitive
Kadir et al., 2010; Peskov et al., 2DIPheir method consists for genome-scale applications. There has been an interest in
in decomposing metabolic reactions into elementary reactio supporting existing predictive models using approximate kinetic
steps and incorporating phenotypic observations (includingate expressions and well-known structures. One example is
genetic perturbations) in a parameterization scheme. Theehodusing the lin-log approach in the kinetic model developed by
satis es steady-state experimental uxomics and metabadsm Chassagnole and coworkers. This work was performed by Visser
data, and minimizes discrepancies between model predictiorend collaborators, who compares the validity of a mechanisti
and experimental measurements. The estimation of parametensodel and a lin-log model derived from the mechanistic one.
problem is solved using genetic algorithms taking into aetou The study demonstrated the value of lin-log approaches as MCA
wild-type and mutant ux data. A Michaelis-Menten equivalent extensions, since it allows to build kinetic models, based on
formalism of the model, shows that the predicted uxes andVICA parameters, that can be used for constrained optimization
metabolite concentrations are within acceptable uncetyain problems, being valid for large changes of metabolite andrarzy
ranges Khodayari et al., 2034 Nevertheless, this kind of levels {isser et al., 2004; Tusek and Kurtanjek, 2010
study requires the availability of additional experimentak
measurements for mutant strains having perturbations in
di erent parts of the metabolism, in order to perform more COMPUTATIONAL STRAIN OPTIMIZATION
robust parameterization of a genome-scale kinetic mode(CSO)
Moreover, its application is restricted to the steady statd ait
constant cell growth rate. CSO is usually seen as a bi-level framework, because its task
The extension and integration of new insights to previousare commonly divided into two stages or layers: one to perform
dynamic models is a trend to improve the power of predictionsthe phenotype prediction (described in a previous section)
Jahan and coworkers proposed a kinetic model that usemncompassing the biological objectives of the problem, and
detailed kinetic equations, with gene regulations to repia another where the bioengineering objective is tackled irfoinen
the dynamics of wild-type and multiple genetically modi ed of an optimization problem. The objective is to nd the optimal
mutants under aerobic conditions in a batch culture. At theset of genetic modi cations applied to an organism to achieve a
same time, the model estimates a speci c cell growth rate thatesirable goalgurgard et al., 2003
is linear to the total production of adenosine triphosphate, Possible solutions need to ful Il feasibility speci catigrand
which re ects the reconstituted metabolic pathways causgd bthus the optimization algorithm also deals with the de nition
genetic changes (and avoiding the use of Monod equation as of solution spaces that can be implemented vivo. These
previous models). The values of parameters are estimated usi@SOMs, can be based on purely constraint-based or kinetics-
a constrained evolutionary search method to be able to ptedibased modeling, or the combination of both. CSOM comprises a
allosteric e ectors and gene expressions. The values estimatmyriad of methods that generate possible solutions to ME tasks,
are xed for all the mutant cases, an improvement with respechamely: (1) gene deletion, by canceling uxes related to speci
to previous models that use di erent parameter values for eacgenes making their reaction rates equal to zero; (2) hetgmis
mutant. The dynamic model uses the structure of the batch oinsertion, by adding new genes or pathways, and redirecting
continuous culture based on mass balance equations in amayst uxes in the desired directions; (3) gene modulation, tunitng
of ODEs, and a cell growth rate estimation connected to the u level of contribution of enzymes by over or under expressing
of production of adenosine triphosphatészhan et al., 20).6 the activity of their reaction rates; and (4) cofactor bingli
Another e ort to include new knowledge and to improve speci city modulation, by exchanging the cofactor speciegdi
capabilities of a dynamic model d&. coliwas performed by of certain reactions in a network. These tasks can also be used
Millard and his group. They developed and validated a model thah combination with each other to nd more complex ME
links metabolism to environment and cell proliferation thrglu  strategies. The solutions are translated into modi catan the
intracellular metabolite levels. Also, the study explohesfact of network applied to the ux constraints or kinetic parameters,
metabolic regulation producing robust properties and a cohtrofor constraint-based and kinetics-based models, respdgtite
widely distributed across the network, from a moleculaele@  complete description and discussion regarding application of
the overall cellular physiology level. The model is basedhen t CSOMs for constraint-based models, with a special classi natio
ones published by Kadir and Peskov, but it increases the numbas exact bilevel mixed-integer, metaheuristic and eleargnt
of pathways and the level of mechanistic detail, and alsoidted mode analysis-based programming methods, is provided in
exchange reactions and a single reaction to model growtpleou (Maia et al., 201)6
to glucose uptake. MCA was used to validate control properties The use of metaheuristic approaches in CSOMs brings
and impact of a small change in the rate of each reaction, ukansome important advantages with respect to exact methods,
metabolite concentration\(illard et al., 201Y. This study shows such as providing a framework that can easily scale well for
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bigger models and larger numbers of modi cations, whichnumerical computation for the optimization task to identify
is computationally less costly and possibly faster for ndinggenetic modi cations Pozo et al., 2001

su ciently good solutions. Another remarkable feature is t On the other hand, stochastic global optimization can be used
gain a level of exibility to implement complex frameworks, to locate solutions near to the global optimum, including EAs
with an independent implementation of phenotype predictionwhich have shown acceptable performance for applications in
and strain optimization layers, which can allow, for examplepiological system$3anga, 2008; Rocha et al., 2D@Examples of

to implement nonlinear, or even discontinuous, objectivestochastic optimization include: applications of robust methods
functions in the optimization layer to de ne more signi cant for parameter estimation in nonlinear dynamic systems, that
problems. Common approaches combine the assumption thaiutperform signi cantly methods previously used for three
microorganisms naturally maximize their growth, with sitated  speci ¢ benchmark problemsiodriguez-Fernandez et al., 2006
annealing or EAs to select genetic manipulations that willites EAs for predicting optimal reaction knockouts and enzyme

in a desirable high productivity goakpcha et al., 2008 modulation strategies for the maximization of serine prodoict
_ _ by E. coli (Evangelista et al., 20%3and, the exploration of
CSO Using Dynamic Models a computational environment where dynamical models are

For industrial biotechnology purposes, a mathematical modelsed to support simulation and optimization tasks, by using
must be able to simulate, predict and examine a variety ahetaheuristics to identify modi cations of parameters sath
scenarios where a biological system is operating underinertathe production of dihydroxyacetone phosphate is maximized in
assumptions and environmental conditions. It is possible tcE. coli(Evangelista et al., 200®sual alternatives to characterize
design CSOMs based on dynamic models through the study ¢érgets include making a local parameter sensitivity ans|ysi
the transient and equilibrium states of the system. The ngmial  simulating more signi cant changes in enzyme levels or othe
of these CSOM s is to nd forms of reaction rates, i.e. parameteelements.
values for de ned kinetic expressions, for which a system has Moreover, novel algorithms use multi-objective dynamic
the best tness with respect to a certain phenotype, e.g., aoptimization to identify combinations of targets (enzynwti
improvement in the production of a particular compound. modi cations) and the degree of modulation to optimize a sét o
In silico ME strategies are designs that represent a way g@fre-de ned performance metrics, subject to process constsaint
improving the performance of an organism toward a speci ed(Villaverde et al., 201§bThese methods were demonstrated on a
goal. They caninclude the use of dynamic models that predect threalistic metabolic model of chinese hamster ovary (CHOlsce
behavior of the system under the in uence of perturbationg;ls  used for antibody production, while sustaining a robust growth
as gene deletions, enzyme modulations or changes in theumedi in CHO cells, increasing biomass production, product titerga
conditions. The selection of a dynamic model with high powerkeeping the concentrations of lactate and ammonia at lowseve
of prediction bene ts the design of newly engineered micedbi Additionally, exhaustive studies of dynamic models havenbe
strains. CSO using dynamic models aims at identifying propedeveloped, such as a kinetic model of CHO cell metabolism
gene deletions or levels of enzymatic activity applied toali@  (Nolan and Lee, 20)]1together with a novel framework for
processes. simulating the dynamics of metabolic and biosynthetic pathsvay
The methods can be based on two types of formulation®f these cells grown in fed-batch culture. The authors later
exact or stochastic. On the side of exact formulations, acbascomplemented their study with a method to simultaneously
approach involves linear programming problems with linearidentify processes and cell modi cations that improve antdgo
objectives and constraints de ned in a convex space. Howevesroduction, by exploring combinations of process variabled an
most of the optimization problems applied to biological system&nock-outs applied to the CHO modelNplan and Lee, 20)2
introduce non-linear programming problems over continuouso  Table 2 summarizes examples of applications of CSOMs
discrete variables. This means that the search process kan taising dynamic modeling, using the exact or stochastic methods
place in non-convex spaces, resulting in the possible existenoentioned above. The type of formulation includes the
of multimodality, i.e., the existence of multiple local dans. phenotype prediction method and programming approach
This type of problems belongs to the class of non-deterministiused to solve the optimization problem. From a comparative
polynomial-time hard problems, which are computationally perspective, we will analyze two examples of strain optimization
more complex and less e cient to solve than polynomial-time that have the same objective, the maximization of serine
ones Erickson, 200p productioninE. colimodel Chassagnole et al., 2Q0RBut that use
Exact methods are always able to yield the optimal solutions, di erent formulationto nd a set of modi cations to reach sth
but their computational time increases exponentially withgoal. One uses a linear approximate version of the non-linear
the size of networks and of the solutions, thus, demandingnodel and gets an exact solution for the overproduction prohle
the development of approximate and faster algorithms. Thesand the other one uses the non-linear model and a metahearist
include exact Mixed-Integer Linear Programming formulatsp  approach to solve the strain optimization part.
that can be combined with approximation methods such as Vital-Lopez and collaborators used dynamic modeling of
generalized linearization of kinetic modelsii@l-Lopez et al., metabolism to nd optimal engineering interventions. The
2009. Further, global optimization of non-linear dynamic procedure relies on the generalized linearization of a dyicam
models has been explored by recasting the system into anodel, by employing a Lagrange expansion, and the iterative
equivalent generalized mass action model, which facitéte  application of mixed-integer linear programming optimization
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TABLE 2 | Applications of computational strain optimization method using dynamic models.

Description Type of formulation Case studies Evaluation Refer ences

Linearization of kinetic Approximate, mixed-integer Serine overproduction in Theoretical Vital-Lopez

model and iterative linear programming E. coli (experimental et al., 2006

optimization evidence)

Metaheuristics to identify Stochastic, evolutionary Maximize production of Theoretical Evangelista

modi cations of parameters computation dihydroxyacetone (experimental etal., 2009
phosphate inE. coli evidence)

Brute-force to Exact, exhaustive search Improvement of antibody Experimental Nolan and

simultaneously identify production in Chinese Lee, 2012

process and cell Hamster Ovary cells

modi cations

Metaheuristics to identify Stochastic, evolutionary Maximization of serine Theoretical Evangelista

modi cations of parameters computation production by E. coli (experimental etal., 2013

evidence)

Multi-objective dynamic Exact, mixed-integer nonlinear Sustained and robust Theoretical Villaverde

optimization programming growth of Chinese Hamster (experimental etal., 2016b
Ovary cells evidence)

to hierarchically identify reaction eliminations and/oneyme experimental evaluation, con rming that changes in paramete
level modulations \(ital-Lopez et al., 2006 The authors nd are supported by experimental results on the modulation of
that the resulting engineering strategies and robustnepedds lactate dehydrogenase activity. They show that by reduttiag
mostly on the range of bounds de ned for the metaboliteenzyme activity, lactate production decreases, and cell @ensi
and enzyme levels. Narrow bounds on concentrations geaeraand antibody production increase- @-fold titer improvement),
accurate predictions, while for larger concentration ramtfeere  in good agreement with experimental data. The authors
was substantial divergence between the non-linear and theonclude that the bene ts of cell engineering (enzyme afstivi
linearized model predictions. This means that local infotima  modulations) directly depend on the process parameters, and
is not su cient to identify optimal manipulations when wider that dynamic metabolic model is necessary to e ciently explo
changes in enzyme levels are allowed. The strategy permiig to design spaces for cell and process modi cations.

strategies with good results, since the ux product was insesl

in some cases for more than twice its value with respect tp{YBRID MODELS

the wild-type. The linearization approach helps to simplify the

optimization problem, and its exact formulation ensures ttt&e  During the last decades, there has been an interest in
solution is optimal. This procedure is a tool that can be used focombining the advantages of distinct types of modeling to
any dynamic model. improve phenotype prediction, using hybrid models. These

In an alternative approach, Evangelista and co-workers useybrid approaches suggest promising ways to tackle limitations
EAs for predicting optimal reaction knockouts and enzymefrom dynamic and constraint-based models, merging capaslit
modulation strategies for the same case study. The algorithand exploiting knowledge of already well-known processes,
used a non-linear model to reach a set of solutions with higheparameters and constraints, and to decrease costs, improve
quality, as compared to the one described above, conclutlasig t e ciency and reach desirable phenotypes. It is expected to
as the number of reaction modi cation increases, the maagin have future results using methods focused on improving
product ux gain usually tends to decreasEvangelista et al., limitations of the most promising approaches, especially the
2013. The solutions are not constrained by ux or concentration ones incorporating kinetic models and detailed information
bounds since the non-linear model ODEs are simply integratedi.e., network structures, kinetic rate expressions and ipatar
assuming that the model depicts adequately the subjacelityrea values). These quantitative methods are able to describdigr
This approach does not ensure nding the optimal solution, butand optimize the behavior of a biological system, in comparison
improves the quality of solutions in most cases, with respect twith the approach that CBM o ers for pathway-oriented analysis
the linearization approach. that involves only prediction of the steady state uxes.

The evaluation of results from strain optimization methods Di erent researchers have developed hybrid models joining
with respect to experimental data is a key process to determirgoichiometric information with good-quality kinetic dat
how e ective an approach based on dynamic models isTable 3 shows examples of using hybrid models only for
The methods described iflable 2 contain strain optimization phenotype prediction or for strain optimization; the type of
procedures that were mostly demonstrated theoreticallgpde formulation includes the programming approach used to solve
some experimental evidence being presented for all of thenthe optimization problem, and whether they were not only
In the work by Nolan and Lee (2012)involving CHO theoretically, but also experimentally evaluated. Thesthous
cells and antibody production, the authors produced anwere originally proposed by Covert and collaborators to improve
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TABLE 3 | Examples of hybrid models used only for phenotype predictio or for computational strain optimization.

Description Type of Task Case studies Availability Evaluation References
formulation
Dynamic Flux Exact, nonlinear Phenotype Diauxic growth inE. coli The COBRA Experimental Mahadevan et al.,
Balance Analysis programming prediction Toolbox! (Hanly et al., 2013 2002
(DFBA) implemented in Flassig et al.,
MATLAB 2016)
(Schellenberger
etal., 2011)
Integrated DFBA Exact, linear Phenotype Integrated signaling, Not available Theoretical Lee et al., 2008
programming prediction metabolism and (experimental
transcription regulation evidence)
in S. cerevisiae
Integrated Flux Exact, linear Phenotype Metabolism, regulation SimTK2 Theoretical Covert et al., 2008
Balance Analysis programming prediction and signaling ofE. coli implemented in (experimental
model MATLAB evidence)
Integration of Exact, nonlinear Strain optimization Production of glycerol Not available Theoretical Gadkar et al.,
kinetic expressions programming and ethanol inE. coli (experimental 2005
as constraints into evidence)
DFBA
Dynamic strain Exact, nonlinear Strain optimization Production of succinate Framed GitHub Theoretical Zhuang et al.,
scanning programming and 1,4-butanediol in repository3 (experimental 2013
optimization for E. coli (implementation in evidence)

balanced yield,

Python)

titer and

productivity

k-OptForce: Exact, Strain optimization Production of L-serine Not available Experimental Chowdhury et al.,
integration of mixed-integer in mutant E.coliand Khodayari et al., 2014

kinetics with Flux nonlinear triacetic acid lactone in 2015

Balance Analysis

programming

mutant S. cerevisiae

1The COBRA Toolbox. “Dynamic FBA". Opencobra.github.io. https://opencobra.gfiub.io/cobratoolbox/stable/modules/analysis/dynamicFBA/index.html? higlight=dynamicfba
2SimTK. “Integrated Flux Balance Analysis Model of Escherichia €0ISimTK.org. https://www.simtk.org/projects/ifoa/
3Framed GitHub repository. “A python FRAmework for Metabolic Engineerirand Design”. Github.com. https://github.com/cdanielmachado/framed.

FBA predictions, in the case of having regulatory e ects with aonservation, enthalpy, entropy and Gibbs free energy. Cklss
dominant in uence, for which transcriptional regulatorystirete  concepts in equilibrium thermodynamics are generalized to
events are included as time-dependent restrictions to caimgt ~ non-equilibrium settings Beard et al., 2002; Qian and Beard,
based models, and applied to the illustration of systemic &ect2005.

such as catabolite repression, the aerobic/anaerobic idiaux Moreover, Lee and collaborators propose an integrated
shift and amino acid biosynthesis pathway repressicovert DFBA strategy which requires an integrated stoichiometric
et al., 200). Later on, a complete hybridization was made byreconstruction of signaling, metabolic and regulatory pse
Mahadevan and coworkers, describing the dynamic behavian S. cerevisiaeand incorporating kinetic parameters based
of a metabolic system using an extension of FBA, namelgn typical time scales observed in literature. The method
dynamic FBA (DFBA). This approach was focused on theuantitatively analyzes systematic e ects of extracellulascu
analysis of diauxic growth irE. colj by reprogramming the on cellular phenotypes and generates comparable time-course
metabolic network and studying the transience of metabolis predictions when contrasted with an equivalent kinetic miode
(Mahadevan et al., 20N2DFBA takes into account dynamic (Lee et al., 2008 In addition, Covert and co-workers
information, and can provide useful insights for the desigh ocombined FBA with regulatory Boolean logic, and ODEs
cell factories in ME applications. However, the optimizationto create an integrated model oE.coli to describe in
problem formulated as a non-linear programming problemdetail carbohydrate uptake control and behavior of diauxic
results in low scalability, since, as the size of the networgrowth. This approach was able to give more accurate
increases, the number of variables also increases leadipgenotypes than a purely ODE-based mod€loyert et al.,

to a problem with much higher complexity to be solved.2009.

Moreover, thermodynamics have been added to constraint- In addition, DFBA method has not only been con rmed
based models by Beard and collaborators, who improved thiaeoretically, but also evaluated experimentally, expthiire
power of prediction of stoichiometric models for large-scalethe two following examples. One example of this is its use
metabolic networks, coupling steady-state information hwit for optimization of yeast models using a parallel bioreactor
dynamic equations of thermodynamic constraints, such &@n system to determine the optimal aerobic and anaerobic switch
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time and level of oxygen for maximal ethanol productionsimilarly to the one described by the predecessor CSOM
in batch culture, and comparing results after experimentaDptForce Ranganathan et al., 20)l(by transforming it into
procedures. The conclusions of this study shows that parallel mixed-integer nonlinear optimization problem. Taking into
fermentation is a powerful tool for batch culture optimizatio account the kinetic constraints, the solution comes from
when used in conjunction with dynamic metabolic models, wher the computation of MUST and FORCE sets, i.e. the set of
a batch culture bioreactor can be scaled-up to 5-fold changesactions required to achieve a user-de ned production yield
(Hanly et al., 2018 The second example is DFBA modelingand the minimal set of reactions that need to be forced via
formulation for accumulation of high-value storage mol&siin  genetic manipulation, respectively. k-OptForce was thecadyi
microalgae that provides quantitative predictions underiwas  evaluated in comparison to OptForce, an exact CSOM based on
light and nutrients. The accuracy of predictions is evaldate pure constraint-based models, for the prediction of L-serine in
through independent experimental data followed by a fed-batcimutant E. coliand triacetic acid lactone in mutar8. cerevisiae
optimization, showing an increase of biomass amdarotene The study revealed that the non-intuitive modi cations iateed
density by factors of about 2.5 and 2.1, respectivielyssig et al., for key enzymes by k-OptForce, produce less rearrangements

2019. of the ux distribution toward the product of interest, which
_ ) will not exceed concentration bounds and cannot be captured
CSO Using Hybrid Models by stoichiometry-alone analysis. The method is versatilaigho

Hybrid models can be incorporated into CSOMs to improveto incorporate available omics information to further imprev
ME tasks, since kinetic information is used to perform moreprediction delity. However, sensitivity analysis has to be
descriptive phenotype predictions as discussed before. Somerformed since it is shown that the required number of
eorts that have used this hybrid approach start with theinterventions can be signicantly aected by changing the
work by Gadkar and his group, who added kinetic expressionsnposed bounds on metabolite concentrationShowdhury
as constraints into DFBA to optimize the concentration of aetal., 201}
certain product yield (maximization of glycerol and ethanol Furthermore, among the methods for strain optimization
concentrations irE. colimodel). This was possible by analyzingpresented inTable 3 which were theoretically evaluated, the
an optimal temporal ux pro le of a manipulated reaction. They developers of k-OptForce also discuss a case study that
also examined growth inhibition due to variations in the endis evaluated with experimental data. Khodayari and his
production, concluding that genetic alterations are catirom team use a hybrid model oE. coli to study succinate
the standpoint of productivity Gadkar et al., 2005 Another  overproduction through strain design. The method identi es
contribution was made by Zhuang and collaborators, who builiminimal interventions that improve succinate yield undertho
a dynamic strain scanning optimization for designing mici@b aerobic and anaerobic conditions to test the delity of mbde
strains with balanced yield, titer and productivity, appliedlda predictions under both genetic and environmental perturbas.
study case for the maximization of succinate and 1,4-budaste Under aerobic condition, this method identi es interventie
in E. coli This method uses DFBA to evaluate the relationshighat match existing experimental strategies, nding unexptb
between growth yield, growth rate, product yield, volumetri ux re-directions such as routing glyoxylate ux through
productivity, titer and economic viability of designed stra  the glycerate metabolism to improve succinate yield. These
(Zhuang et al., 2033 interventions are able to be pointed by using kinetic desaii

One outstanding e ort to build CSO using hybrid models that would not be discoverable by a purely stoichiometric
is k-OptForce Chowdhury et al., 2004 a hybrid approach for formulation. However, under anaerobic condition, k-OptEer
the integration of kinetics with FBA for strain design, deged  cannot identify key interventions because the pathways wetre
recently to increase the accuracy of predictions and corerglyi  properly parameterized as only aerobic ux data were used in
using kinetic rate expressions. This framework redistridsut the model construction. In conclusion, this study revedis t
uxes in the metabolic network instead of aiming at an optimalimportance of condition-speci ¢ model parameterization and
value of an objective function, in contrast with pure CBM provides insight on how to use kinetic models to correctly
methods. The method segments the reactions of the studieghalyze the response to multiple environmental perturbations.
metabolic network in two sets: (1)St°i°, information, restricted In general, however, the number of intervention strategiasmv
by mass balance and thermodynamics, and (2J", that implementing hybrid approaches is a trade-o for improving
contains the reactions for which kinetic information is kwo,  computational performance<hodayari et al., 2095
such as enzyme activity, kinetic parameters and metabolite
concentrations, representing them as a system of nonlinear
ODEs. DISCUSSION

Afterwards, the problem to be solved with k-OptForce is
formulated in two steps: (1) the wild-type behavior is de nedIn this work, we have explored the importance of developing
by using ux variability analysis Nlahadevan and Schilling, detailed dynamic models able to support accurate phenotype
2003 for St and by solving the system of ODEs to getpredictions and their use in e cient strain optimization
a ux distribution at steady-state for K", Additionally, the algorithms, a eld that has the potential to produce signi cant
overproducing strain is de ned under the available restdns  impact in industrial biotechnology. Methods to fulll these
for concentrations and kinetics; (2) the problem is formeldt tasks and to generate new knowledge are emerging and being
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evaluated, with the intention of exploring and bridging the perturbations that are consistent with enzyme expressions and
gap between di erent (bio)mathematical modeling frameworks metabolite concentrations. In principle, the algorithms can
Systems biology provides strategies for ME to take advantagemerform the combination of CSOMs that use only constraint-
the best simulation and optimization method features, and tdbased or only kinetics-based models. The integration of
deal with the most remarkable limitation regarding the lawdk approaches has become very promising to accelerate the process
available experimental information, which a ects accuracgla of innovation in the world of ME, leading to the targeted
feasibility of solutionsl{lachado et al., 20)2Another identied  overproduction of desired chemicals.

issue is the addition of more detailed information to alrgad  The mentioned CSOMs using hybrid models, such as the
existing genome-scale models, to increase their sc&jyahiid one used by Chowdhury and coworkers, attempt to identify a
the range of industrial applications for strain design. Thebgll minimal set of interventions on enzymatic parameter changes
challenge consists in generating high quality models thatenakand reaction ux changes, such that less rearrangements of
a dierence in the improvement of performance of CSOMsthe ux distribution are required, and concentration bousd
for larger scales. However, this task becomes a challenge siare not violated Chowdhury et al., 2004 An important
metabolic simulation has to deal with thousands of reactaes remark is that CSOMs with hybrid approaches can always be
and metabolite concentrations. improved incorporating available omics information, to span

Moreover, current research trends point to the inclusionthe prediction delity. More constraints can be added to the
of parameter uncertainty to increase the level of exibility optimization problems to restrict more the ux ranges and
using kinetic models built with stochastic optimization rhetls, to decrease the space of possible solutions. Also, temporal
and also improvement of phenotype predictions by usingconsideration can be addressed by integrating hybrid CSOMs
complementary data, such as various types of omics dateijth the DFBA framework llahadevan et al., 20pfo explore
particularly gene expressiondafan et al., 20).6Furthermore, the variation of metabolic modi cations as a function of tém
some methodologies include evaluation of stability, rdbess suggesting similar actions of ribonucleic acid interferetype of
and other type of analyses of dynamic features, such asterventions.
oscillations Gchaefer et al., 19p9Additionally, identi ability We emphasize as one of the major outcomes from the revision
analysis helps to drive dynamic models to the developmendf phenotype prediction and strain optimization methods, the
of better experimental techniques and to polish methods tdact that the selection of a speci ¢ dynamic modeling approach
solve the optimization problems, focusing on exact or stotibas is always subject to the prospective application, as well as the
formulations (Villaverde and Barreiro, 20)6 amount and type of experimental data available. While and

The revised dynamic modeling approaches are supportealdequate path is dicult to de ne for all caseslable 1 can
by the use of optimization methods for two main identi ed provide an aid in this process. For instance, mechanistic dyoa
tasks. On one hand, we have the development of models fonodeling has been widely used to have conventional expressions
phenotype prediction, particularly for parameter estimatiohisl  describing the structural features of metabolic systems. i@y
task requires model calibration through the minimizatiori o this represents a general approach that might not be able tdldeta
di erences between predicted and experimental valli&snga, specic biological processes, for which other methods can be
2009. On the other hand, we have the strain design taskused. One example of this is the use of log-linear approximations
which aims at nding the optimal interventions strategies fo to accurately describe dynamic responses of poorly known non-
producing strains with enhanced capabilitiestél-Lopez et al., linear systems, however, parameter estimation methodstrbigh
2009. Both tasks have to deal with choosing the most suitablémited in their ability to satisfactorily t data from obgseations
optimization method, which depends on the type of problemwhen small concentration of metabolites are present. This
or application. However, it has been noticed that stochastikind of problem can be tackled using convenience rate laws,
optimization approaches seem to be an acceptable option to avasihce they require a small number of parameters that can
issues with scalability, exibility or convergence timevolving  be easily computed. Additionally, cooperativity and satunati
metaheuristics, the search of alternatives in bigger smligpaces expressions are used to t experimental data for systems
is more e cient for complex (multi)objective functions. For with a saturable form, while modular rate laws can simplify
example, nding the optimal kinetic parameters to reach desbire thermodynamic-kinetic modeling formalisms. By providing
phenotypes in a genome scale, once a suitable known modahalytical solutions and avoiding the use of non-linear pratde
structure is identi ed, such as central carbon metabolisin othe computational burden and convergence times are greatly
E. colior S. cerevisig@ocha et al., 2008 reduced.

Kinetic models can also be studied within hybrid models for Furthermore, stochastic approaches are able to capture
phenotype prediction, which allows the integration of avdiab variability in the described species, for very well-known
kinetic relations with genome-scale constraint-based atod structural features, such as sti systems. The dynamics are
formalisms. This idea results in more detailed descriptiofis simulated by knowing the probabilities of transitions beémne
large-scale models, since the e ect of metabolite concéatrst  every possible state. However, the formulation can become a
and substrate-level enzyme regulation cannot be capturéd winon-trivial stochastic simulation algorithm for networkshen
stoichiometry-only metabolic models and analysis methodshe number of reacting molecules is large per reactant, which
(Chowdhury et al., 2004 These models can be used as a base common for most of realistic kinetic models. The aim will be
for optimization methods for strain design to identify gemet always to establish a trade-o0 between the size of the moae| a
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the level of accuracy of the solutions, depending on the type ghodel, and produces qualitative and quantitative predictions
experimental data, which is not always available in theditae.  that can be used to productively guide bioengineering e orts,
Finally, e orts for enforcing the inclusion of experimentahth by using only two time-series as training data. This workwho
as Supplementary Material when publishing new ndings shouldhat, given su cient data, the dynamics of complex coupled
be taken by publishers, a measure that would greatly improge tmon-linear systems can be systematically learrieos{ello and
development of these type of methods. Martin, 201§. Finally, the development of biological models

Also, studying kinetic models, especially used within hgbri based on arti cial intelligence has been analyzed in a recen
models, has revealed strengths and limitations of modelediri  review, which highlights the scope of information collecto
strain design, and indicated that kinetic models have thelatabase constructions, and machine learning technigbas t
potential to substantially over-perform FBA-based predictio can facilitate strain desigrifyetunde et al., 20)3
when parameterized under similar conditions, but may perform In this review, we analyzed the main mathematical formalisms
worse than FBA when predicting a signicantly dierent used for dynamic/hybrid modeling of microbial metabolism,
metabolic phenotype. Studies have also demonstrated the nesctutinized their inclusion into strain optimization applicans
to perform model parameterization for a diverse range ofand made a critical evaluation of future steps in this redearc
genetic or environmental perturbations, and the tight int@ipn  topic. The ladder toward more realistic strain engineering
of transcriptional level along with substrate-level regofg  strategies seems to be undeniably limited by more detailed
interactions. At a fundamental level, kinetic models must beepresentation of the dynamics of the biological systems.
a priori provided with the quantitative description and as However, as was thoroughly discussed in this work, these are
many as possible regulatory switches in response to genestll hindered by the lack of appropriate parameters even for
or environmental perturbations. The quality of mechanisticthe most studied organisms such BEs coliand S. cerevisiae
information enables a detailed description of metabolisrohsu Thus, the advancement of the eld will always be dependent on
as dynamics, enzyme activities, and metabolite concéot®t incremental investments in fundamental research gearectd
but can result in erroneous predictions since some modelinghe deeper understanding of biological mechanisms, inclgdi
assumptions can be missing or incorrect. Nevertheless, Bgcal phenomena. For this purpose, the use of hybrid models as
studying failure modes of kinetic models, valuable infotima  exible vessels for the cumulative inclusion of knowledgk be
can be uncovered for restoring prediction consistency fowne of major importance in the coming years.
phenotypes Khodayari et al., 20)5 These ndings, together
with reported experimental evaluations of constraint-basedAUTHOR CONTRIBUTIONS
CSOMs, available in the literature since the last two decades
(Maia et al., 201 help building the case for the combination of All authors participated in the preparation of this work. OK
these approaches with kinetics-based models, becoming twols thad a major role in writing and editing the manuscript. All
the optimization of bioprocesses for a wide range of indubiyria authors contributed to manuscript revision, read and approved
relevant chemicals. the submitted version.

Additional studies, not covered in detail in this review,
point to the use of articial inteligence as a dierent FUNDING
approach to analyze mathematical models for ME purposes.
Novel technologies applied to metabolomics can substantiallVhis project has received funding from the European Union's
improve search algorithms to increase the dynamic rangejorizon 2020 research and innovation program under grant
number of carbon-carrying metabolites and possible pathwayagreement No 675585 (Marie-Curie Innovative Training
to transform a given source metabolite into a given targeNetwork SyMBioSys - Systematic Models for Biological Systems
metabolite Kell, 200§. One example of the use of articial Engineering, the research and innovation program under
intelligence to accelerate the design of microbial celiofées, grant No 686070 (DD-DeCaF - Bioinformatics Services for
is the development of an e cient work ow for combinatorial Data-Driven Design of Cell Factories and Communities) ang th
optimization of the large biosynthetic genotypic space oERA-IB-2 network under the scope of the project DYNAMICS
heterologous metabolic pathways in yeast. This method is Analysis and optimization of industrial microorganisms
able to precisely tune the expression level of genes with under dynamic process conditions (ERA-IB-2/0001/2014).
machine learning algorithm based on an arti cial neuralwetk  This study was supported by the Portuguese Foundation for
ensemble to avoid over-tting, and it is also able to predictScience and Technology (FCT) under the scope of the strategic
strains with titer improvements among several possible desigrfunding of UID/BIO/04469/2013 unit, and COMPETE 2020
(Zhou et al., 2018 Another recent advance on exploiting (POCI-01-0145-FEDER-006684) and BioTecNorte operation
arti cial intelligence techniques is an approach that congsn (NORTE-01-0145-FEDER-000004) funded by the European
machine learning and abundant multiomics data (proteomicsRegional Development Fund under the scope of Norte2020 -
and metabolomics) to e ectively predict pathway dynamicsPrograma Operacional Regional do Norte. First author, OK, is a
The method outperforms a classical Michaelis—Menten kinetidlarie-Curie Early Stage Researcher at SilicoLife Lda. (Paljtug
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