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Modelling Palaeoecological Time
Series Using Generalised Additive
Models

Gavin L. Simpson *

Institute of Environmental Change and Society, Universityf ®egina, Regina, SK, Canada

In the absence of annual laminations, time series generatefiom lake sediments or
other similar stratigraphic sequences are irregularly sgad in time, which complicates

formal analysis using classical statistical time series ndels. In lieu, statistical analyses
of trends in palaeoenvironmental time series, if done at alhave typically used simpler
linear regressions or (non-) parametric correlations witlittle regard for the violation of
assumptions that almost surely occurs due to temporal depedencies in the data or that
correlations do not provide estimates of the magnitude of cange, just whether or not
there is a linear or monotonic trend. Alternative approachehave used loess-estimated

trends to justify data interpretations or test hypotheses sto the causal factors without
considering the inherent subjectivity of the choice of pamaeters used to achieve the
LoEss t(e.g., span width, degree of polynomial). Generalised aditive models (GAMs) are
statistical models that can be used to estimate trends as smoth functions of time. Unlike
Loess, GAMs use automatic smoothness selection methods to objedvely determine
the complexity of the tted trend, and as formal statisticalmodels, GAMs, allow for
potentially complex, non-linear trends, a proper accountig of model uncertainty, and
the identi cation of periods of signi cant temporal change Here, | present a consistent
and modern approach to the estimation of trends in palaeoenvonmental time series
using GAMs, illustrating features of the methodology withwio example time series of
contrasting complexity; a 150-year bulk organic matter 1°N time series from Small
Water, UK, and a 3,000-year alkenone record from Braya-Sg, @enland. | discuss the
underlying mechanics of GAMs that allow them to learn the shze of the trend from

the data themselves and how simultaneous con dence intervis and the rst derivatives

of the trend are used to properly account for model uncertaity and identify periods
of change. It is hoped that by using GAMs greater attention igpaid to the statistical

estimation of trends in palaeoenvironmental time series deling to more a robust and

reproducible palaeoscience.

Keywords: time series, generalised additive model, simultane ous interval, spline, environmental change

1. INTRODUCTION

Palaeoecology and palaeolimnology have moved away from besggigtive disciplines, rapidly
adopting new statistical developments in the 1990s and bey@idol et al.,, 2002 Less
development has been observed in the area of trend estimatjpelaeoenvironmental time series.
The vast majority of data produced by palaeoecologists and @ata®logists is in the form of
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Simpson Modelling Palaeoecological Time Series

time-ordered observations on one or more proxies or biologicapalaeoenvironmental time series, but, as withess their
taxa &mol, 2008; Birks, 2012b; Smol et al., J0Tgpically these behaviour depends on a number of factors, including the Iter
data are arranged irregularly in time; in the absence of ahnu width. Furthermore, the width of the Iter causes boundary
laminae or varves, the sediment core is sectioned at regul@sues; with a centred lIter, of width ve, the lItered time ges
depth intervals Glew et al., 2001 which, owing to variation would be two data points shorter at both ends of the series
in accumulation rates over time and compaction by overlyingoecause the Iter values are not de ned for the rst and lasbtw
sediments, results in an uneven sampling in time. An underobservations of the original series as these extra time paiste
appreciated feature of such sampling is that younger sediment®t observed. Considerable research e ort has been expended
often have larger variance than older sediments; eachosectito identify ways to pad the original time series at one or both
of core represents fewer lake years in newer samples, relatieds to maintain the original length in the Itered seriesthout
to older samples. This variable averaging acts as a timengary introducing bias due to the padding (e.d/ann, 2004, 2008;
low-pass (high-cut) Iter of the annual depositional signal. Mills, 2006, 2007, 20).0

Irregular intervals between samples means that the time- These are not the only methods that have been used
series analysis methods of autoregressive or moving averam estimated trends in stratigraphic series. Another common
processes, in the form of autoregressive integrated movingpproach involves tting a simple linear trend using ordinary
average (ARIMA) models, are practically impossible tdeast squares regression and use the resultingfatistic as
apply because software typically requires even spacimyidence against the null hypothesis of no trend despite
of observations in time.Dutilleul et al. (2012)and Birks the statistical assumptions being almost surely violateé du
(2012a) eschewing the termtime series prefer to call to dependence among observations. The Pearson correlation
such data temporal serieson account of the irregular coe cient, r, is also often used to detect trends in palaeo
spacing of samples, a distinction that | nd unnecessarytime series Birks, 2012y despite the fact that provides no
however. information as to the magnitude of the estimated trend, and

Where statistical approaches have been applied to trenithe same temporal autocorrelation problem that dogs ordinary
estimation in palaeoenvironmental time series, a commonlyleast squares similarly plagues signi cance testingrfgiian
used method is @ess(Cleveland, 1979; Birks, 1998, 2012agt al., 201). Additionally, both the simple least squares trend
Juggins and Telford, 20).2LOESS locally weighted scatterplot line andr are tests folinear trends only, and yet we typically
smoother, as it's name suggests, was developed to smooth fage data sets with potentially far more complex trends than can
scatterplot data Cleveland, 1979 The method ts a smooth be identi ed by these methods. Instead, non-parametric rank
line through data by tting weighted least squares (WLS) ralsd correlation coe cients have been usedéutheir, 2001; Birks,
to observations within a user-speci ed window of the focal20123, and whilst these do allow for the detection of non-linear
point, whose width is typically expressed as a proportionf  trends, trends are restricted to be monotonic, no magnitade
the n data points. Weights are determined by how close (irthe trend is provided, and the theory underlying signi cance
the x-axis only) an observation in the window is to the focaltesting of Spearman's and Kendall's assumes independent
point giving greatest weight given to points closest to theafoc observations.
point. The interim LoeEsssmoothed value for the focal pointis  Here, | describe generalised additive models (GAMsstie
the predicted value from the weighted regression at the focalnd Tibshirani, 1986, 1990; Yee and Mitchell, 1991; Ruppertet al
point. The interim values are updated using weights based oR003; Wood, 201)for trend estimation. GAMSs, like simple linear
how far in the y-axis direction the interim smoothed value regression, are a regression-based method for estimatingl$,
lies from the observed value plus the x-axis distance weightget they are also, super cially at least, similar todss GAMs
this has the e ect of down-weighting outlier observationfhieT and LoEssestimate smooth, non-linear trends in time series and
nal L oessis obtained by joining the smoothed values. Theboth can handle the irregular spacing of samples in time, yet
user has to choose how large a window to use, whether to GAMs do not su er from the subjectivity that plague®Essas a
degree 1 (linear) or degree 2 (quadratic) polynomials in thenethod of formal statistical inference.
WLS model, and how to weight points in the x-axis. When Inthe subsequent sections, | present an introduction to GAMs
used in an exploratory mode, the user has considerable freedoand discuss the issue of uncertainty in model-estimateddse
to choose the detail of thedess t; the window width, for  the topic of posterior simulation from a regression model and
example, can be in nitely tweaked to give as close a t to thehow to identify periods of signi cant environmental change
data, as assessed by eye, as is desired. Using crossivali@at)  using the rst derivative of the estimated trend. The main
to choose or the degree of polynomial in the WLS model steps in the analysis of palaeoenvironmental time series using
is complicated for a number of reasons, not least because ti@AMs are illustrated inFigure L Two non-standard types of
CV scheme used must involve the time ordering of the datapline—adaptive smoothers and Gaussian process splines—that
(e.g.,Bergmeir et al., 20)8 This subjectivity is problematic are especially applicable to GAMs in the palaeoenvironmental
however once we wish to move beyond exploratory analysis arstting are subsequently described, followed by an assessme
statistically identify trends to test hypotheses involvithgse of the impact of age-model uncertainty on trend estimatioa vi
trend estimates. GAMs. Finally, | briey discuss the application of GAM trend

Running means or other types of IterJ(ggins and analysis to multivariate species abundance and compositional
Telford, 201} have also been used extensively to smootlata.
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1.1.2. Braya-Sg Alkenone Time Series

The second example time series is a 3,000 year record of al&eno
unsaturation,UY,, from Braya-Sg, a meromictic lake in West
i Greenland D'Andrea et al., 2071 Alkenones are long-chained

unsaturated organic compounds that are produced by a small
number of planktonic organisms known as haptophytes. Iﬂég
unsaturation indexBrassell, 1993s

Autocorrelation?

ves Uk D [Ca7:2]  [Cs7:4]
[C37:2] C [C37:3] C [C37:4]

aniﬁ'EZﬂ?') wifri.‘;“a?.f’..?i ' where [C37:x] is the concentration of the alkenone w_ith

37 carbon atoms and double carbon bonds. The relative
abundance of these alkenones is known to vary with changes in
water temperatureRrassell, 1993; Zink et al., 2001; Chu et al.,
2005; Toney et al., 20),Gand as a resulrJ:[,(7 is used as a proxy
for lake- and sea-surface temperatures. For further details
the Braya-SeUk; record and age model ség'Andrea et al.

k large enough?
gam.check()

Biagnosics O l‘ : (2011) Here | use the 3,000 yedl, record from the PAGES 2K
' S e databaseRAGES 2K Consortium, 20).3The data are presented

confint()

v

Identify periods of

e 2. REGRESSION MODELS FOR
PALAEOENVIRONMENTAL TIME SERIES

in Figure 2B

Significant trend?
summary ()

<

@e“"es""s B A linear model for a trend in a series Gf observationsy; at
observation timeg; witht D 1,2,:::,T is

FIGURE 1 | Flowchart showing the main steps in the analysis of time se$
using generalised additive models. The main R functions assiated with each

step or decision are shown in bold. Vi D 0 C 1% C ..t (1)

where ¢ is a constant term, the modéhtercept representing

. ) the expected value of wherex; is 0. 1 is the slopeof the
1.1. Example Time Series best t line through the data; it measures the rate of change i
Toillustrate trend estimation in palaeoenvironmental dating  y for a unit increase irx. The unknowns, the j;, are commonly
GAMs, | use two proxy time series; a 150-year bulk organiestimated using least squares by minimising the sum of square
matter 1°N record from Small Water, and a 3,000-year alkenonerrors, ,"2. If we want to ask if the estimated trend; is
record from Braya-Sg. Between them, the two examples, c@nbistatistically signi cant we must make further assumptioh®at
many of the features of interest to palaeoecologists thaivat  the data (conditional upon the tted model) or the model ersor
the use of GAMs; non-linear trends and the question of When(residuals);"t iid N (0, 2). This notation indicates that the

changes in the measured proxy occurred. The example analy%%%idualsn areindependenaindidentically distributedsaussian

meredagorierfordmsd using ?TgC\épackfge (vzegsmn dl.t?\.m; random variables with mean equal to O and constant variance
00¢, Jan (version 3.4.43 Core Team, 20)8and the 2. In the time series setting, the assumption of independence

S#pp!emtei:ltaFr{y Mzterlalcgr:talnslla ftully lia\?hnotate? doc‘ément.bofdﬁnodel residuals is often violated.
showing the R code used to replicate all the analyses describelry,q jinear model described above is quite restrictive imter

in the remainder of the paper. of the types of trend it can t; essentially linear increasing o
decreasing trends, or, trivially, a null trend of no changais

1.1.1. 15N Time Series From Small Water ) .
; : . model can be extended to allow for non-linear trends by mgkin
Figure 2A shows 48 nitrogen stable isotope measurements on

the bulk organic matter of a sediment core collected from Bma’t depend on polynomials ok, for example
Water, a small corrie lake located in the English Lake DisttiK.

The data were collected to investigate disturbance of géro(N) D oC 1xC 2x*C C pxC™y )
cycling in remote, oligotrophic lakes by N deposited from the
atmosphere (Simpson, unpublished data). The data are shown on D oC pxp c

t 1

a21%p time scale. Questions that might be asked about thissserie
are; what is the trend in15N?, when do we rst see evidence
for a change in 1°N?, and is the reversal in">N values in the where polynomials of; up to orderPare used. This model allows
uppermost section of the core a real change? for more complex trends but it remains a fully parametric model

pD1
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FIGURE 2 | Example time series(A) Small Water bulk organic matter 15N time series on a?10Pb time scale, and(B) Braya-SgU¥, time series on a calibrated'4C
time scale. The observations in theJ§7 time series have been joined by lines purely as a visual aid teghlight potential trends.

and su ers from several problems, especially the behavioureft where the linear e ect of time (the1x; part) has been replaced
tted trend at the start and end of the observed series. by a smooth function of timef(x;). The immediate advantage

Linear models using a range of polynomials tted to the Smallbf the GAM is that we are no longer restricted to the shapes of
Water data set are shown iRigure 3. The low-order models trends that can be tted via global polynomial functions such a
(P 2 1,3 result in very poor tto the data. The model with (2). Instead, the shape of the tted trend will be estimateair
P D 5 does a reasonable job of capturing the gross pattern ithe data itself.
the time series, but fails to adapt quickly enough to the desee The linear model is a special case of a broader class, known
in  1®N that begins ~1940 CE, and the estimated trend is quitas the generalised linear model (GLMgpCullagh and Nelder,
biased as a result. THe D 10th-order polynomial model is 1989. The GLM provides a common framework for modelling
well able to capture this period of rapid change, but it does sa wide range of types of data, such as count, proportions,
at the expense of increased complexity in the estimated trenal binary (presence/absence) data, that are not conditlgnal
prior to ~1940. Additionally, this modeR D 10) has undesirable distributed Gaussian. GLMs are, like the linear model, patame
behaviour at the ends of the series, signi cantly over githe in nature; the types of trends that we can t using a GLM are
data, a commonly observed problem in polynomial models suckhe linear or polynomial models. GAMs extend the GLM by
as theseRunge, 1901; Epperson, 198Finally, the choice of relaxing this parametric assumption; in a GAM some, or all, of
what order of polynomial to t is an additional choice left for the parametric terms, thep, are replace by smooth functiofys
the analyst to specify; choosing the optirfak not a trivial task  of the covariates;. For completeness then, we can write (3) as a
when the data are a time series and residual autocorrelaion GLM/GAM
likely present.

Can we do better than these polynomial ts? In the remainder,

I hope to demonstrate that the answer to that question is vt EF(,2) (4a)
emphatically “yes”! Below | descrlpe a cohere_nt and qomﬂst_e o OD oCfx) (4b)
approach to modelling palaesoenvironmental time series using 1
generalised additive models that builds upon the linearesgion tDg “(0Cf(x)), (4c)
framework.

where  is the expected value (e.g., the mean count or
3. GENERALISED ADDITIVE MODELS the probability of occurrence) of the random variablg

(¢ E(Y:)) of which we have observationg. g is the
The GAM version of the linear model (1) is link function, an invertible, monotonic function, such aseth

natural logarithm, andg ! is its inverse. The link function
maps values from the response scale on to the scale of the
viD oCf(x)C"t, (3) linear predictor, whilst the inverse of the link function priokes
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FIGURE 3 | Linear models with various orders of polynomial of the covéate Year tted using ordinary least squares to the 15N time series from Small Water. The
degree of polynomial is indicated, with the degree 1 line el to a simple linear regression model.

the reverse mapping. For example, count data are strictly norsmooth f(x;) can be represented as a weighted sum of basis
negative integer values and are commonly modelled as a Poissfunctions
GLM/GAM using the natural log link function. On the log

scale, the response can take any real value betwleenand

C1 , and it is on this scale that model tting actually occurs

(i.e., using Equation 4b). However we need to map these
unbounded values back on to the non-negative response scale.

The inverse of the log link function, the exponential functjo
achieves this and maps values to the interval O{Equation
4c).

In (4a), we further assume that the observations are draw
from a member of the exponential family of distributions—
such as the Poisson for count data, or the binomial fo
presence/absence or counts from a total—with expected vallrt(é

t and possibly some additional parametes (y; In
EF( t,2)). Additionally, many software implementations o
the above model also allow for distributions that are not
within the exponential family but which can be tted using
an algorithm super cially similar to the one used to t GAMs
to members of the exponential family (e.g/yood, 2003.
Common examples of such extended families include th
negative binomial distribution (for overdispersed courdasy the
beta distribution (for true proportions or other interval-bmded
data).

XK
fx) D bi(x) j,
iD1

where j is the weight applied to thigh basis function.

The polynomial model is an example of a statistical model
H1at uses a basis expansion. For the cubic polynonfaD( 3)

t shown in Figure 3there are in fact 4 basis functiorsi(x;) D
X0 D 1,bo(x) D X, ba(x) D x, andba(x) D x{. Note that
(xt) is constant and is linked to the model intercep, in the
ear model (2), and further, that the basis function weighre
¢ the estimated coe cients in the model, thg.

As we have already seen, polynomial basis expansions do not
necessarily lead to well- tting models unless the true fimT
f is itself a polynomial. One of the primary criticisms is that
polynomial basis functions are globallfgee, 1998 the value
gff at timex; a ects the value of at time pointxics even if the
two time points are at opposite ends of the series. There are many
other bases we could use; here | discuss one such set ofthases,
of splines.

There are a bewildering array of di erent types of spline. In the
models discussed below we will largely restrict ourselveshimc
3.1. Basis Functions regression splines (CRS) and thin plate regression splines (TPRS
It is clear from plots of the dataHjgure 2) that we require the In addition, | also discuss two special types of spline basis, an
tted trends for the Small Water 15N and Braya—S;z!u:Ef7 time  adaptive spline basis and a Gaussian process spline basis.
series to be non-linear functions, but it is less clear hoggecify A cubic spline is a smooth curve comprised of sections of
the actual shape require. Ideally, we'd like to learn the stdpe cubic polynomials, where the sections are joined together at
the trend from the data themselves. We will refer to these nonsome speci ed locations—known &sots—in such a way that
linear functions asmooth functionsor just smoothdor short, at the joins, the two sections of cubic polynomial that meetéha
and we will denote a smooth usinfx;). Further, we would the same value as well as the same rst and second derivative.
like to represent the smooths in a way that (4) is represente@hese properties mean that the sections join smoothly and
parametrically so that it can be estimate within the welldé&éd  di erentiably at the knots (Vood, 20175.3.1).

GLM framework. This is achieved by representing the smooth The CRS can be parameterised in a number of di erent ways.
using abasis A basis is a set of functions that collectivelyOne requires a knot at each unique data valuexinwhich is
span a space of smooths that, we hope, contains thef{pyg computationally ine cient. Another way of specifying a CRS
or a close approximation to it. The functions in the basis arebasis is to parameterise in terms of the value of the spline at
known asbasis functionsand arise from aasis expansionf the knots. Typically in this parametrisation there are manyde

a covariate. Writingbj(x;) as thejth basis function ofx;, the  knots than unique data, with the knots distributed evenlyahe
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range ofx; or at the quantiles o%;. Placing knots at the quantiles splines (TPRS) remove this element of subjectivity when gtin
of x; has the e ect of placing a greater number of knots where th&sAMs. Thin plate splines were introduced Iyuchon (1977)
data is most dense. and, as well as solving the knot selection problem, have aever
A CRS basis expansion comprised of 7 basis functions for tredditional attractive properties in terms of optimality andeih
time covariate in the Small Water series, is showiigure 4A.  ability to estimate a smooth function of two or more variahle
The tick marks on the x-axis show the positions of the knots|eading to smooth interactions between covariates. Howeve
which are located at the ends of the series and evenly in leetwe thin plate splines have one key disadvantage over CRS; thin
Notice that in this particular parametrisation, thgh basis plate splines have as many unknown parameters as there are
function takes a value of 1 at thh knot and at all other knots a unique combinations of covariate values in a data $&b¢d,
value of 0. 2017 5.5.1). It is unlikely that any real data problem would
To estimate a model using this basis expansion each basisolve functions of such complexity that they require as man
function forms a column in the model matriX and the weights basis functions as data. It is much more likely that the true
j can be found using least squares regression (assumingfunctions that we attempt to estimate are far simpler than tée s
Gaussian response). Note that in order to estimate a coe tienof functions representable by 1 basis function per unique data
for each basis function the model has to be tted without anvalue. From a practical point of view, it is also highly ine cien
intercept term. In practice we would include an intercept termto carry around all these basis functions whilst model tting,
in the model and therefore the basis functions are modi ed vi and the available computational resources would become tyuick
an identi ability constraint (Vood, 201}. This has the e ect of exhausted for large time series with many observations.
making the basis orthogonal to the intercept but results inreno To address this issue low rank thin plate regression splines
complicated basis functions than those showirigure 4A (TPRS) have been suggested which truncate the space of the
Having estimated the weight for each basis function, jthe thin plate spline basis to some lower number of basis functions
basis functionb; is scaled (weighted) by its coe cientj. The  whilst preserving much of the advantage of the original basis
scaled CRS basis functions for the Small Water time series ame an optimally- tting spline (Vood, 200}. A rank 7 TPRS
shown in Figure 4B. The solid line passing through the data basis (i.e., one containing 7 basis functions) is shown in
points is formed by summing up the values of the seven scaldeigure 4C for the Small Water time series. The truncation is
basis functionslfj(x;) ;) at any value ok; (time). achieved by performing an eigen-decomposition of the basis
Cubic regression splines, as well as many other types @inctions and retaining the eigenvectors associated wlih t
spline, require the analyst to choose the number and locatiok largest eigenvalues. This is similar to the way principal
of the knots that parametrise the basis. Thin plate regressiocomponents analysis decomposes a data set into axes of variatio

A B
4 4
3 34
Z 2 & 2
o o

|

Year CE (Knots) Year CE (Knots)
o N
" /
z
L0
2=}
14
_2 a T T T T
1850 1900 1950 2000
Year CE

FIGURE 4 | Basis functions for the time covariate and the Small Water!SN time series. A rank (size) 7 cubic regression spline (CRSadis expansion is show in(A),
with knots, indicated by tick marks on the x-axis, spread evaly through the range of the data.(B) Shows the same CRS basis functions weighted by the estimated
coefcients j, plus the resulting GAM trend line (black line drawn througthe data). The grey points in both panels are the observed!®N values. (C) A rank 7 thin
plate regression spline basis for the same data.
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(eigenvectors) in decreasing order of variance explainde T but guard against tting very complex models through the use of
truncated basis can preserve much of the space of functioswiggliness penalty.
spanned by the original basis but at the cost of using far fewer The default wiggliness penalty used in GAMs is on the second
basis functions\(Vood, 2003, 201,75.5.1). Note the horizontal derivative of the spline, which measures the rate of changjeeof
TPRS basis function (at!®N D 1) in Figure 4G this basis slope, or the curvature, of the spline at any in nitesimal point
function is confounded with the intercept term and, after thein the interval spanned by;. The actual penalty used is the
application of identi ability constraints, ends up being reved integrated squared second derivative of the spline
from the set of basis functions used to tthe model.
The truncation suggested hyood (2003)is not without cost; z
the eigen-decomposition and related steps can be relatigstiyc [ff%dxD Ts . (5)
for large data sets. For data sets of similar size to the tameles R
used here, the additional computational e ort required to 8t The right hand side of (5) is the penalty in quadratic form. The
the TPRS basis over the CRS basis will not be noticeable. Fesnvenience of the quadratic form is that it is a function bét
highly resolved series containing more than ~1,000 obsen&  estimated coe cients off (x;) whereSis known as the penalty
the truncation may be costly computationally. In such instesic matrix. Notice that now both the weights for the basis funcis
little is lost by moving to the CRS basis with the same numbe&nd the wiggliness penalty are expressed as functions of thelmod
of knots as the rank of the desired TPRS, with the benet otoe cients.
considerably reduced set up time for the basis. Now that we have a convenient way to measure wiggliness, it
To ta GAM using either of the two regression spline baseseeds to be incorporated into the objective function that e
described above, the analyst is generally only requirechéo t minimised to tthe GAM. The likelihood of the model given the
specify the size (rank) of the basis expansion required to sgmte  parameter estimates( ) is combined with the penalty to create
or closely approximate the true functioh With practice and  the penalised likelihoot p( ):
some knowledge of the system from which the observatiosgari
it can be relatively easy to put an upper limit on the expected

. . " 1
complexity of the true trend in the data. Additionally, themier Lp( )DL() > Ts .
of available data points places a constraint on the upper limit of
the size of basis expansion that can be used. The fraction of a half is there simply to make the penalised

In practice, the size of the basis is an upper limit on theikelihood equal the penalised sum of squares in the case of
expected complexity of the trend, and a simple test can be used Gaussian model. is known as the smoothness parameter
to check if the basis used was su ciently largey@ and Wood, and controls the extent to which the penalty contributes te th
2019. This test is available via tlgam.check()  function in  likelihood of the model. In the extreme case oD 0 the penalty
mgcvfor example, which essentially looks at whether there ifias no e ect and the penalised likelihood equals the likelihood
any additional nonlinearity or structure in the residualsat can  of the model given the parameters. At the other extreme, as
be explained by a further smooth &f. Should a smooth term |1 the penalty comes to dominate,( ) and the wiggliness
in the tted model fail this test the model can be re tted ugin of f(x;) tends to 0 resulting in an in nitely smooth function. In
a larger basis expansion, say by doubling the valuk @ihe the case of a second derivative penalty, this is a straigitdind
rank) used to t the original. Note also that a smooth mightlfa we recover the simple linear trend from (1) when assuming a
this test whilst using fewer e ective degrees of freedom tthen  Gaussian response.
maximum possible for the dimension of basis used. This may Figure 5illustrates how the smoothness parameterontrols
happen when the true function lies at the upper limit of the set othe degree of wiggliness in the tted spline. Four models are
functions encompassed by the size of basis used. Additigraall shown, each tted with a xed value of; 10,000, 1, 0.01, and
basis of sizelkencompasses a richer space of functions of a gived.00001. At D 10,000 the model e ectively ts a linear
complexity than a basis of size(Wood, 201}; increasing the model through the data. As the value ofdecreases, the tted
basis dimension used to tthe model may unlock this addi@n spline becomes increasingly wiggly. Asecomes very small, the
function space resulting in a better tting model whilst ugjim  resulting spline passes through most of tHeN observations
similar number of e ective degrees of freedom. resulting in a model that is clearly over tted to the data.

To fully automate smoothness selection f@k;) we need to

estimate . There are two main ways thatcan be automatically
3.2. Smoothness Selection chosen during model tting. The rst way is to choose such
Having identi ed low rank regression splines as a useful wayhat it minimises the prediction error of the model. This can
to representf, we next need a way to decide how wigglybe achieved by choosing to minimise Akaike's information
the tted trend should be. A backwards elimination approachcriterion (AIC) or via cross-validation (CV) or generaliseross-
to sequentially remove knots or basis functions might seemalidation (GCV;Craven and Wahba, 19Y.8GCV avoids the
appropriate, however such an approach would likely fail asomputational overhead inherent to CV of having to repeatedly
the resulting sequence of models would not be strictly rigste re tthe model with one or more observations left out as a tesst
precluding many forms of statistical comparisov¢od, 201).  Minimising the GCV score will, with a su ciently large datatse
Alternatively, we could keep the basis dimension at a xemsi nd a model with the minimal prediction error (Vood, 2017.
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Simpson Modelling Palaeoecological Time Series

FIGURE 5 | The effect of the smoothness parameter on the resulting wiggliness of the estimated spline. Largealues of penalise wiggliness strongly, resulting in
smooth trends (upper row), while smaller values allow incasingly wiggly trends. The aim of automatic smoothness setion is to nd an optimal value of that
balances the t of the model with model complexity to avoid ove tting.

The second approach is to treat the smooth as a random e echow the i.i.d. assumption has been relaxed and a correlation
in which is now a variance parameter to be estimated usingnatrix, 3, has been introduced that is used to model
maximum likelihood (ML) or restricted maximum likelihood autocorrelation in the residuals. Thé®N values are irregularly
(REML;Wood, 2011; Wood et al., 2016 spaced in time and a correlation structure that can handle
Several recent results have shown that GCV, under certathe uneven spacing is needeBirtheiro and Bates, 20R0A
circumstances, has a tendency to under smooth, resulting icontinuous time rst-order autoregressive process (CAR(1))
tted splines that are overly wigglyReiss and Ogden, 2009 is a reasonable choice; it is the continuous-time equivalent
Much better behaviour has been observed for REML and Miof the rst-order autoregressive process (AR(1)) and, simply
smoothness selection, in that ordeWod, 201). REML is stated, models the correlation between any two residuals as
therefore the recommended means of tting GAMs, though,an exponentially decreasing function bf( "), whereh is the
where models have di erent xed e ects (covariates) they cahn amount of separation in time between the residu@sieiro and
be compared using REML, and ML selection should be use@ates, 2000h may be areal valued number in the CAR(1), which
instead. In the sorts of data examples considered here tisereis how it can accommodate the irregular separation of samples
only a single covariate as our models contain a single estimatedin time. controls how quickly the correlation between any two
trend so REML smoothness selection is used throughout unlesssiduals declines as a function of their separation in timd a

otherwise stated. is an additional parameter that will be estimated during miode
tting. The model in (6) was tted using thegamm() function

4. FITTING GAMS (Wood, 2004 in the mgcvpackage\(Vood, 201Y for R (R Core
Team, 2018

4.1. Small Water The tted trend is shown inFigure 6A, and well-captures the

The trend in N values is clearly non-linear but it would be strong pattern in the data. The trend is statistically sigaint

di cult to suggest a suitable polynomial model that would@ (e ective degrees of freedo 7.95:F D 47.44, approximate

for periods of relatively no change if°N as well as rapid change. valueD  0.0001). However further analysis of the tted model
Instead, a GAM is ideally suited to modelling such trends; thgs required to answer the other questions posed earlier about
data suggest a smoothly varying change N between 1925 the timing of change and whether features in the trend can be

and 1975. It is reasonable to expect some autocorrelation igistinguished from random noise. | discuss these issueglghor
the model errors about the tted trend. Therefore | tted the

following GAM to the 1°N time series.

4.2. Braya-Sg
The UK, data present a more di cult data analysis challenge
wD oCf(x)C", "¢ (0,3 ? (6) than the °N time series because of the much more complex
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FIGURE 6 | GAM-based trends tted to the Small Water 15N (A) and Braya—SmU.if7 (B) time series. The shaded bands surrounding the estimated treds are
approximate 95% across-the-function con dence intervals.For the U§7 series, two models are shown; the orange tis the result of a GM with a continuous-time
AR(1) process estimated using REML smoothness selection, ile the blue t is that of a simple GAM with GCV-based smoothnss selection. The REML-based t
signi cantly oversmooths the U§7 time series.

variation present. Fitting the same model as the Small Water To understand the reason why the GAM plus CAR(1) and the
example, (6), to '[hengf7 data resulted in the unsatisfactory t simple GAM with REML smoothness selection performed poorly
shown as the very smooth line iRigure 6B (labelled GAMM  with the U:*,f7 time series we need to delve a little deeper into what
(CAR(1))). Further problems were evident with this model t— is happening when we are tting these two models.
the covariance matrix of the model was non-positive de nite, The primary issue leading to poor t is that neither model
a sure sign of problems with the tted model. Re tting with a accounts for the di erent variance (known as heterosceddg)i
smaller basis dimensiork © 20) for the trend term resulted in of each observation in theing7 record. This seemingly isn't
a model with a positive-de nite covariance matrix for the neld a problem for GCV which minimises prediction error. The
variance-covariance terms, but the estimated value of ie(@) sediments in Braya-Sg are not annually laminated and tbesef
parameter D 0.2 was exceedingly uncertain (95% con denceghe core was sliced at regular depth intervals. Owing to
interval 0-11). compaction of older sediments and variation in accumulation
Fitting this model as a standard GAM with REML smoothnesgates over time, each sediment slice represents a dierent
selection resulted in the same tted trend as the GAM withnumber of “lake years’. We can think of older samples
CAR(1) errors (not shown), whilst using GCV smoothnessas representing some average of many years of sediment
selection resulted in a much more satisfactory tted treftiere  deposition, whilst younger samples are representative ofrfewe
are two potential problems with the GCV-selected trend: (i) GCVof these lake years. The average of a larger set of numbers
is sensitive to the pro le of the GCV score and has been shown ts estimated more precisely than the average of a smaller
under smooth data in situations where the pro le is at around set, all things equal. A direct result of this variable agerg
the minimum GCV score, and (ii) the model tted assumes thatof lake years it that some samples are more precise and
the observations are independent, an assumption that isiogrta therefore have lower variance than other samples and yet
violated in theU; time series. the model assumed that the variance was constant across
To investigate the rst issue, the GCV and REML scores fosamples.
an increasing sequence of values of the smoothness parameterAccounting for heteroscedasticity within the model is
() were evaluated for the standard GAM (Equation 4) t to the relatively simple via the use of observational weights. The
U§7 time series. The resulting pro les are shown kigure 7, number of lake years represented by each slice is estimated by
with the optimal value of the parameter shown by the verticahssigning a date to the top and bottom of each sediment slice.
line. The GCV score pro le suggests that the potential for unde The variance of each observation should be proportional to the
smoothing identi ed byReiss and Ogden (2008 unlikely to  inverse of the number of lake years each sample represents. In
apply here as there is a well-de ned minimum in pro le. thegam() function used here, weights should be speci ed as the
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FIGURE 7 | GCV and REML scores as a function of the smoothness parameter. From left to right, GAMs were estimated using GCV and REML soothness
selection, and REML using a basis dimension of 40 and obsent®nal weights to account for heterogeneity in theU§7 times series. The selected value of for each
model is indicated by the vertical grey line.

number of lake years each sample represents. Other software né.3. Con dence Intervals and Uncertainty
require the weights to be speci ed in a di erent way. Estimation

A secondary problem is the size of the basis dimensioff we want to ask whether either of the estimated trends
used for the time variable. The main user selectable optio statistically interesting or proceed to identify period$ o
when tting a GAM in the penalised likelihood framework sjgni cant change, we must address the issue of uncertamty
of Wood (2004)is how many basis functions to use. ASthe estimated model. What uncertainty is associated with the
described above, the basis should be large enough to contajignd estimates? One way to visualise this is through a 1 -
the true, but unknown, function or a close approximation con dence interval around the tted trend, where is say 0.05
to it. For GCV selection the basis used contained 29 basjgading to a 95% interval. A 95% interval would be drawg@at
functions, whilst the CAR(1) model with REML smoothneSS(ml SE@)), withm; D 1.96, the 0.95 probability quantile
selection would only converge with a basis containing 2@f 3 standard normal distributioh and SE) is the standard
functions. The size of the basis appears to be su cient folerror of the estimated trend at time. This type of con dence
GCV smoothness selection, but followigood (2011)REML  jnterval would normally be described psintwise the coverage
smoothness selection is preferred. Using the tesPwh and properties of the interval being correct for a single point oe th
Wood (2016) the basis dimension for the models with REML tted trend, but, if we were to consider additional points ongh
smoothness selection was too small. To proceed therefore, Wengd, the coverage would logically be lower than 1. This is
must drop the CAR(1) term and increase the basis dimension tghe traditional frequentist interpretation of a con denceterval.

39 functions (by setting = 40 | set it larger than expected However, the GAM described here has a Bayesian interpretatio
because the larger basis contains a richer family of funstio (Kimeldorf and Wahba, 1970; Wahba, 1983, 1990; Silverman,
and the excess complexity is reduced because of the smoethnesgs and therefore the typical frequentist interpretation does
penalty.) not apply. Nychka (1988)investigated the properties of a

With the larger basis dimension and accounting for the non-con dence interval created as described above using standar
constant variance of the observations via weights, the intidé  erors derived from the Bayesian posterior covariance matrix
using REML is indistinguishable from that obtained using GCVfor the estimated model parameters. Such intervals have the
(Figure 6B). The trace of the REML score for this model showsnteresting property that they have gooacross-the-function
a pronounced minimum at a much smaller value othan the  coyerage when considered from a frequentist perspective. This
original REML t (Figure 7), indicating that a more wiggly trend means that, when averaged over the range of the function, the
provides a better t to the Braya-Sg time series. This examplgayesian credible intervals shownFigure 6 have close to the
illustrates that some care and understanding of the undlegly expected 95% coverage. However, to achieve this some parts of
principles of GAMs is required to diagnose potential isSuegne function may have more or less than 95%-coveratera
with the estimated model. After standard modelling choices;d Wood (2012yecently explainedlychkas (1988surprising
(size of basis to use, correct selection of response disitibu resylts and extended them to the case of generalised models
and link function, etc.) are checked, it often pays to think(non-Gaussian responses).
carefully about the properties of the data and ensure that the \whjlst theacross-the-functidnequentist interpretation of the

assumptions of the model are met. Here, despite increasing thgayesian credible intervals is useful, if may be importantaeeh
basis size, it was the failure to appreciate the magnitude of

the e ect of the non-constant variance that lead to the iflia
poor t and the problems associated with the estimation of the'The 0.95 probability quantile of thedistribution may be used instead, which will
CAR(l) process | return to the issue of Why the GAM p|usaccount for estimation of , the variance of the data. However, given the number

. X of observations, and hence residual degrees of freedom, needeatitvate tting
CAR(l) model encountered problems dunng tting later (SeeGAMs, di erences between intervals computed using extreme glesntf the

section 4.5). standard normal or the distribution will be tiny.
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FIGURE 8 | Estimated trends (thick black lines) and 20 random draws (gy lines) from the posterior distribution of the GAM tted tolte Small Water 15N (A)and
Braya-SgUY, (B) time series.

an interval that contains the entirety of the true functiontv ~ well constrained with the ends of the record in particular
some state probability (1 -). Such an interval is known as a showing considerable variation in the strength, timingdaven
simultaneousnterval. A (1 - )100% simultaneous con dence sign of simulated trends, re ecting the greater uncertgirm
interval containsn their entiretyl - of all random draws from estimated trend during these periods. For the random draws
the posterior distribution of the tted model. illustrated in Figure 8, a (1 - )100% simultaneous interval
Fitting a GAM involves nding estimates for coe cients of should contain the entire function for on average 19 of the 20
the basis functions. Together, these coe cients are distied draws.
multivariate normal with mean vector and covariance matrix There are a number of ways in which a simultaneous
speci ed by the model estimates of the coe cients and theirinterval can be computed. Here | follow the simulation approach
covariances, respectively. Random draws from this digiobu  described byRuppert et al. (2003and present only the basic
can be taken, where each random draw represents a new tredeétail; a fuller description is contained iAppendix 1. The
that is consistent with the tted trend but also re ects the general idea is that if we want to create an interval that
uncertainty in the estimated trend. This process is known asontains the whole of the true function with 1 - probability,
posterior simulation we need to increase the standard Bayesian credible interval
Figure 8 shows 20 random draws from the posteriorby some amount. We could simulate a large number of
distributions of the GAMs tted to the Small Water and Braya- functions from the posterior distribution of the model and
So data sets. In the early period of thé®N time series then search for the value af;  that when multiplied by
many of the posterior simulations exhibit short periods of SEQx;)) yielded an interval that contained the whole function
increasing and decreasing trend, balancing out to the inagbt  for (1 )100% of the functions simulated. In practice,
at trend estimated by the GAM Kigure 8A). Re ecting this the simulation method ofRuppert et al. (2003)does not
uncertainty, we might expect relatively wide simultaneousnvolve a direct search, but yields the critical valog
intervals during this period in order to contain the vast mafp  required.
of the simulated trends. Conversely, the decreasi?yl trend Simultaneous intervals computed using the method described
starting at ~1945 is consistently reproduced in the posterioare show irFigure 9alongside theacross-the-functiacon dence
simulations, suggesting that this feature of the time serieintervals for the trends tted to both example data sets.
is both real and statistically signi cant, and that the raté As expected, the simultaneous interval is somewhat wider
change in 15N is relatively precisely estimated. We see dhan the across-the-functiomterval. The critical valuan;
similar pattern inFigure 8B for the Braya-Sg record; the large for the simultaneous interval of the estimated trend in
peak in U, at ~250CE and the strong decline at ~1200CE **N is 3.07, whilst the same value for thek, series
are well de ned in the posterior simulations, whereas mosis 3.43, leading to intervals that are approximatelyp0%
of the localised trends that are smaller magnitude changemd 75% wider than the equivalent across-the-function
in y; are associated with posterior simulations that are lesitervals.
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FIGURE 9 | 95% simultaneous con dence intervals (light grey bands) andcross-the-function con dence intervals (dark grey bandspn the estimated trends (black
lines) for the Small Water 15N (A) and Braya-SgUY; (B) time series.

4.4. Identifying Periods Change using standard theory (i.e.,1.96 SE®) for a 95% interval) and
In the simple linear trend model (1) whether the estimateditte the covariance matrix of the spline coe cients. A (1 )100%
constitutes evidence for or against a null hypothesis of range  simultaneous interval for the derivatives can also be contpute
rests on how large the estimated rate of changegiiis (Q)  using the method described earlier. Periods of signi camnge
relative to its uncertainty. This is summarised in thetatistic. are identi ed as those time points where the (simultaneous)
As the rate of change ipt is constant over the tted trend—there con dence interval on the rst derivative does not include
is only a single slope for the tted trend?—if thet statistic of  zero.
the test thatQ D 0 is unusually extreme this would be evidence Figure 10 shows the estimated rst derivative of the
against the null hypothesis of no change. Importantly, this eggpl tted trend in the Small Water Figure 10A) and Braya-Sg
to the whole time series as the linear model implies a constdat  (Figure 10B time series. Although the estimated trend suggests
of change throughout. More formally, the estimafis the rst  a slight increase in'°N from the start of the record to ~1940,
derivative of the tted trend. the estimated trend is su ciently uncertain that the simatieous

In the GAM, the tted trend need not be linear; the slope of interval on the rst derivative includes 0 throughout. Werca
the trend is potentially di erent at every point in the time ses.  understand why this is so by looking at the posterior simulasio
As such we might reasonably askerein the series the response in Figure 8A; there is considerable variation in the shape of
yt is changing, if at all? Mirroring the linear model we can answethe simulated trends throughout this period. From ~1925 the
this question by determining whether or not the rstderive¢ at  derivative of the trend becomes negative, however it is not
any time pointx; of the tted trend at any time pointis consistent until ~1940 that the simultaneous interval doesn't inclute
with a null hypothesis of no change. We want to know whether oAt this point we have evidence to reject the null hypothesis of
not the rst derivative is indistinguishable from a value@fno no change. This time point may be taken as the rst evidence
trend—given the uncertainty in the estimate of the derivati for change in 1°N in the Small Water core. The simultaneous

Derivatives of the tted spline are not easily availableinterval on the rst derivative of the trend in'°N is bounded
analytically, but they can be estimated using the method cdway from O between ~1940 and ~1975, covering the major
nite di erences. Two values of the estimated trend, sepadate decline in values evident in the observations. The simetas
by a very small time-shiftl(;), are predicted from the model; interval includes 0 from ~1975 onward, suggesting that,Isthi
the di erence between the estimated values for the two timeuite pronounced, the recent increase PN is not statistically
points is an approximation of the true rst derivative of the signi cant. To determine whether or not the recent increase
trend. As1; ! 0 the approximation becomes increasinglyreal, we would require considerably more samples with which
accurate. In practice, the rst derivative of the tted trend to (hopefully) more-precisely estimate the trend during this
evaluated using nite di erences at a large number of pointsperiod. Alternatively, we might just have to wait until su aie
in the time series. An approximate (1 -)100% pointwise additional sedimentation has occurred to warrant recor8mall
con dence interval can be calculated for the derivativéneates Water and reestimating the trend in>N.
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The estimated trend at Braya-Sg exhibited a number obf simplicity. As I did in (6), | reintroduce it and restate the
oscillations inUY,. As we saw previously iffigures 88 9B, distributional assumptions of this model
many of these are subject to signi cant uncertainty and it is
important therefore to discern which, if any, of the osciltats
in the response can be identi ed given the model uncertainty. wD oCf(x)C", " (0,3 ? (7)
In Figure 10B only two features of the estimated trend are
considered signi cant based on the derivatives of the smpot In the basic GAM3
one centred on ~250CE and a second at ~1150CE. In bot,
these periods, the simultaneous interval for the rst defive of
the trend does not include zero. In the rst case we detect the

| is an identity matrix, a matrix with 1 s
the diagonal and O s elsewhere

large peak and subsequent declineUl; at ~250CE, whilst at 2 100::: 03

~1150CE the large trough is identi ed, but not the increasin 010:::

trend immediately prior to this excursion to lowesk,. Recall EO 01::

that these intervals are simultaneous in nature, strongbrding ’

against false positives, and as such we can be con dent in the :

estimation of these two features, whilst care must be taken t 000:::1

not over-interpret the remaining variations in the estimdte

trend. whichis where the independence assumption of the model comes
from; a model residual is perfectly correlated with itselfe(th

. . 1s on the diagonal), but uncorrelated with any other residua
4.5. Residual Autocorrelation and Model (the o-diagonal 0s). In the GAM plus CAR(1) model, an
Identi cation alternative correlation function fo8 was used—the CAR(1)

The GAM tted to the 1°N time series contained a CAR(1) with correlation parameter . Fahrmeir and Kneib (2008how
process to model residual temporal autocorrelation in thehat where the stochastic structure bfand 3 approach one
residuals. The estimated magnitude of the autocorrelatiomnother, i.e., where we have a potentially wiggly trend or gfron
is given by the parameter. The estimated value of for autocorrelationas ! 1, the two processes can quickly become
the 15N series is 0.6 with 95% con dence interval 0.28-unidenti able (see als&ahrmeir et al., 20)3By unidenti able,
0.85, indicating moderate to strong residual autocorrelati we mean that it becomes increasingly di cult to distinguish
about the tted trend. The correlation function is an between a wiggly trend or strong autocorrelation becaugsséh
exponentially decreasing function of temporal separatioriwo processes are very similar to one another in appearancs. Thi
(h), and whilst observations that are a few years apart areads to model estimation problems of the sort encounteret wi
quite strongly dependent on one another, this dependenceting the GAM plus CAR(1) model to the Braya—sidgK7series.
drops o rapidly as h increases and is eectively zero Why might this be so? Autocorrelation is the tendency for a
when samples are separated by a decade or motarge (small) value of; at timex; to be followed by a likewise
(Figure 11). large (small) value at timeici. This leads to runs of values
Failure to account for the dependencies in th®N time that are consistently greater (less) than the overall meaortSh
series could lead to the estimation of a more wiggly trenchtharuns would indicate weaker autocorrelation whilst longer sun
the one shown inFigure 6A which would negatively impact are associated with stronger autocorrelation, and longsrof
the con dence placed on the inferences we might draw fromvalues greater (less) than the mean would be evident as non-
the tted model. Importantly, failing to account for the stngg  linear trends in the time series. As a result, a wiggly trendl @m
dependency in the residuals would lead to smaller unceritsnt autocorrelation function with large are two ways to describe the
in the estimated spline coe cients, which would propagatesame pattern of values in a time series, and, without any &irth
through to narrower con dence intervals on the tted trend information to constrain either of these, the model is urel
and on the rst derivatives, and ultimately to the identi ten  distinguish both components uniquely.
of signi cant periods of change. The end result would be Situations where it may be possible to uniquely identify
a tendency towards anti-conservative identi cation of pel$ separate wiggly trends and autocorrelation are exempli ed by
of change; the coverage probability would be lower than théhe Small Water 1°N time series. The non-linear trend and
anticipated 1, leading to a greater chance of false positivehe autocorrelation operate at very di erent scales; the trend
results. represents decadal-scale variation in mednAN, whilst the
Problems estimating the GAM plus CAR(1) model wereCAR(1) process represents the much smaller-scale tendency for
encountered when this was tted to th$§7 time series; including values of the response to be followed in time by similar values
both a smooth trend in the meatlrj?7 and a CAR(1) processinthe That such a pattern is observed in the Small Water core is the
residuals lead to an unidenti able model. What makes a modetesult of the high resolution of the sampling in time relatiice
with a spline-based trend and an autocorrelation process like t the long-term trend. In contrast, the Braya-Sg record is gkt
CAR(1) potentially unidenti able? at far lower resolution relative to the uctuations in the e
Consider again the basic GAM for a smooth trend, (3). Inresponse, and consequently the data do not contain su cient
that equation the correlation matri8 was omitted for the sake information to separate trend and autocorrelation.
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FIGURE 10 | Estimated rst derivatives (black lines) and 95% simultanes con dence intervals of the GAM trends tted to the Small Wate 15N (A) and Braya-Sg
U§7 (B) time series. Where the simultaneous interval does not inddie 0, the models detect signi cant temporal change in the respnse.

Several functions can be used to represémt Two common
1.00- ones are the power exponential function and the Matérn family
of correlation functions. The power exponential function at
075~ separation distanceis
= =
. o) D exif( h=) g
° where 0< 2. The Matérn correlation function is actually a
0.25- family of functions with closed-forms only available forubset
of the family, distinguished by. When D 1.5, the Matérn
0.00- . ) ) ) ) correlation function is
0 10 20 30 40 50
h (years) oh)D (1C h= )exp( h=)
FIGURE 11 | Estimated CAR(1) process from the GAM tted to the Small whilstfor D 2.5itis
Water 15N time series.c(h, ) is the correlation between residuals separated
by h years, where OD 0.6. The shaded band is a 95% pointwise con dence _ O \2_. _
interval on the estimated correlatiorc. oh) Df1Ch= C(h=)"=3gexp( h=)
andfor D 3.5
4.6. Gaussian Process Smooths oh)Df1Ch= C2(h= )>5C (h= )3=15gexp( h=).

In the world of machine learning, Gaussian processes
(Rasmussen and Williams, 2006; Golding and Purse, 201t all cases, is the e ective range parameter, which sets the
are a widely-used method for tting smooth non-parametric distance beyond which the correlation function is e ectiveéro.
regression models. A Gaussian process is a distributionaVer  Figure 12 shows examples of two dierent correlation
possible smooth functiong(x). In the eld of spatial statistics, functions; thepower exponentigFigure 124A), and the Matérn
Gaussian processes are known by the n&rigng (Figure 12B correlation functions. These functions are smooth
With a Gaussian process we are interested in tting a smootfand monotonic-decreasing, meaning that the value of the
temporal trend by modelling the way the correlation betweercorrelation function decreases with increasing separation
pairs of observations varies as a function of the distahc&@  Whenh =0, the correlation is equal to Q) D 1); two samples
time that separates the observations. The correlation Etwe taken at exactly the same time point are perfectly correlaisd.
pairs of observations decreases with increasing separatioch h! 1, the correlation tends to zera(h) ! 0); two samples
is modelled using a correlation functiogh). separated by a large amount of time tend to be uncorrelated.
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FIGURE 12 | Power exponential(A) and Matérn (B) correlation functions for observation separation distaneh. Two values of the effective range parameter () are
shown for each function. For the power exponential function is the power in the power exponential function. For the Matér correlation function, distinguishes the
member of the Matérn family.

FIGURE 13 | Gaussian process smooths tted to the U§7 time series. REML score traces for GAMs tted using power expoential ( D 1) or Matérn ( D 1.5)
correlation functions as a function of the effective rangegrameter ( ) are shown(A). The optimal model for each function is that with the lowest EML score.
(B) Shows the resulting trends estimated using the respective @relation function with the value of set to the optimal value.

Often we are interested in learning how large the separation i  Gaussian processes and GAMs share many similarities and we
time needs to be before, on average, a pair of observationsdan t a Gaussian process using the techniques already teskri

e ectively uncorrelated (i.e., whergh) is su ciently close to  above for splinesH{andcock et al., 1994; Kammann and Wand,
zero). 2003. It can be shown (e.gfahrmeir et al., 20)3that the
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Gaussian process model has the same penalised likelihood forelatively little change. As suggested by their name, adapti
as the GAM that we discussed earlier; the observations @&e tkmoothers can adjust to changes in the wiggliness of the time
knots of the smoother and each has a basis function in the forrseries. This adaptive behaviour is achieved by making the
of a correlation function. The equivalence is only true ieth smoothness parameteritself depend smoothly or; (Ruppert
basis functions do not depend on any other parameters of thet al., 2003 p. 17; Wood, 2017 5.3.5); in other words, the
model, which is only achievable if the value ofis xed and adaptive smoother allows the wiggliness of the estimateditren
known (Fahrmeir et al., 20)3In general, however, we would vary smoothly over time. Whilst this allows the estimatecdtte
like to estimate as part of model tting. To achieve this we to adapt to periods of rapid change in the response, adaptive
can maximise the pro le likelihood or score statistic of thedel smoothers make signi cant demands on the datsdod, 2017
over a range of values of (Wood, 2017 pp. 362—-363). This 5.3.5); if we useth smoothness penalties to allow the wiggliness
involves proposing a value of for the e ective range of the to vary over a time series, it would be like estimatmgeparate
correlation function and then estimating the resulting GAby  smooths from chunks of the original series each of lengtim.
minimising the penalised log-likehood conditional upon thisIn a practical sense, this limits the use of adaptive splines in
value of and repeating for a range of values farThe model, palaeoecology to proxies that are readily enumerated, sudteas t
and its corresponding value of, with lowest penalised log- biogeochemical proxies used in the two example data sets.
likelihood or score statistic is then retained as the estada Figure 14 compares trends for the Braya-Sg time series
GAM. Figure 13Ashows the REML score for models estimatedestimated using GAMs with the three main types of spline
using a Gaussian process smooth with a Matérn correlatiodiscussed; (i) TPRS, (ii) Gaussian process smooths, anaiiii)
function (= 1.5) for a sequence of values ofbetween 15 adaptive smoother using 45 basis functions and 5 smoothing
and 1,000 years. There is a clear minimum around 40 yeaparameters. There is a clear di erence in the behaviour of the
separation, with the minimum REML score being observed aadaptive and non-adaptive smoothers for the rst 1,000 years
D 41.81). Also shown are the REML scores for models usingf the record, with the adaptive smooth exhibiting much less
the power exponential function (= 1) with the minimum score variation compared with either the TPRS or Gaussian process
observed at a somewhat higher e ective range @ 71.06. splines. Over the remaining two thirds of the series, thematish
Figure 13B shows the estimated trends for tHak, time closer agreement in the three smooths.
series using Gaussian process smooths with exponential and The behaviour of the TPRS and Gaussian process splines for
Matérn correlations functions, both using values at their these data is the result of requiring a large amount of wiggin
respective optimal value as assessed using the REML scdeesmall )to adapt to the large oscillationsw§7presentaround
The estimated trends are very similar to one another, altfiou year 250CE and again at ~900-1500CE. This large degree of
there is a noticeable di erence in behaviour, with the powerwiggliness allows the splines to potentially over- tindivalaata
exponential ( D 1) version being noticeably less-smooth thanpoints much earlier in the record. Because the adaptive smoothe
the Matérn version. This di erence is attributable to the pa in contrast, can adapt to these periods of rapid change in the
of the respective correlation functions; the Matérn approacheresponse it is much less susceptible to this “chasing” behavio
a correlation of 1 smoothly as approaches 0, whilst the power we don't need to waste e ective degrees of freedom in periods
exponential with =1 approaches a correlation of 1 increasinglywith little or no change just to be able to t the data well when
quickly with decreasingn. The power exponential with = 2,  there is a lot of change.
like the Matérn, approaches = 1 smoothly, and consequently  This potential for over- tting in such situations is undesiole,
the trend estimated using this correlation function is qtetively  yet if we recalFigure 10and the discussion around the use of the

similar to that estimated using the Matérn correlation ftioc. rst derivative to identify periods of signi cant change, weuld
) ] not interpret the oscillations in the early part of thé}, record
4.7. Adaptive Smoothing as being statistically signi cant. Owing to the paucity otalin

Each of the spline types that | have discussed so far shareshis part of the series the trends tted using the non-adaptive
common feature; the degree of wiggliness over the time serismoothers are subject to such a large degree of uncertdiaty t
is xed due to the use of a single smoothness parameter, the alternative of no trend through the rst 1,000 years o&th
The de nition of wiggliness, as the integrated squared sdco record is also a plausible explanation of the data. The trend
derivative of the spline, ensures that the tted smoother sloeestimated using the adaptive smooth re ects this. Therefore
not jump about wildly. This assumes that the data themselveshould we conclude that there is no trend Uﬁ% and thence
are well described by a smoothly varying trend. If we anti@pa climate in this period? | believe that to be too-strong a staat;
abrupt change or step-like responses to environmental forcinthose oscillations ith:ff7 may be real responses to climate forcing
this underlying assumption of the GAM would suggest that thebut we may simply lack the statistical power to distinguish them
method is ill-suited to modelling palaeo time series in whicitch ~ from the null hypothesis of no trend through this period. The
features are evident or expected. adaptive smoother is only adjusting to the data available ;to it
While there is not much we can do within the GAM just because it does not detect a trend during this period does
framework to model a series that contains both smooth trendsiot lend itself to an interpretation of stable climate forcing
and step-like responses, an adaptive smoother can help addressnplacency in the lake's response to forcing (although that is
problems where the time series consists of periods of rapid justi able interpretation of the result). If there were pitilar
change in the mean combined with periods of complacency ocinterest in the climate of this particular period we might take
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FIGURE 14 | Comparison of trends estimated using (i) adaptive smoothijiY Gaussian process, and (iii) thin plate regression sptifbases for the U§7 time series.

from the Braya-Sg record that there is potential early vaviati in the posterior draws, resulting in trends that match clogbbt
due to climate forcing, but that additional data from thisather  obtained from the estimated age-depth relationship. Evethé®,
sites is required before any de nitive conclusion can beadra additional uncertainty suggests that the timing of the deelin

_ _ 5N covers the interval ~1935-1945.
4.8. Accounting for Age Model Uncertainty The uncertainty in the trend estimates illustrated in

Thus far, the trend models that | have described and illustiat Figure 15B only re ects the variation in trends tted to the
assumed that the time covariateXwas xed and known. Inboth  uncertain dates of the sediment samples. To fully visualise t
examples, and generally for most palaeoecological recdrds, tuncertainty in the trend estimates, incorporating both agedel
assumption is violated. Unless the record is annually lamihate uncertaintyand uncertainty in the estimated model coe cients
assigning an age to a sediment interval requires the devedapm themselves, 50 simulations from the posterior distribution of
of an age model from observations of the relationship betweeeach of the 100 estimated trends shown Figure 15B were
depth down the sediment core and estimates of the age @erformed, resulting in 5,000 trend estimates for tAeN series.
the sample arrived at using any of a number of techniquesthese are shown iRigure 15G where the two obvious changes
for example?%b or 1C radiometric dating. This age-depth over the same simulations without accounting for uncertgiin
relationship is itself uncertain, usually being derivednfr x, (Figure 8A) are that the uncertainty band traced out by the
a mathematical or statistical model applied to point agesimulations is approximately 50% wider and, not surprisingly,
estimates (e.g.Blaauw and Heegaard, 2Q1corporating this  the uncertainty in the estimated trend is most pronounced
additional component of uncertainty complicates the estimati in the least accurately-dated section of the core. Despit th
of statistical models from palaeoenvironmental data. Insthi additional uncertainty however, the main result holds; arkeal
section | illustrate a simulation based approach to quantifd a decline of ~1.5%. that occurred between approximately 1930 and
account for age-model uncertainty as part of the trend esfiioma 1945, with mild evidence of a small increase #iN post 2000
using a GAM (seé\nchukaitis and Tierney (2013pr a similar, CE.

non-GAM related idea).

Figure 15A shows the estimated dates (in Years CE) fo&.9. Multivariate Data
12 levels in the Small Water core dated usiffPb. The A large proportion of the palaeoenvironmental data generated
vertical bars show the estimated age uncertainty of eacdtl.levtoday is multivariate in nature and yet the two examples used
The solid line through the data points is an additive modelto illustrate GAMs were univariate. Can the approach described
tted to the observations, with prior weights given by the here be used for multivariate data? Yes, and no. With one
estimated age uncertainties. The tted age-depth model isnain exception it is not possible to directly apply the GAM
constrained to be monotonically decreasing with incregsin methodology described here to multivariate abundance ,data
depth, following the method ofya and Wood (2015using where the aim is to model all species at once. Thgcv
the scampackage Fya, 201). Also shown are 25 simulations software, for example, is not able to estimate the penalised GAM
from the posterior distribution of the monotonically-consined  for multiple non-Gaussian responses. The exception is for a
GAM. Each simulation from the posterior distribution of theexg small number of correlated Gaussian responses; these could be
model is itself a potential age-depth model, which can be used modelled as being distributed multivariate normal conditad
assign dates to the Small Water core. The trend model in () caupon the covariates. Such a model would estimate the expected
be tted to the 15N data using these new dates>asand the values of each response and the correlations between them. Fo
whole process repeated for a large number of simulations frorexample, we could jointly model®N and 13C series using this
the age model. approach.

Figure 15B shows the trend in 1®N for the observed age- Formal multivariate versions of GLM or GAMs are currently
depth model, plus trends estimated via the same model using 1@ important area of research within ecology (sé€a(ton
draws from the posterior distribution of the age model. In thiset al., 201pfor a recent review), where they go by the name
case, the age-depth model is relatively simple with littléateam  joint species distribution models (JSDMs). Whilst undoubtedly
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FIGURE 15 | Accounting for uncertainty in age estimates whilst tting a mooth trend to the Small Water 1°N time series.(A) Estimated age model using a
monotonically-constrained spline tted t0219pPp inferred ages for selected depths in the sediment core (tbpoints). The uncertainty in the?10pp inferred age is shown
by the red vertical bars. The tted age model is illustrated byhe solid black line. The faint grey lines are 25 random drawsom the posterior distribution of the
monotonically constrained GAM. The effect of age uncertaty on trend estimation is shown in(B); for 100 simulations from the posterior distribution of theage model
in (A) a trend was estimated using a GAM with a thin plate regressioapline basis and a CAR(1) process in the residuals. These trds are shown as grey lines. The
combined effect of age model and tted GAM uncertainty on the tends for the 15N time series is shown in(C). The grey lines in(C) are based on 50 random draws
from the model posterior distribution for each of the 100 trads shown in (B). For both (B,C) the black line shows the trend estimated assuming the ages ofach
sediment sample are known and xed.

powerful, our knowledge regarding JSDMs and their availgbilit A pragmatic although inelegant approach that has been
in software are still in their relative infancy and they régu used to estimate trends in multivariate palaeoecologictd ta
considerable expertise to implement. As such, JSDMs ate rst summarise the response data using an unconstrained
currently beyond the reach of most palaeoecologists. Despitedination via a PCA, CA, or principal curve and then t
this, we should be watching JSDM research as developments aeparate GAM models to the site (sample) scores of the rst
ongoing and a degree of method maturation occurring. few ordination axes or principal curveBénnion et al., 2015;

One currently available avenue for tting a multivariate ®A Beck et al., 20)8Whilst this two-step approach is relatively easy
is via regularised sandwich estimators and GLMga(ton, to implement and builds on approaches that palaeoecologists
2019, which involves tting separate GLMs (or GAMSs) to already use to summarise multivariate stratigraphic data, i
each response variable and subsequently using resampling- best thought of as modelling changes in abundance or
based hypothesis tests to determine which covariates atedel relative composition at the community level. It is less well
to variation at the community level and for individual taxa suited to unpicking taxon-speci c trends however, because th
(Warton, 2011; Wang et al.,, 2012; Warton et al., 2012 ordination step combines individual species informatiortan
The mvabund package \(Vang et al., 20)2implements this latent variables (axes) that are linear combinationalb$pecies
approach within R and can usmgcvto t GAMs to each and it is these latent variables that are then modelled using
species. a GAM.

Frontiers in Ecology and Evolution | www.frontiersin.org 18 October 2018 | Volume 6 | Article 149



Simpson Modelling Palaeoecological Time Series
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APPENDIX 1—SIMULTANEOUS Now, the (1 - )100% simultaneous con dence interval is
INTERVALS
2 3
We proceed by considering a simultaneous con dence interval §t.dengl) f(a)
for a function f(x) at a set ofM locations inx; we'll refer to Q m dtdevRy) f()
these locations, following the notation &fuppert et al. (2003) 1 : ’
by

dt.devRau) f(aw))

9D (au %, av) wherem; isthe 1- quantile of the random variable

The true function overg, fg, is de ned as the vector of

evaluations of at each of thévl locations C o
R ) PO
2 3 sup ——M———— max
f(q) x dtdevdx) f(x)) 1 M dtdevflg) f(g))
gf(gz)z
fq )
f(Q;M) The sup refers to theupremunor the least upper boundbhis is

the least value oX, the set of all values of which we observed
and the corresponding estimate of the true function given bysubsek, that isgreaterthan all of the values in the subset. Often

the tted GAM denoted by@- The di erence between the true this is the maximum value of the subset. This is what is indida
function and our unbiased estimator is given by by the right-hand side of the equation; we want the maximum

(absolute) value of the ratio over all valuesgin
The fractions in both sides of the equation correspond
8 fDC o to the standardised deviation between the true function and
9 ‘o the model estimate, and we consider theximum absolute
standardised deviation. We don't usually know the distribatio
of the maximum absolute standardised deviation but we naed t
to access its quantiles. However, we can closely approximate the
distribution via simulation. The di erence here is that rahthan
ysimulating from the posterior of the model as we did earliez se
section 4.3, this time we simulate from the multivariate mait
distribution with mean vectod and covariance matri¥/p. For
each simulation we nd the maximum absolute standardised
O approx. deviation of the tted function from the true function over
N.O,Vp/ , : P
0} the grid of x values we are considering. Then we collect all
these maxima, sort them and either take the 1 probability
where Vy, is the Bayesian covariance matrix of the GAMgquantile of the maxima, or the maximum with ran&(1
coe cients. )=Ne.

where Cy is a matrix formed by the evaluation of the
basis functions at locationgy, and the part in square
brackets is the bias in the estimated model coe cients, vahic
we assume to be mean 0 and distributed, approximatel
multivariate normal with mean vectdd and covariance matrix
Vp
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