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Analyzing Image Segmentation for
Connectomics

Stephen M. Plaza * and Jan Funke

Howard Hughes Medical Institute, Ashburn, VA, United States

Automatic image segmentation is critical to scale up electn microscope (EM)
connectome reconstruction. To this end, segmentation comptitions, such as CREMI
and SNEMI, exist to help researchers evaluate segmentatiomalgorithms with the
goal of improving them. Because generating ground truth isitne-consuming, these
competitions often fail to capture the challenges in segmeimg larger datasets required in
connectomics. More generally, the common metrics for EM imge segmentation do not
emphasize impact on downstream analysis and are often not vg useful for isolating
problem areas in the segmentation. For example, they do not apture connectivity
information and often over-rate the quality of a segmentain as we demonstrate later. To
address these issues, we introduce a novel strategy to enablevaluation of segmentation
at large scales both in a supervised setting, where ground tth is available, or an
unsupervised setting. To achieve this, we rst introduce ne& metrics more closely
aligned with the use of segmentation in downstream analysigand reconstruction. In
particular, these include synapse connectivity and compleness metrics that provide
both meaningful and intuitive interpretations of segment&on quality as it relates to
the preservation of neuron connectivity. Also, we propose masures of segmentation
correctness and completeness with respect to the percentag of “orphan” fragments
and the concentrations of self-loops formed by segmentatio failures, which are helpful
in analysis and can be computed without ground truth. The imbduction of new metrics
intended to be used for practical applications involving lge datasets necessitates a
scalable software ecosystem, which is a critical contribubdn of this paper. To this end,
we introduce a scalable, exible software framework that eables integration of several
different metrics and provides mechanisms to evaluate andebug differences between
segmentations. We also introduce visualization softwareothelp users to consume the
various metrics collected. We evaluate our framework on twaelatively large public
groundtruth datasets providing novel insights on example egmentations.

Keywords: image segmentation, evaluation, metrics, connecto mics, electron microscopy

1. INTRODUCTION

The emerging eld of EM-level connectomics requires very éaBfp datasets to even extract the
smallest circuits in animal brains due to the high resolotiequired to resolve individual synapses.
Consequently, at typical nanometer-level resolution singlgrans in even a fruit- y brain typically
span over 10,000 voxels in a given orientation. An entire {agat which is less thamim® requires
over 100TB of image dat&ljeng et al., 2007
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obvious topological issues

Field-of-view
for convolutional
neural network
(~100x100x100)

FIGURE 1 | Small segmentation errors locally can lead to large topolagal errors. The eld-of-view for modern convolutional newnal networks is a small fraction of
the size of the neuron leading to potentially bad global miakes. Segmentation evaluation is typically done on datasstonly a few times bigger (in one dimension) than
this eld of view.

FIGURE 2 | Synapses are often located on thin neurites. The above showa T5 neuron where many synapses are on the neuron tips. Each $re represents a
different synapse site.

These dataset sizes pose several challenges for automéie synapses for the neuron reside on the small tips of the
image segmentation, which aims to automatically extracheurons.
the neurons based on electron-dense neuron membranes. It should follow that image segmentation should be
First, image segmentation algorithms struggle with classi evaluated on large datasets with additional consideration
generalizability. For a large dataset, there are greatéor the correctness of small neurites critical for conneityi
opportunities for anomalies that are signi cantly outside of Unfortunately, this is not the case. The authors are awareoof n
the manifold of training samples examined. Even with advancepublications for new segmentation algorithms that emphasize
in deep learning funke et al., 2018; Januszewski et al., p018his. Recent work laitin-Shepard et al., 2016; Januszewski
the size and high-dimensional complexity of neuron shapest al., 201Bhave evaluated segmentation on large datasets, such
allow even small segmentation errors to result in catastivgdly —as Takemura et al. (2015)But these works do not consider
bad results as shown irfFigure 1L Independent of dataset sSynaptic connectivity explicitly, which is the ultimate apptioa
size, image segmentation struggles in regions with imagef the image segmentation. Neither SNEMIranda-Carreras
contrast ambiguity, inadequate image resolution, or otingiige et al., 201p nor (CREMI, 201y segmentation challenges use
artifacts. This is particularly prominent for small neuritediere  datasets that span large sections of neurons. While they have
synapses often reside¢hneider-Mizell et al., 20).8n Figure 2, been instrumental to meaningful advances to the eld, they a
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ultimately limited by their small size and can under-repmgse often be discerned by quickly examining the areas of greates

problems as shown ifrigure 1L This occurs because the actualdi

erence. While this provides only a qualitative assessmits

cause of the error is in only one small region, but the impact isnformation is useful for identifying areas where new tiaig

observed in many more regions.
There are reasons large-scale, connectivity-based ¢oaisia di

data could be provided. Also, if one samples some of these

erences, potential impact on proofreading performance can

are uncommon. Importantly, evaluating large datasets magui be discerned. For instance, such analysis might revealtiieat
considerable ground truth that is time-consuming to produce most signi cant di erences are due to one segmentation hgwn

The groundtruth dataset inTakemura et al. (2015js an
order-of-magnitude bigger than the other public challenges

lot of large false mergers, which tend to be time consuming<o

Beyond decomposing metrics in new ways, we introduce the

but took 5 years of human proofreading and is still overfollowing evaluations:

three orders of magnitude smaller than the whole vy brain.
We believe connectivity-based metrics have not been readily
adopted because (1) it requires the annotation of synapse
objects which is an independent step of the typical segmemtati
work ows, (2) the segmentation optimization objectives dise
in classi er training focus on lower-level, local topologygnd,
1971; Meix, 2003, whereas connectivity is more global, (3)
there are no proposed connectivity metrics that are widely
adopted, and (4) there are no suciently large challenge
datasets to meaningfully capture neuron connectivity. For
algorithm designers, it is probably disconcerting to ackipwor
evaluation scores based on connectivity that cannot bectlyre
optimized in segmentation objectives without clever engiingg

and heuristics. While the training and local validation of
segmentation is both practical and leading to signicant
improvements to the eld, ignoring the higher-level objecs/

A novel, synapse-aware connectivity measure that better
encapsulates the connectomics objective and provides
intuitive insight on segmentation quality.

New strategies to assess segmentation quality with di erent
de nitions of connectome completeness, 95 providing a
potentially more lenient and realistic optimization goal.i$h

is motivated by research that suggests a 100% accurate
connectome is unnecessary to recover biologically medaning
results fakemura et al., 2015; Schneider-Mizell et al., 2016;
Gerhard et al., 2037

Ground-truth independent statistics to assess segmentation
quality, such as counting “orphan” fragments and self-
loops in the segmentation. These statistics provide additiona
mechanisms to compare two segmentations without ground
truth.

could lead to an over-estimation of segmentation quality and'he above is deployed within a scalable, clusterable software
missed opportunities for more directimprovements for the &trg solution using Apache Spark that can evaluate large data on
applications. We will show later that evaluating segmeniatio cloud-backed storage.

around synapses more directly results in less optimisticisgor

We evaluate this ecosystem on two large, public datasets.

compared to traditional metrics likeeila, 2003. Recent work  Our parallel implementation scales reasonably well to larger
in Reilly et al. (2017)also introduced a metric that more volumes, where a 20 gigavoxel dataset can be pre-processed
appropriately weighs the impact of synapses on segmentatioand evaluated on our 512-core compute cluster in under 10

though it does not explicitly consider connectivity corneess
between neurons.

min with minimal memory requirements. The comparison
results emphasize the importance of considering the synapse

To address these issues, we propose a segmentation evaluationnectivity in evaluation. We also show that groundtrutimast
framework, which allows one to examine arbitrarily largenecessary to generate interesting observations from tteesda

datasets using both traditional and newly devised applicatio
relevant metrics. Our contributions consist of (1) new exaion

The paper begins with some background on dierent

published metrics for segmentation evaluation. We then

metrics, (2) novel mechanisms of using metrics to debug anthtroduce the overall evaluation framework and describeétail
a localize errors, (3) software to realize these evalusit@in several speci c new metrics. Finally, we present experimental

scale, and (4) visualization to explore these metrics andoewen
segmentations.

We advocate an “all-of-the-above” philosophy where multipley

metrics are deployed. In addition, we provide an approach to

results and conclusions.

BACKGROUND

decompose some of these metrics spatially and per neuron Beveral metrics have been proposed for segmentation ealyati

provide insights for isolating errors. This overcomes atation

where the goal is analyzing the similarity of a test segmeamtat

in previous challenge datasets that mainly produce summarg to a so-called ground truthG. We review four categories
metrics over the entire dataset, which provides no insighbf metrics in this section: volume-lling or topological,

to where the errors occur. By decomposing the results, ougonnectivity, skeleton, and proofreading e ort.

framework is useful as a debugging tool where dierences

between segmentations are highlighted. While ground tristh 2.

1. Volume-Filling or Topological

ideal for evaluating di erent segmentations to know whicheon Topological metrics measure segmentation similarity at the
is better in an absolute sense, these debugging featurelighig  voxel-level, so that the precision of the exact segmentation
di erences even if directly comparing two test segmentationdoundaries is less important than the topology of the

without ground truth. This is critical for practically deplaoy

segmentation.

For instance, if the segmentation splits a

segmentation on large datasets. The best segmentation caeuron in half, the similarity score will be much lower than a

Frontiers in Neural Circuits | www.frontiersin.org 3

November 2018 | Volume 12 | Article 102


https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

Plaza and Funke Connectome Evaluation

segmentation that mostly preserves the topology but not thedit distance formulations are challenging because di&ren
exact boundary. Example metrics of this class include thedRarproofreading work ows could lead to very di erent proofreading
Index (Rand, 1971; Hubert and Arabie, 198Warping Index reconstruction times.

(Jain et al., 2000 and Variation of Information (VI) (Meila, The usefulness of the above metrics often depend on the
2003. Since VI will be discussed later in this work, we de ne itapplication. For practical reasons, mathematically well-fedm
below as: metrics like VI and ERL that have few parameters are often
] favored. Metrics that better re ect connectivity are harder
VI(SG) D H(§G) CH(GY (1) dene since they depend more on the target application or

where H is the entropy function. VI is decomposed into an over. cquire the existence of synapse annotation which is culyent

segmentation componert(§G) and an under-segmentation predicted in a separate image processing step from segmentatio

. ’ . e Finally, there has been only limited exploration in using
componentt(GjS. Alow score indicates high similarity. segmentation metrics as debugging tools. Presumably, this

2.2. Connectivity becomes a bigger concern when evaluating larger datasets.

Examining topological similarity using the above metrica be ~ Notably, the authors inReilly et al. (2017yecognized this
misleading in some cases since small shifts in segment tzoigsd challenge and describe a metrlc_ that allows intuitive ihsgat

can greatly impact the scores as notedFinnke et al. (2017) the neuron level. InNunez_—IgIe5|as e_t al. (2033the authors
Furthermore, as shown iffigure 2, the synaptic connections decqmpose the VI calculation to prpwde scores per 3D segment.
are often on the harder-to-segment parts of a neuron that only ©" instance, the over-segmentation VI scd#¢JG) can be
make a small percentage of overall neuron volume. One poltentid®composed as a sum of oversegmentation per ground truth
solution is to de neSandGin Equation 1 over a set of exemplar "€Urong: .

points representing synapses, instead of all segmentatiogls/ox

as done inPlaza (2016and Plaza and Berg (2016A similar HESG) D POHEGED 9 )
strategy of measuring groupings of synapses was introduced
in Reilly et al. (2017)which additionally breaks down results Presumably, other metrics like ERL, can be used to provide
per neuron making the results more interpretable. While thes@euron-level information for nding the worst segmentatio
metrics better emphasize correctness near synapses, it is rttliers.

obvious how to interpret error impact to connectivity pathways

3. METRIC EVALUATION ECOSYSTEM
2.3. Skeleton

Similar to topological metrics, the works iBerning et al. We introduce a metric evaluation ecosystem that is designed t
(2015) and Januszewski et a(2019 describe metrics based assess the quality of large, practical-sized datasets. Tentthisve

on the correct run-length of a skeleton representation of gropose evaluation paradigms that emphasize interpreting and
neuron. This class of metric provides an intuitive means otlebugging segmentation errors that make comparisons between
interpreting data correctness, namely the distance betweawo dierent segmentations. While having ground truth is
errors. In Berning et al., 2005 the run length can be very mostly necessary to quantify whether one segmentationttebe
sensitive to small topological errors if one tries to accofoit  than another, meaningful comparisons are possible without
synapse connectivity since synapses can exist in small neurtaboriously generated ground truth since the metrics higjni

tips or spine necks where segmentation errors are more pretvalegi erences and these di erences can be readily inspected. én th
due to the small size of the processes. While this can be usefollowing few paragraphs, we will discuss the overall philosophy
to emphasize synaptic-level correctness, it can also uraleev of our e orts. Then we will explore in more detail novel metrics
a neuron that is mostly topologically correctanuszewski et al. and the software architecture.

(2018) proposes an expected run length metric (ERL) that Inthis work, we do not advocate a speci ¢ metric, but instead
proportionally weights contiguous skeleton segments. WERE  recommend an “all-of-the-above” framework where for each
is the most topologically intuitive metric, it converselyexs  dataset multiple metrics are used to provide dierent subtle
from under-weighting correctness for small process such &gsights on segmentation quality. While not every popular rizet

at dendritic neuron tips inDrosophilaor spine necks seen in is implemented, our framework is extensible and can support

g

mammalian tissue. customized plugins.
. We provide feedback on segmentation quality at di erent
2.4. Proofreading Effort levels of granularity: summary, body, and subvolume.

Tolerant-edit distance Kunke et al., 20)7and estimates of

focused proofreading correctness timelgza, 2016provide 3.1. Summary

another mechanism to measure segmentation quality. GooHach segmentation sample is evaluated with several scores
segmentation should require few proofreading correctiongpplied to the whole dataset. These scores do not provide insigh
(shorter edit distance) than bad segmentation. A segmentat to where errors occur but provide a simple mechanism to
that splits a neuron in half would be better than one with compare two segmentation algorithms succinctly. VI and Rand
several smaller splits, since the former would only requine o index are two such examples. Section 3.4 introduces sevanral n
merge and the later several mergers. Designing interpetabtonnectivity-based metrics.
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3.2. Body segment overlap with ground truth is likely su cient since one
We provide per segment (or body) statistics with respect tavould not expect the set of intersecting segmentSia a given
segments from both dataseSand G (G need not be ground segment inG to greatly overlap with intersection sets to other
truth). For example, this includes the per-body VI score dedne segments itz in a manner that would require joint optimization.
in Equation 2, which provides insights on where over and underThis is true by construction in the scenario where every segm
segmentation occur in the volume. We highlight a couple newn Sis either a subset of a given segménir equal to a set aj.

body metrics in section 3.4. This metric is sensitive to both false merge and false split
segmentation errors. If there is a false split, there will eefe
3.3. Subvolume matching connections compared to ground truth. If there is a

When appropriate, metrics that are computed for the wholefaise merge betweem and g, the one-to-one assignmerfts
dataset are also applied to a regular grid of subvolumes thahsures thatg(q1) 6D Ag(cp) meaning that there will be no
partition it. In this manner, the quality of segmentation cBe  matching connections involving eitheg or g.

assessed as a function of its location in the volume. Thise$ul Additionally, we introduce a thresholded variant of the
for potentially detecting regions in the dataset where astls  connectivity metric to emphasize the percentage of connectio
fails to generalize. For example, the framework runs VI orheacpaths that are found with more thak connections. We modify
subvolume. To partially disambiguate errors that originatene  Equation 3 to include this threshold and decompose into rfiecal

region but propagate to another, distant region, we apply a IOCQind precision Components as de ned below:
connected component algorithm to treat each subvolume as an

isolated test segmentatibn P [(ix(A A \ x P> Kk
The evaluation framework can run over several distinct sets recCG(§G) D @ ’Q)ZGP(] ( S(g)’_ s(9)) _ @.9) )

of comparison points. By default, segmentations are compared (@g)2c! (1X(@.9)i > k)

at the voxel level, i.e., the comparison points are all segedent (4)

voxels. If other sets ofmportant points (such as synapses)
are provided, analysis is similarly applied over these sets. Th =) ) )
evaluation provides a mechanism to compare against oneself (n (@.g)2¢ [IX(As(). As(g))\ x(@.9)i > K)
ground truth or alternative segmentation). We discuss nestr preC&(SG) D ) (s.5)2s!(X(8,9)i > K)

that enable self-evaluation fRigure 3 Comparisons to ground 3 (5)
truth can be restricted to sparsely reconstructed volumeé®Rose  The above metrics to measure the similarity between two

labeling. connectomes have advantages over using a more general graph
3.4. Metrics matching algorithm. First, by requiring an in_itigl assigent of

each segment to a groundtruth neuron (if a distinct match esjist

the CC metric aims to better constrain the problem of measuring
the similarity between two connectivity graphs, therebyidivg

the need for the computational complexity typical in general
graph matching algorithms. Second, the CC metric allows one t
3.4.1. Summary express the matching in terms of individual neurons and numbe

We propose a metric to assess the connectivity correctnes (C@f connections preserved, which is more biologically intt

of the given segmentatio8 compared to ground truthG. Ata  compared to a general edit distance score.

high level,CO(§G) de nes the percentage of connections that !N addition, to CG,, we de ne a class of statistics that analyzes
match the ground truth connections. A connection is de ned the fragmentation ofS compared toG based on the simple
as an edge between two segments (neurons) that representioﬁnma:

synapse. There can be multiple connections between the same

In the following, we highlight a few novel metrics for evding
segmentation, which is a subset of all metrics implementeteén
framework. These new metrics are divided into the categarfe
summary, per-segment, and self-comparison.

two segments. More formally: FragDjg j G (6)
P (g’g)zng(AS(g)’AS(g))\ X(d,9)i where a high score indicat.es th& (.:onsist's of many more
Cq9gG) D P x@.9)i ) segments tha. While very simple, this provides a lower-bound
(@.g)26/X(9.9)) on the number of edits (or segments to “ x”) to transforri@

. into G. In practice, we nd thatSis typically an over-segmented
where x returns the set of synapse connections between . - .

. - . subset ofs andFragprovides a reasonable edit distance estimate.
two segmentsAs(g) determines the optimal assignment of

. . We can extend-rag by extracting a subset §and G, S and
groundtruth segmentg to a segment inS (e.g., using the .
. . . N G , that represent a less-than-100% correct segmentation. More
Hungarian matching algorithm). The matching is one-to-one - ;
- . . . speci cally, we de ne a thresholded fragmentation scoreeveh
and if there is no matchx will be an empty set. In practice, an

. . . S and G are the smallest set of segments whose cumulative
algorithm that greedily nds a set of matches by using grstate _. . . .
size reaches a speci ed size threshold, where size can beemumb

Ln cases of serious false merging that results in incidental cortatween of voxels or synapses. This trivially computed measure allows

segments far away from the error site, connected components watbitbvolume ~ US 1O discern the number of segments required to produce a
containing this site will be ine ective. connectome that i¥X% complete.
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Datasets _____ GT

partition
datasetsinto
disjoint subvolumes

LELBGEE

pre-processing connected

components

[ (optional) global connected components

synapse

‘ data
construct local contingencytables
custom subvolume metrics

optional
custom workflows

collect

subvolume
stats

combine subvolume
stats

compute custom
global and per-segment

stats

FIGURE 3 | High-level parallel evaluation framework. Segmentatioma ground truth data is partitioned into several small piece Most metrics are computed in
parallel by combining local contingency tables.

3.4.2. Body 3.4.3. Self-Compare
As described in Equation 7, VI can be decomposed to providés mentioned, the ability to decompose the metrics at segment
insight about the fragmentation of a given segment. If thidevel allows one to compare two dierent segmentations.
score is applied with respect to segmemtit provides an However, it is often useful to have some information on
over-segmentation score @ If this applied with respect to segmentation reliability when no comparison volume is aldda
segmens, it provides an under-segmentation scoresofVe can  One simple statistic that can be extracted is the number of
alternatively decompose the VI calculation to report the ovesegments that are needed to reach a certain volume threshold
and under-mergers that intersect a given segment. We deéhee t (as de ned previously), which provide insights in regions that
under and over segmentation score fpas: are relatively over-segmented compared to others. Howéhisr,
X metric can be misleading since neuropil regions vary in neuro
HEYCHEI D POHEGD Y — PYH(GD gDy  Packing density.
s We introduce two metrics to better assess segmentation in
(7) the absence of ground truth: orphan segments and segmentatio
whereP is the the probability of) (or percentage of in G). This  loops. Biologically, one does not expect a neuron to be a small
metric is useful to provide a simple score for the neuron that hafragment below a certain siz€. A count of the number of
the worst segmentation. This metric works most naturallgiov segments below this threshold, provides a crude error measur
a densely labele@ since the impact of the false merging can beThis will not uncover potential under segmentation errors. To
more accurately assessed. nd potential under segmentation errors, we note that neuson
Additionally, we modi ed the metric in Equation 3 to provide should have few connections to itself (self-loops). By countin
a score for eachy the percentage of connections that arethe number of autapses or nding the segments that have a lot of
covered. We further note which bodies are the most correcautapses, we can detect potential false mergers. As segraentati
by simple overlap, which is conceptually similar to examininggets better the e ectiveness of using autapses as a proxy for
the largest error-free run lengths often used in skeletasdzl false-merge errors is limited since such connections dust ex
reconstructions. in practice, such as in th®rosophilamedulla connectome in
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Takemura et al. (2015)Therefore, the loop detector should The statistics from this computation are collected into a
be viewed as a mechanism to detect outliers due to eithele that can be easily parsed. However, the myriad of metrics
segmentation error or biological design and serve as a gotwgd e can make interpreting results overwhelming, so we designed a
point for analyzing a segmentation. Depending on the organisnsingle web page application in Javascript as showhiguire 4

and the extent of the region being evaluated, additionalriogt to improve accessibility. The web application groups similarr sta
could be considered, such as ensuring that each segment hgpes together displaying the list of summary stats and per-body
both inputs and outputs. We only formally consider orphans andoreakdowns for provided metrics. A visualization tool shows

self-loops in this work. a heat-map highlighting subvolume to subvolume variation i
_ segmentation quality. The application also allows one to compare
3.5. Architecture the summary results of two di erent segmentation evaluasion

We introduce an Apache Spark-based system for comparing twdhe web page application is available at https://github.com/
large segmentations at scale. The implementation is builttbiee  janelia- yem/SegmentationEvaluationConsole.
framework described ifPlaza and Berg (201@nd is available
at https://github.com/janelia- yem/DVIDSparkServices #® 4 EXPERIMENTS
EvaluateSeg work ow . The segmentation and synapse
data is stored using DVIDKatz and Plaza, 20).8In general, We demonstrate our evaluation framework on two large, public
segmentation compresses to a small fraction of the origihl E datasets: a portion of thBrosophilamedulla Takemura et al.,
data size and we do not observe fetching segmentation to B®15 and mushroom body Takemura et al., 20)7 The
a bottleneck in the analysis work ow. However, evaluating o0 medulla dataset segmentation and grayscale can be accéssed a
datasets that are signi cantly larger than the 1 gigavoxghsets http://emdata.janelia.org/medulla7column, and the musim
common in SNEMI and CREMI necessitates a framework thapody dataset can be accessed at http://emdata.janelia.org/
can compute metrics on a large-memory, multi-core, clustemushroombody. Both datasets are around 20 Gigavoxels én siz
environment. and contain over 100,000 synaptic connections. Since neither
An overview of the software work ow is shown ifigure 3. dataset is 100 percent accurate, we Iter small orphan segsnent
We partition the dataset into disjoint, equal-size subvotim in the ground truth using options in the metric tool and we
for a region of interest (ROI). A local connected componentdilate ground truth neuron boundaries with a radius of two
algorithm is computed for each subvolume and other lters arepixels. We compare these ground truths to initial segmentatio
applied, such as (1) dilating groundtruth segment boundariegenerated using a variant of the algorithm developedimag
to reduce the impact of small variations in the exact boundaryt al. (2015f A smaller portion of the optic lobe segmentation
between segmentation and (2) Itering out neurons that act n is also compared against a more recent segmentation algorith
groundtruthed for sparse evaluation. If the ROI being analyzedrunke et al., 2098 The purpose of the following experiments
is part of a larger segmentation, one can run a global conudectés to demonstrate the breadth of provided metrics, as well as,
component algorithm which ensures that segments that mergeome insights that might impact how one analyzes segmentatio
outside of the ROI are treated as separate objects within thesults.
ROI. The global connected component algorithm is computed
by examining the boundaries between all subvolumes in mrall4.1. Summary Results
and determining which components have a connecting pathwayhe evaluation service produced a series of summary stats. A
through the ROI. subset of these are depictedfigure 5 The stats are split into
For each subvolume, we compute a contingency table betweémo broad categories: voxel-based and synapse-based. Xéle vo
segments irs (when not doing a self-comparison) ai@l(where  based stats provide volume-relevant information. The syeaps
G is treated like ground truth unless otherwise speci ed). Thebased stats emphasize only the exemplar points that de ne each
overlaps computed betweé&wand G allow many of the metrics input and output for a synapse.
to be computed per subvolume and then combined into global In both the mushroom body and medulla, we notice that
summary and body stats. This is done over the set of voxels artdere are very few false merge mistakes indicatednieyge
optionally any available synapse (or other point) data. In the/I. Notably, thesplit VI is much higher when focusing
current work ow, one of the largest, non-parallelized comput near synaptic regions. The comparably higher values in the
components is this nal grouping of results. Future work to mushroom body highlight both the conservative segmentation
further reduce these non-parallel points is possible but notised and the presence of very small, hard-to-segment processes
currently necessary for the experimented data sizes. The thresholded segment count shows that to examine 50 percen
The framework allows additional plugins that conform to the of the synaptic points, a relatively small number of segmeaésin
API to be added without changing the surrounding framework.to be examined compared to achieving 90 percent coverage. For
In circumstances where this partitioning and combination
strategy will not solve a given metric algorithm, it is possib 2We only have an archival version of mushroom body segmentaticilanle
to de ne a completely custom work ow based on the input \3/vhereafew.caFastrophicfals'e merger;were already e!iminateq. .

. . In Drosophilatissue, synaptic connections are polyadic meaning multiple post-
segmentation. The current fr?‘mework does not |mplement ERISynaptic targets for one pre-synaptic region. For this analysish gore and
or other skeleton-based metrics, but our ecosystem shalitita  ost-synaptic site represented by a single exemplar point is considereme
for its straightforward inclusion. connection endpoint.
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FIGURE 4 | Evaluation web application. Web application that displaysesults and tools to visualize segmentation errors.

FIGURE 5 | Select metrics for the medulla and mushroom body dataset. Té
data shows voxel-based metrics like VI and less-common, buimore useful
synapse-based metrics. The histogram metric shows the manynore
segments are required to reach X percent of the total volume.

both datasets, the connectivity correctness de ned by Hgnoa

The summary results also report tieorst body VI score
and the segment ID number corresponding to this body. We
show one example from the medullakigure 6. The evaluation
service reports the biggest overlapping segments. Notice that
the top 10 biggest fragments only cover a small portion of the
complex neuron arbor.

We compare the baseline segmentation with a newer
segmentation approach ifunke et al. (2018jor a subset of
the medulla dataset iRigure 7. As expected;unke et al. (2018)
achieves a better score across all reported metrics. Whde th
VI scores indicate signi cant improvement, the fragmendeti
thresholds and synapse connectivity clearly show the adgesta
for the newer segmentation. There are far fewer segments to
consider to reach di erent levels of completeness as seEreig
thres . Perhaps more signi cant is the much greater percentage
of neuron connections found with the new segmentation. T
metrics are sensitive to large neurons being correct intimidto
the small synapse processes being correctly segmented. Metric
less sensitive to this level of correctness, like the VI nersb
reported, might, in e ect, over-rate the quality of inferior
segmentation.

4.2. Unsupervised Evaluation

The previous results show comparisons between test
segmentations and ground truth. As previously explained,
the metric service is useful for comparing two segmentations
directly even if one is not ground truth since there are marats
that highlight di erences useful for debugging. For instance
while the VI between two test segmentations fails to suggest
which one is better, it does indicate the magnitude of the
di erences, can indicate whether one segmentation is over-

3 is very low, in particular in the mushroom body where segmented compared to the other, and gives a list of bodies
the neurites are very small. This indicates that the autaenat that di er the most, which can then be manually inspected to
segmentation is far from being useful for biological analysisletermine segmentation errors. But we also introduced seiis

without proofreading.

do not require a comparison volume. We evaluated both medulla
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FIGURE 6 | Segmentation for worst neuron in medulla. The neuron on theft segmented poorly according to the body-based synaptic Vmetric. The top 10 largest
pieces from the example segmentation are shown on the rightrad make up only a small portion of the neuron's complex arbor.

and mushroom body in this way. IRigure 8 we see a heatmap

highlighting the small orphan segmentation density over the

subvolumes that partition both datasets. We de ne orphan a

any segment with fewer than 10 synaptic endpoints. Visually,
the diagram shows more errors in the alpha 3 lobe and proximal
region of the mushroom body and medulla respectively. If we

evaluate these regions separately against the ground tweh,

observe that the supervised VI scores are consistent with the

unsupervised visualization.
We were also able to nd one neuron in the medulla datase

U

that had many autapses, which suggests a potential false merge

This worst neuron in the un-supervised analysis corresponds {
the fourth worst body in the supervised analysis. This sugges
that the autapse count can reveal false merge errors.

4.3. Performance and Scaling
These datasets are much larger than previous challengeetiatas

but are still much smaller than the tera to peta-scale dasaset

that are being produced. One obvious solution to handling
larger datasets is to run the framework on a larger comput
cluster.

We show the scalability of our framework by evaluating our
two sample datasets with varying numbers of cores. The cha
in Figure 9 shows a breakdown of runtime between the top
parallelizable portion of the code and the bottom, sequentia
small overhead. As the number of cores increase we observe
speedup that is slightly less than linear to the number of ddde
cores (indicated by the trendline). We observe that the setjal
overhead indicated by the lowest two section of each bar
roughly constant and a small portion of this time (the lowest
section) could potentially be partially parallelized with dte

— O

1]

ts

| FIGURE 7 | Comparing two segmentations from a subset of the medulla
dataset. Unsurprisingly, the more recent segmentation fro Funke et al. (2018)
2 Gerforms better on all metrics (indicated by the highlightiboxes). In
particular, Funke et al. (2018)achieves much higherCCscores nding 33
percent of all neuron connections with weight greater than oequal to ten
gSynapses, compared to only 9 percent for the baseline.

optimizations. megavoxels of data per second, or 1 TB in a little over 4.5 h.
The results in the table suggest that 512 cores can roughiote that the comparison framework requires two datasets to
process around 20 gigavoxels in around 5 min, or over 6@e processed and this analysis includes the global connected
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FIGURE 8 | Orphan density map. For both the medulla and mushroom body saple, the orphan count density (an unsupervised statistigppears greater (darker) in
regions with worse synaptic VI compared to the other regions

FIGURE 9 | Runtime of metric computation at different levels of paralization. The line represents the optimal speedup for ineasing the number of cores from the
baseline 64 core implementation. The non-parallelized ptof the framework represents the computation performed saly on the driver node and is indicated by the
bottom two sections of each bar. This non-parallel time is aund 129 and 187 s from the mushroom body and medulla respectiely.

components analysis, which is not necessary if segmentationrepresentation is available in DVID and does not need to be
completely contained within the de ned region. Also, noteath computed.)Figure 10shows both datasets at original resolution
medulla and mushroom body ROIs do not perfectly intersect thend downsampled by a factor of 2, 4, and 8 along each axis. One
subvolumes, so more data is actually fetched to retrieveriiee ~ might expect that downsampling the dataset considerably would
20 gigavoxel ROI. greatly change the statistics particularly related to fragtation

In practice, we expect additional bottlenecks if there arelue to presumably small synaptic processes. Perhaps surprisingly
a lot of small segment fragments which could lead to more few key metrics have a consistent value when downsampling
computation in the sequential parts of the code and in shuing by 4x suggesting that signi cant computation reduction is
data around on the network. Future work should aim to improvepossible since full resolution is unnecessary. For example, the
the performance when dealing with a large number of smalfragmentation scores in these datasets, which provide ahroug
fragments since its relevance to analysis is mostly in tgeste  estimate of the number of merge edits required, is similar
and not at the individual fragment level. We do not observe(within 20 percent) to full resolution. Once the resolutiotags
slowness fetching the segmentation data, but the data coulgetting worse than 40x40x40nm, there is considerable impact
always be partitioned between multiple serversto allow fghbir  on the synaptic VI and the number of thresholded segments.
cumulative read bandwidth. However, the signi cant di erences reported between the two

To further improve performance, we consider downsamplingsegmentations inFigure 7 are preserved even at the lowest
the segmentation. (A  multi-resolution  segmentationresolution tested.
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FIGURE 10 | Stability of various metrics when downsampling the datasetWhen the voxel resolution is higher than 40 40 40 nm, the results are fairly consistent.
When the voxel resolution is too low, several synapses on snilar neurites are missed. The 50, 75, and 90% connections nuiver refers to the number of segments
required to cover the speci ed percentage of connection endmints.

5. CONCLUSIONS segments is a guide for the number of mergers required.
To assess whether the segmentation can be used in a

In this work, we demonstrate a metric evaluation frameworkpiologically meaningful way, our new connectivity metric
that allows one to analyze segmentation quality on largest#$a will provide the best insight on the quality of the resulting
This work necessitated diverse contributions: new metricgonnectome. For assessing general neuron shape correctness
that provide novel insights in large connectomes, a softwargrRL (which we do not currently implement) or VI can be
framework to process large datasets, and visualizationvaodt ysed.
to enable intuitive consumption of the results. All of these e expect additional improvement is needed to further
contributions, in synergy, were critical to enable segraéoh  parallelize sequential portions of the framework. Also, we
evaluation in practical settings. believe that additional metrics should be invented that jlev

We implemented multiple metrics to provide dierent jnteresting insights for evaluating the connectivity praoed
insights on segmentation. In particular, we introduced newfrom the segmentation. We have introduced a few metrics to
connectivity-based metrics that clearly show that sigant this end in this paper. We advocate the inclusion of more
improvements are still needed to produce fully-automaticmetrics in evaluation to better understand the failure meaddé
reconstructions, which seem to correctly re ect our obsgions  segmentation, which will hopefully lead to the implementation
in practice. Furthermore, we note that for purposes ofof better algorithms.
comparison, it is possible to downsample the data signi cantly
without signi cant impact on important metrics. Finally, we AUTHOR CONTRIBUTIONS
introduced the possibility of comparing two segmentations
without ground truth, where evaluation can be done by mahual SP devised and implemented the core methodology, JF
inspecting the largest segmentation dierences revealed hybntributed some image segmentation and metric discussion
decomposing the metrics in dierent ways and providing
useful visualizations, such as showing segmentation gualifFyNDING
variation as a function of region location. We believe tHaist
work should help accelerate advances in image segmentatiqijs study was funded and supported by Howard Hughes
algorithm development and therefore reduce bottleneckaigé Medical Institute.
connectomic reconstructions.

The diverse set of statistics produced by our work ow couldACKNOWLEDGMENTS
make the task of comparing segmentations overwhelming, as
one desires to know which is the best metric. This paper haStuart Berg helped with the experimental setup and was
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it depends on the application. If one is concerned aboutcosystem, where our metric service was implemented. Bill
optimizing proofreading performance, edit distance measureKatz provided support for the Big Data infrastructure through
make the most sense. However, this is complicated because software DVID. Alex Weston helped in developing the web
edit distance costs depend on the proofreading methodologwpplication used for visualization. Lowell Umayam helped to
The fragmentation scores provide a very intuitive, parametercollect data necessary for experimental analysis. We would
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