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Emerging evidence suggests that the immune and nervous sysis are in close
interaction in health and disease conditions. Protein agggation and proteostasis
dysfunction at the level of the endoplasmic reticulum (ER)re central contributors
to neurodegenerative diseases. The unfolded protein respwse (UPR) is the main
transduction pathway that maintains protein homeostasis nder conditions of protein
misfolding and aggregation. Brain in ammation often coexsts with the degenerative
process in different brain diseases. Interestingly, besib its well-described role in
neuronal tness, the UPR has also emerged as a key regulator foontogeny and
function of several immune cell types. Nevertheless, the caribution of the UPR to brain
in ammation initiated by immune cells remains largely unetored. In this review, we
provide a perspective on the potential role of ER stress sigiing in brain-associated
immune cells and the possible implications to neuroin ammaon and development of
neurodegenerative diseases.

Keywords: UPR, neurodegeneration, immune system, in ammation, protein protein misfolding diseases, ER

stress, immune cells, misfolded proteins

INTRODUCTION

The Unfolded Protein Response (UPR)

Proteostasis encompasses the dynamic interrelation of psesegoverning generation and
localization of functional proteinslj. Physiological and pathological factors can impair the badan
between protein load and protein processing, resulting intouatulation of improperly folded
proteins @, 3). Abnormal protein aggregation is a key feature of sevenatogegenerative diseases,
including Alzheimer's disease (AD), Parkinson's dise&§2)(amyotrophic lateral sclerosis (ALS),
Huntington's disease (HD) and prion-related disorders amgshothers, collectively classi ed as
protein misfolding diseases (PMDs), 6).

Protein misfolding is sensed by dedicated stress-responsewags that include the
cytoplasmic heat shock response (HSR) and the unfolded pro&spanse originated in the
mitochondria and in the endoplasmic reticulum (ER})( Activation of these intracellular
mechanisms by the presence of misfolded proteins leads to ewakdhig the protein
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folding load and resolving proteotoxic stres$, (). In this  neurotrophic factor (BDNF), XBP1ls regulates neuronal
context, the ER is a central node of the proteostasis netwonilasticity at a structural, molecular and behavioral level
controlling folding, processing and tra cking of up to a thitof (18 24-27). Moreover, postmortem tissue analyses revealed
the protein load in the cell). The UPR originated in the ER that ER stress markers often co-localize with cells comgini
(for now referred as “UPR”) is a main intracellular mechanismprotein aggregates in brain of patients aected with PMDs
responsible to safeguard the delity of the cellular proteomd a (4, 5, 22, 28). In AD, the expression of Grp78/BiP, PDI and
for this reason, it will be the main focus of the current ravie HRDL1 is increased in the hippocampus and temporal cortex;
(6, 7). The UPR is an adaptive reaction controlled by three ERand the phosphorylated forms of PERK, IRE&nd elF2a
located signal transducers: inositol requiring enzymeRE1) are found in AD neurons and substantia nigra of PD patients
a andb, protein kinase R-like ER kinase (PERK) and activating22, 29, 30). Phosphorylated IREL levels directly correlate
transcription factor 6 (ATF6) alpha and betd) (Figure ). Upon  with the degree of histopathological changes, where most
activation, these signal transducers activate gene expmesscells showing neuro brillary tangles exhibit signs of ER
programs through specic downstream transcription factors,stress §1). Furthermore, ER stress signs are also observed
restoring proteostasis and increasing ER and Golgi biogenesn di erent brain areas in PD patients, a phenomenon also
(6, 8). IREa cleaves the mRNA encoding for the X-box binding observed in incidental cases of subjects who died without PD
protein (XBP1), removing a 26 nucleotide intron, which folledv  symptoms but presented-synuclein inclusions in the brain
by RTCB (RNA 932Cyclic Phosphate and®H ligase) ligation  (32). Moreover, components of all UPR signaling branches are
changes the coding reading frame, prompting the translatibn coverexpressed in spinal cord samples of patients with familial
a protein with transcription factor activity termed XBP1s (XB  and sporadic forms of ALS3@), as well as in striatum, parietal
spliced) (). XBP1s controls the expression of genes involved icortex and caudate putamen of HD and Prion disease patients
ER-associated degradation (ERAD), lipid biosynthesiglirigl (22, 34-39).
and quality control §, 10). IREJa RNase also directly degrades In support of a dual role of UPR in controlling cell
diverse mRNAs and microRNAs through a process termedate in neurodegenerative diseases, genetic disruption and
“Regulated IRE1-Dependent Decay” (RIDD)1), originally —pharmacological intervention modulating ER stress sigmgli
proposed to contribute to alleviating the detrimental e ects o revealed that depending on disease type and the UPR component
ER stress by reducing the protein folding lodd), in additionto  targeted, distinct and even opposite e ects are observed
regulating in ammation and apoptosisL@). Activation of PERK [reviewed in @1, 40)]. Conditional deletion of XBP1 in the
mediates protein translation shutdown via phosphorylation ofcentral nervous system (CNS) provides protective e ects tgrou
eukaryotic initiation factor a (P-elF2), which also favors upregulation of autophagy levels, improving motor performance
selective translation of certain mRNAs encoding proteinsn ALS, PD and Huntington's disease modeis,(37, 41), whereas
involved in cell survival, ER homeostasis and anti-oxidanXBP1 de ciency does not a ect Prion pathogenesivivo (42).
responses, such as ATF4 and nuclear erythroid related f&ctorAblation of IREX signaling in neurons decreases astrogliosis and
(NRF2) 6, 14). ATF6, translocates to the Golgi apparatus where iamyloid b accumulation in an animal model of AD, correlating
is cleaved by site-1 and site-2 proteases, releasing afiigist  with improved neuronal function §1). Conversely, therapeutic
factor that directs the expression of genes encoding ERADene delivery of active UPR components or ER chaperones to
components, ER chaperones and molecules involved in lipidpeci c brain areas has shown outstanding e ects in di erent
biogenesis 15, 16). XBP1s and ATF6 can also heterodimerizeanimal models of PMDs43). Di erent studies have shown that
to control selective gene expression patter®)s Moreover, the ectopic delivery of XBP1s into the hippocampus restored synaptic
activity (signaling amplitude and kinetics) of the three URRSss  plasticity in an AD model 27), promoted axonal regeneration
sensors is controlled by several cofactors through thenasigegy  (44), reduced mutant huntingtin aggregatiod¥) and protected
of distinct platforms termed the UPRosomé&7. Binding of dopaminergic neurons against PD-inducing neurotoxihg ¢6).
adapter proteins to the IRBLUPRosome also mediates the Targeting the PERK pathway also provides contradicting
crosstalk with other stress pathways including MAP kinaseeesults. PERK signaling supports oligodendrocyte survival in
and NFkB (6). Thus, the UPR integrates information regarding animal models of multiple sclerosis (MS)7 and enhancement
intensity and duration of the stress stimuli toward celdabntrol  of elF2a phosphorylation is protective in ALS and other models
in cells su ering from ER stress. (32, 48), whilst ATF4 de ciency has a detrimental e ect in spinal
cord injury models, diminishing locomotor recovery follavg

. . . . lesion, also impacting oligodendrocyte survivéd)( Conditional
UPR in Brain Homeostasis And Protein deletion of PERK in the brain however, improved cognition
Misfolding Diseases in an AD model, correlating with decreased amyloidogenesis
ER stress signaling has a physiological as well as pathdlogiead restoration of normal expression of plasticity-related
role in brain function and development 16-20). In  proteins 60, 51). Similarly, genetic targeting of CHOP has
neurodegeneration, the UPR in uences several aspects imgud neuroprotective e ects in a PD model, and ATF4 ablation
cell survival, synaptic plasticity, axonal regeneration,tgiro protects against ALS5@, 53). Consistent with this, sustained
aggregation and control of the secretory pathwa}i{3. PERK signaling has been shown to enhance neurodegeneration
By mediating synthesis and secretion of the brain-derivediue to acute repression of synaptic proteins, resulting in
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FIGURE 1 | Signaling pathways of the unfolded protein response. Noxigs stimuli in cells may induce endoplasmic reticulum (ER)rsss and trigger an adaptive
response known as the unfolded protein response (UPR), whiicis controlled by three main ER-resident sensors: IRE] PERK and ATF6. Upon ER stress, IREd
autophosphorylates, leading to the activation of its RNasdomain and the processing of the mRNA encoding for XBP1s, a é&nscriptional factor that upregulates
genes involved in protein folding and quality control, in atition to regulating ER/Golgi biogenesis and ER-mediated dgadation (ERAD). Additionally, IREELRNase
also degrades a subset of speci c RNAs and microRNAs, a proces termed Regulated IREA-Dependent Decay (RIDD). The second ER sensor, PERK,
phosphorylates the translation of the eukaryotic initiain factor elF2a, decreasing the synthesis of proteins and the overload of efolded proteins at the ER. PERK
phosphorylation also leads to the speci c translation of AT, a transcription factor that promotes the expression of gaes related to amino acid metabolism,
anti-oxidant response, autophagy and apoptosis. The thirdJPR sensor, ATF6, is a type Il ER transmembrane protein that eades a bZIP transcriptional factor in its
cytosolic domain. Following ER stress, ATF6 translocate®tthe Golgi apparatus where it is processed, releasing a tratription factor which directs the expression of
genes encoding ER chaperones, ERAD components and molecugeinvolved in lipid biogenesis.

abnormal neuronal function, as demonstrated through PERKf peripheral immune cells into the parenchyma, including
inhibitors in Prion disease3), frontotemporal dementia48)  granulocytes, monocytes and, in pathologies like multiple
and PD models 2. ATF6, on the other hand, protected sclerosis, lymphocytes6@-63). Interestingly, the UPR has
dopaminergic neurons in another PD model, by upregulatingshown to regulate in ammation in peripheral tissues, emeggin
ER chaperones and ERAD componen’$, (56). Overall, UPR as an interesting candidate for targeting CNS-associated
mediators have a pivotal role in the progression of various PMDsn ammation in a eld that remains largely unexplored. Thus,
nurturing the hypothesis that UPR components could be used ags addition to the well-described role of the UPR in neuronal

therapeutic targets in neurodegenerati@i,(22, 43). tness, it is also plausible that UPR activation in CNS-
) ] _ associated immune cells could contribute to modulating PMD
UPR in Neuroin ammation development.

Immune surveillance is an active process in the brain. The One hallmark of neuroin ammation is the presence of tumor
mammalian CNS harbors several subtypes of leukocytes, whidecrosis factor (TNF), interleukin (IL)4, and IL-6 in brain,
display physiological roles related to tissue homeostasis arcerebrospinal uid (CSF) and serum of patients with AD, PD
regulation of the in ammatory responses{, 58). However, if and HD (63-65. Production of pro-in ammatory cytokines
unrestrained, in ammation can have detrimental e ects ineth across tissues depends on activation of innate immune sensors
CNS, contributing to the type of tissue malfunction that prées  (known as pattern recognition receptors, PRRs) specialized in
pathological processes9). During neuroin ammation, the the recognition of microbes and stress signals®)( In the
immune response in the CNS is drastically altered, and ibrain, PRRs can promote pro-in ammatory cytokine production

is typied by activation of resident microglia and invasion upon recognition of “neurodegeneration associated mokecul
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patterns” (NAMPs) that consists in CNS-speci ¢ danger signalgfter injury, involving increased expression of the chemeki
such as extracellular protein aggregates, molecules exjpysedMCP-1 and macrophage in ltration, essential to remove myelin
dying neurons, lipid degradation byproducts and myelin depri debris and allow axonal regeneratiod4f. PERK expression
among others §6). The most relevant PRRs associated to theorrelates with astroglial activation and production of 6Land
development of PMDs are TLRs (Toll-like Receptors) and NLRhe chemokines CCL2 and CCL20, which promotes microglial
(Nucleotide-binding domain, leucine-rich repeat contaig) activation (71, 86). In spinal cord injury, ATF4 de ciency reduced
inammasomes ¢3). These receptors are broadly expressedhicroglial activation, which is associated with alterectls of IL-

in CNS-myeloid cells including microglia, macrophages and, TNFa, and IL-1b (44-49). Similarly, ATF6 de ciency in the

in Itrating cells such as monocytes and dendritic cells (§C context of PD induced by neurotoxins leads to suppression of
(63 67). Interestingly, PRR-signaling and the UPR convergastroglial activation and decreased production of BDNF amitt a

on several levels for ampli cation of in ammatory responsesoxidative genes, such as heme oxygenase-1 (HO-1) and5&LT (
via activation of NF-kB, IRF-3, JNK and JAK/STAT modulesTo sum up, ER stress and in ammation are both prevalent in
(68-71). Signaling via TLR2 and TLR4 induces ER stresmany neurodegenerative diseases and NAMPs can alter neuronal
in peripheral macrophages and activates IREInd XBP1s, function as well as promote in ammation through the activati
which in turn is required to increase production of IL-6 and of innate defense mechanisms of immune cells in the CNS, which
TNF, thus connecting activation of the IREXBP1s branch can be modulated by UPR activity and vice versa.

of the UPR with TLR-dependent pro-in ammatory programs

(69. In the CNS, misfoldeda-synuclein and Fibrillar A, Immune Targets of the UPR in the Central
characteristic in patients with PD and AD, can be sensef\ervous System

by TLR1/2 and TLR4, further promoting inammation6®)  Ajthough it is clear that inammation contributes to
(Figure 2). Moreover, injection of lipopolysaccharide (LPS), aMneurodegeneration 6(1), there has been limited knowledge
agonist of TLR4, into theubstantia nigranduces dopaminergic  apout the homeostasis of immune cells residing in the CNS.
neuronal death resembling animal PD model§)( LPS-induced Recent technological advances in single cell analysis have
neurotoxicity and LPS-derived inducible nitric oxide skase provided insights into the identi cation and characteriit
(INOS) expression was shown to be mediated by the UPR relatedl the vast diversity of immune cell lineages present in the
chaperone BiP/Grp78 and NF-kB4, 75). CorrespondinglyTIr4  neajthy and pathogenic brainé{, 62). The potential role of

null mice are protected from PD in a mouse model inducedihe UPR in immune cell lineages in the CNS s illustrated in
with neurotoxins (3, 76). Overall, TLR pathways activating Figyre 2

the IREBR-XBP1s axis are relevant drivers of PMDs, although

the precise contribution of this UPR branch to TLR-inducedMicroglia

neuroin ammation remains to be formally demonstrated. Microglia is the CNS-resident macrophage and most prominent
Another PRR relevantin neurodegeneration modulated by thényeloid cell in the brain §7). Microglia ne-tunes the

UPR, is the NLRP3 (NLR Family Pyrin Domain-Containing-3) development of neuronal circuits, neurogenesis and synaptic

inammasome, a multimeric protein complex composed of plasticity through the production of neurotrophic factor§g

the NLRP3 sensor, the adaptor ASC and activated caspasegl). Given that several PRRs that signal via IRBhd XBP1s

which mediates the proteolytic activation of llbland IL-18  such as TLR1/2 and TLR4, the NLRP3 in ammasome and

and promotes a type of inammatory cell death referred tonucleic acid sensors are expressed in this cell lineage, it is

as pyroptosis €3). In the brain, the NLRP3 in ammasome is plausible that microglial XBP1s activation may contribute t

activated by amyloicb and a-synuclein aggregates$3). The  the initiation of neuroin ammation. The ATF6 branch has also

relevance of this protein complex is underscored by studiéls wi been associated with microglial activation and productidn o

NIrp3 de cient mice carrying mutations associated with familiarin ammatory mediators via NF-kB40). Furthermore, although

AD, which are protected from the diseas&). On a mechanistic long conceived as a homogeneous cell type that becomes

level, the interplay between the UPR and in ammasomedestructive in neurodegeneratio), comprehensive single cell

activation has been connected to IREgignaling (8), where RNA analysis has demonstrated that a subset known as “disease-

the RNase domain of IRBlincreases the expression of TXNIP, associated microglia’ plays an important role in several CNS

an activator of the NLRP3 in ammasome, through degradationdiseases including AD, ALS, MS and also in agifg, @1

of the TXNIP-destabilizing microRNA miR-177§) (Figure 2.  93). Thus, it is vital to elucidate whether protective micragli

Considering the relevance of the NLRP3 inammasome inpopulations engage the UPR upon innate recognition of NAMPs,

AD progression and its dependence on IREéndonuclease, and whether microglial UPR is an intrinsic mechanism of segsin

it is tempting to speculate that IRElactivation in CNS- danger in the CNS.

resident myeloid cells may contribute to the development of

AD (79-84). Additionally, the B-class scavenger receptor CD36Border Associated Macrophages

upon recognition of amyloidb brils, forms a complex with Border associated macrophages (BAMs) are a recently

TLR4/6, which triggers activation of the NLRP3 in ammasome characterized population distinct from microglia and from

promoting cytokine and ROS productio®{, 85). in ltrating monocyte-derived macrophages, which display fig
On the other hand, in models of peripheral nerve damageheterogeneity and are classi ed per phenotype, development

XBP1 expression has been shown to enhance nerve regeneratard location in the CNS g2, 94). Single cell analysis, fate
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FIGURE 2 | Activation of the unfolded protein response in CNS-residgimmune cells may contribute to neuroin ammation and PMDs deelopment. (A) Protein
aggregates can promote in ammation via triggering of innateeceptors and activation of the UPR. Neurodegeneration asiated molecular patterns (NAMPS) such
as protein aggregates are recognized by pattern recognitio receptors (TLRs and PRRs) present on immune cells and sightirough ROS production, which in turn
could activate the IRER/XBP1s axis for co-transcriptional activation of IL-6, TNF ahlL-1b. On the other hand, through RIDD, IREA induces degradation of the
TXNIP-destabilizing microRNA mir-17, allowing activatioof the NLRP3 in ammasome and processing of IL-b into its active form.(B) Most of the immune cell

lineages residing in the healthy and pathogenic brain are knvn targets of the UPR in peripheral tissues. Isteady state , the most abundant immune
(Continued)
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FIGURE 2 | cells in the brain are microglia, which along with border asxiated macrophages (“BAMs”) and dendritic cells act as setmels, sampling the environment
and clearing cell debris, maintaining CNS homeostasis. Expt for dendritic cells and macrophages, which exhibit IREA/XBP1s activation, little is known about UPR
activation in additional myeloid subsets, although micrdga, macrophages and monocytes could potentially activatéhis axis downstream of PRR signaling. While ver
rare, B and T cells have been identi ed in the steady state brai and activation of IREB&/XBP1s has been proposed to be critical for their differenttéon and activation.
ATF6 axis is also necessary for B cell development and actitian whilst absence of PERK contributes to plasma cell diffentiation and immunoglobulin synthesis.
Basal activation of UPR in neurons is still a matter of debate literature as the function of IREA and PERK pathways has just begun to be understood in the contet
of normal neuronal physiology{2). Inaging and neurodegeneration, the number of immune cells within the brain increases, due thigher cell activation as well as
blood brain barrier in Itrates. Extracellular protein aggmation promotes activation of immune cells via PRRs, in adtibon to inducing ER stress and activation of the
UPR, mainly the IRE&/XBP1s axis. Microglia and dendritic cells become more actated, with higher production of pro-in ammatory and oxidatve mediators and loss
of their protein clearance function. This is further aggrated by antibodies against CNS-derived antigens by B cellsaumulated in the CSF, mediated by the
activation of IRE® and ATF6 signaling. Activation of in Itrating T cells reaate to a-synuclein, amyloidb and myelin constituents further amplify in ammation, restihg
in more protein aggregation and neuronal loss. In neurons, URtriggering may elicit both, adaptive or neurodegenerativresponses, since all three UPR pathways are
engaged in brain diseases and have been found to be altered ding the normal aging process. Different inducers afieuroin ammation , have shown to engage the
UPR in neurons and promote a greater in ammatory response du¢o immune cell in Itration, mainly B and T cells. The cDC1 sulet of dendritic cells could activate
IRE1a for cross presentation of antigens to in Itrating CD§ T cells, and cDC2 as well as monocyte-derived DCs may set an iammatory environment through
cytokine secretion and activation of in Itrating CD# T cells. Macrophages and microglia also become highly actated and could tune IRE-/XBP1s upon recognition
of NAMPs. In ammatory mediators such as cytokines prime axonkdestruction and neuronal loss. It remains to be addressed wather UPR triggering in these cells
corresponds to a homeostatic (adaptive) response, or a terinal (neurodegenerative) response due to sustained unreb@d ER stress.

mapping and parabiosis experiments revealed that thedeymphocytes

cells express distinct surface markers and dierentiallyT and B cells survey the steady-state CNS exerting a
populate the pia mater, perivascular space, choroid plexuseuroprotective role, but can become pathogenic under
and dura mater §2, 94). Most of these subsets sample theunresolved in ammation §7, 103-106. T cell numbers have
environment, clear apoptotic cells and amylold plaques, been found to be increased in AD, PD, ALS and MS, and to
and help maintaining CNS homeostasis in steady state. Ugontribute both to in ammation and neuronal dysfunction
to date, there is no evidence available on the extent of UPRs well as to deferring in ammatory responses leading to
activation in BAMs. However, it has been described that spleninerodegeneration 107, 108. The immune response elicited
F4/80 macrophages display basal levels of &RBlllase activity by these cells in the CNS depends on their functional
and upon bacterial infection, peripheral macrophages inducehenotype, although observations regarding cell number
XBP1s for enhancing cytokine production in a mechanismand T cell subset involved varies between dierent disease
mediated by TLRs and reactive oxygen specieg Q5. types and model of study1(08113. UPR activation in T
However, whether CNS macrophages show a functionalells is not completely elucidated, however the IRXBP1s
analogy to peripheral macrophages and also engage theatREbranch has shown to regulate cell di erentiation and cytokine
XBP1s branch upon recognition of NAMPs5§) remains production in CDE and CD4 T cells under infection and

undetermined. chronic ER stress 1(14-119. During neuroin ammation
and aging, B cells play a pathogenic role by producing
Dendritic Cells pro-in ammatory cytokines, promoting e ector T cells and

DCs are major APCs in the CNS, acting as sentinels betwe@gtivating macrophages via Fc receptoss, (118-123. B cell
brain and periphery §7, 96-99). Steady-state CNS is populateddevelopment, activation and di erentiation is criticallygelated

by most DC subtypes, including plasmacytoid DCs (pDCs)py IRER-XBP1s and ATF6, whilst absence of PERK favors
and conventional DC type 1 (cDC1) and type 2 (cDC8p)( plasma cell dierentiation and immunoglobulin synthesis
These cells locate in the choroid plexus, pia mater and durfl24-129.

mater, but not in the perivascular space, suggesting thaethes Overall, as proposed orFigure2 activation of UPR
compartments may serve as entry sites for MHC-dependent Fomponents could occur in CNS-residing and in ltrating
cells 62, 96, 97). Importantly, DCs are key targets of the UPR.immune cells upon PRR recognition of protein aggregates,
XBP1s is constitutively expressed by DCs and high XBP1s isoa due to noxious threats. The IRBIXBP1ls axis has a
hallmark of cDC1s across tissues, although the CNS remains key role in immune cell development from hematopoietic
be examined €5, 10Q 101). Furthermore, cDC1s activate the progenitors, cell survival and e ector function, and it could
IREla -XBP1 axis for development, survival in mucosal tissuebe activated by NAMPs through PRR signaling in microglia,
and cross-presentation of antigens to CD8 cells, which may macrophages or dendritic cells, inducing cell maturation and
be of relevance in infections with neurotropic virus€s 109.  activation €6, 68 88 97). The PERK pathway in contrast,
In addition, cDC1s are highly sensitive to perturbations iBXL is mostly deactivated to allow immune cells to fulll their
signaling and counter activate RIDD upon XBP1 [085, (L07).  function under di erent in ammatory settings without going
The implication of RIDD and XBP1s signaling in DC subtypesthrough apoptosis. In AD or PD however, sustained stimulation
in the CNS has not been explored so far but relevant aspedtéggered by amyloidb or a-synuclein aggregates could lead
downstream of XBP1s and RIDD may encompass cytokint® a dysfunctional activated phenotype associated to detecti
production upon recognition of protein aggregates, cell sumli clearance and increased production of in ammatory mediator
and cross-presentation of antigens to CD8 cells. This process could, in turn, attract more immune cells that
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