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This paper presents results of the potential thermal enhancement in building walls derived
from using phase change materials (PCMs). Typical North American construction, namely,
frame walls out�tted with hydrated-salt-based PCM with a melting temperature of 29� C
were evaluated in well-controlled test houses under full weather conditions. It was found
that PCMs produced reductions in energy gains during summer. The reductions were
assessed via total heat transfer and peak heat transfer. Fora 10 percentage by weight
(wt%) PCM concentration, the largest peak �ux reduction of 31.25% was observed when
the PCM was integrated within a north-facing wall. For a 20 wt% PCM concentration,
the largest peak �ux reduction was 25.54% when the PCM pipes was installed on an
east-facing wall. Doubling the amount of PCM did not produceimprovement on heat
�ux reduction except for the east-facing wall. The indoor wall surface temperature and
temperature amplitude was reduced by 1.5 and 1.4� C, respectively. The maximum time
lag for peak heat �ux was observed on the north-facing wall, which was 1.5 h for a 10
wt% PCM concentration and 2.25 h for a 20 wt% PCM concentration, respectively. To
achieve the maximum energy savings, it is recommended that the PCMs be installed
within west-facing walls.

Keywords: phase change materials (PCMs), heat transfer throu gh building walls, energy management in buildings,
enhanced building enclosures, heat �ux reduction

INTRODUCTION

Buildings are responsible for about 40% of US energy consumption. They are the major
source of green gas emission as a result of their energy and material demands. A signi�cant
fraction of the energy that is consumed is to deal with thermal losses or gains occurring
through building enclosures. To accomplish the proposed Architecture 2030 Challenge1 it
is important to reduce a part of this energy consumption. The integration of phase change
materials (PCMs) to building walls has proven to be an e�ective method to reduce heat
transfer through building enclosures and shift a part of the peak load to other times of the
day (Kośny et al., 2007, 2012a,b, 2014; Konuklu et al., 2015; Guldentops et al., 2018; Song
et al., 2018). PCMs work by storing relatively large amounts of heat when melting without

1“The 2030 Challenge (2018).” from Available online at: http://architecture2030.org/2030/_challenges/2030-challenge/
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transferring it to the indoor environment when the outdoor
temperature is higher than the indoor air temperature. This
heat is released upon solidi�cation of the PCMs when the
surrounding-to-the-PCM temperatures drop below the PCM
solidi�cation point. Moreover, the utilization of PCM reduces the
wall volume signi�cantly but keeps the thermal parameters at the
same level as in traditional wall structures. Thus, an increase in
the useable living area of a building is obtained (Chwieduk, 2013).

For building applications, the phase changes are
predominantly of the solid-liquid transitions, and PCMs
can be organic (e.g., para�ns, waxes, and oils) or inorganic
(e.g., hydrated salts). There also exist PCMs that are mixtures of
organic and inorganic compounds and some that are contained
within hydrophilic silica powders. The main technical causes
that prevent PCMs from being applied widely in practice
are related to the conditioning of phase-change element
materials. The material must be completely sealed to prevent
leakage of the product during the melting process and material
composition changes through contact with the environment.
Macro-encapsulation method, which comprises the inclusion
of PCM in packages such as tubes, pouches, spheres, panels
or other receptacles, is attractive.Cui et al. (2017)proposed a
macro-encapsulated PCM using hollow steel balls (HSB) and the
mechanical performance of PCM-HSB concrete was examined.
They found that the indoor air temperature was reduced by up
to 6.5� C compared with standard concrete panels.Alam et al.
(2014)investigated Australian residential buildings with pouch
macro-encapsulated bio-based PCMs. Annual energy savings
of 17–23% in space cooling were found. With the same type
of PCM, Ramakrishnan et al. (2017)simulated the thermal
performance of a detached single-story house without active
air-conditioning system using PCM as inner linings of ceilings
and walls. High temperature within the wall was decreased as
the PCM layer increased.Gounni and El Alami (2017)tested
the thermal performance of panel-encapsulated PCM. The
results showed that the internal wall surface temperature was
reduced by 2� C. Vicente and Silva (2014)built three similar wall
specimens, two with PCM encapsulated in steel rectangular. The
wall specimens were constituted by horizontally hollowed �red
clay bricks (30� 20� 15 cm) with insertion of macro encapsules
(30 � 17 � 2.8 cm format and 0.75 mm thickness) �lled with
organic PCM. It was found that the heat storage capacity was
increased signi�cantly, and the thermal amplitude was reduced.

Besides the encapsulation methods, the design parameter of
a building wall enhanced by PCM directly impact the thermal
dynamics of the wall. Identifying the best design parameters
of the PCM is the other main key to apply this technology
e�ectively. To realize an optimal storage e�ect during a complete
day,Kuznik et al. (2015)analyzed the impact of PCM wallboard
physical properties on annual heating demand using TRNSYS. It
was found that when the PCM wallboard thickness was between
10 and 20 mm, the heating reduction was a �at curve. While,
the heating reduction decreased when the thickness was above
20 mm. They recommended that the PCM thickness must be
optimized for its use with an optimal storage e�ect during a
complete day (Kuznik et al., 2008). Similarly,Sun et al. (2016)
analyzed the energy e�ciency of panel macro-encapsulated PCM

for a building envelope. It was concluded that the maximum
thickness of PCM panel should be< 5 mm in various climatic
regions in China; otherwise, the PCM board would not be fully
charged at most time.Lin et al. (2016)concluded that the
thickness of the PCM layer and PCM types should be selected
carefully to make full use of the PCM thermal storage capacity.
The optimization of the additional wall insulation of the original
house may also assist in improving the performance of PCM
enhanced buildings.Karim et al. (2014)studied the energy
performance of hollow concrete �oor panels using a shape-
stabilized polymer composite PCM with a melting point of 27� C.
They recommended that an optimization of the minimal PCM
quantity to �ll inside the panel as a function of the climatic
condition should be studied since only 70% of the PCM was
utilized after 6 h during their tests. For the same reasons,Xu
et al. (2005)recommended that the thickness of PCM plate used
under the �oor for space heating in Beijing should not be larger
than 20 mm.Mazzeo et al. (2017)analyzed the energy behavior of
PCM layer using an explicit �nite di�erence numerical model to
identify which PCM is more suitable in improving the energetic
performances of building walls in the heating or cooling period
during the year. It was found that the lowest value of energy
entering the indoor environment is obtained by a PCM with a
melting temperature of 26� C.

Although those works brought some general suggestions for
the application of PCMs in building envelope, the results are case
speci�c and cannot be generalized for the design of an integrated
building envelope with PCM. It was found that when PCMs were
encapsulated using the methods mentioned above, the melting
process was not carried out to completion because of the low
conductivity of the PCM (Chandel and Agarwal, 2017). The e�ect
of using PCM varies depending on the building construction,
con�guration, and climatic conditions. As evidenced by the
scienti�c literature, the choice of the most appropriate PCM
for a given location requiresin-situ experimental testing. In the
current research, an experiment on building enclosure integrated
with PCMs encapsulated within tubes was studied under full
weather conditions. Two di�erent concentrations of PCMs were
tested. The outdoor and indoor air temperatures, exterior and
interior wall surface temperatures, and heat �ux through walls
were monitored in well-controlled test houses. The thermal
performance of the studied walls was evaluated using peak heat
�ux reduction, peak load shift, daily energy savings, and indoor
wall surface and air temperature reductions. The objective of this
research is to evaluate what concentration of PCMs could provide
the best thermal performance in the climatic conditions under
consideration and which wall orientation should be used to install
the PCM tubes.

EXPERIMENTAL SET-UPS

Phase Change Materials
Xu et al. (2005)recommended that the thermal conductivity of
PCM should be larger than 0.5 W/(m� C) to accelerate the
solar energy absorption.Sun et al. (2018)found that a para�n
couldn't complete its solidi�cation and melting process because
of a low thermal conductivity [0.2 W/(m� C)] (de Gracia and
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Cabeza, 2015; Guo and Goumba, 2018). To realize a fast
phase transition process, calcium chloride hexahydrate was
used in this research. Calcium chloride hexahydrate has been
proven to be an e�ective PCM with stable phase transition
temperature and latent heat of fusion after 1,000 thermal
cycles (Tyagi and Buddhi, 2008). Moreover,Ramakrishnan et al.
(2016) recommended a PCM with phase change temperature
of 3–5� C higher than the average outdoor air temperature to
achieve higher indoor thermal comfort. The average outdoor
air temperature in Lawrence, Kansas in summer is 24.9� C.
Therefore, the calcium chloride hexahydrate from Teappcm
with a melting temperature of 29–30� C is suitable for the
application in this city. The thermal properties of this PCM
are shown inTable 1. Moreover, copper was recommended to
encapsulate calcium chloride hexahydrate byInés Fernández
et al. (2015). Therefore, the PCM was encapsulated in copper
pipes with an internal diameter of 1.27 cm (Figure 1), arranged
horizontally in the stud walls, and placed next to the interior
wallboard. It was proved by D'Alessandro et al. that the structural
stability of the building was not negatively a�ected (D'Alessandro
et al., 2018). PCM concentrations of 10 wt% and 20 wt%
were investigated. The concentrations were based on the weight
of the interior sheathing, i.e., gypsum wallboard. For east-,
west-, and north-facing walls, the PCM quantity was 2.08 and
4.15 kg for 10 and 20 wt% concentration, respectively. The
PCM quantity for south-facing wall was less because of the
presence of a window, resulting in 1.75 and 3.50 kg or 10 and
20 wt%.

Experimental Apparatus
The thermal performance of walls out�tted with PCMs was
evaluated using two identical 1.83� 1.83� 1.22 m test houses

(Figure 2A), where one house was used as a control house
and the other as a retro�t house. The roof was a built-
up roof with gray asphalt shingles, 6.8 kg felt, and 1.27 cm
plywood sheathing. The wall assemblies were 1.11 cm plywood
siding, 5.08� 10.16 cm studs, and 1.27 cm gypsum wallboard
from outside to inside (Figure 2B). Insulation (�berglass and
cellulose) with a thermal resistance of 1.94 m2�K/W (R-11) was
used for both the ceiling and the walls. In each test house,
a window with an area of 0.32 m2 was placed in the south-
facing walls.

For space cooling purposes, a chilled water system (cooling
capacity: 0.4 kW) was designed and �eld fabricated and installed
(Figure 2C). The chilled water system included a water tank, a
drop-in coil water chiller, a temperature controller and a set of
water pumps. Fan coil units were installed inside each house
next to the east-facing walls. The chilled water was circulated
from a 265-L insulated plastic water tank to each fan-coil-unit
(FCUs) located inside each house. A temperature controller was
connected to the chiller to regulate the chilled water temperature
in the tank, which was set at around 12.8� 2.8� C. The pumps
and the electromagnetic valves were controlled by low voltage
thermostats to maintain test houses' indoor air temperatures
at approximately 21.5� 0.5� C. This indoor air temperature
was within the temperature range of 68–76� F (20–24.4� C),
which was recommended by the Occupational Safety and Health
Administration (OSHA) technical manual (Occupational Safety
and Health Administration, 2017). Monitoring systems were
installed to measure and collect wall heat �uxes, air and surface
temperatures. During the tests, the indoor air temperatures of
both houses were well-controlled and maintained to be almost
identical, within 1.5� C of each other.

TABLE 1 | The thermal properties of calcium chloride hexahydrate (Zalba et al., 2003).

Compound Melting temperature ( � C) Heat of fusion (kJ/kg) Thermal conductivity
[W/(m � C)]

Density (kg/m 3)

Solid Liquid Solid Liquid

CaCl2.6H2O 29–30 171–192 1.088 0.54–0.56 1,710–1,802 1,496–1,562

FIGURE 1 | Schematic of PCM encapsulation and installation.
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Type T thermocouples (T/Cs) were installed to measure
indoor and outdoor air and wall surface temperatures. For
air temperature measurements, the T/Cs were shielded with

aluminum tape to minimize radiation exchange e�ects.
Each wall was instrumented with several T/Cs arranged
in parallel grids. This arrangement gave a representative

FIGURE 2 | Control and experimental test houses.(A) Pictures of the test houses.(B) Wall assemblies.(C) Space cooling system.

FIGURE 3 | Experimental results on the south-facing walls before retro�t (June 23). (A) Outside surface temperatures.(B) Wall heat �ux.
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wall temperature, which was the average of the measured
points. The measurement range and accuracy of the T/C
was between� 18 and 93� C and � 0.6� C. Flat heat �ux
meters (HFMs) were attached to the interior wall surfaces
to measure heat �uxes through the walls. The measuring
range and accuracy of the HFMs was 0–3.1� 105 W/m2

and 1% in departure of readings. The water �ow rate was
measured using Omega FLR1001 with an accuracy of 1%. A
tripod weather station was installed, which had a wind speed
sensor, a pyranometer, and temperature and relative humidity
probes. Year-round outdoor temperatures was monitored
and measured.

Calibration Tests
It was necessary to perform calibration tests before any retro�ts.
For this, the thermal performances of the two houses were
compared and recorded as baseline. Wall temperatures and
heat �uxes were measured and compared to verify their
similarity in thermal performance. This is shown inFigure 3.
During the calibration period, the control house (House A)
was kept at an average indoor air temperature of 24.17� C,
while the soon-to-be-retro�t house (House B) was kept at
an average temperature of 24.22� C. Figure 3A shows the
similarity in temperature of the outside surface temperatures
of the south-facing walls.Figure 3B shows the heat �ux
through the south-facing walls. The average di�erence in
heat �ux in the walls of both houses was in the range
of 3%.

EXPERIMENTAL RESULTS

The peak heat �ux reduction as a result of using PCMs in the
frame walls was calculated by using:

fr D
qc,m � qr,m

qc,m
(1)

wherefr was the peak heat �ux reduction in percentage, %; and
qc,mand qr,mwere the maximum heat �ux through control and
retro�t walls, W/m2, respectively.

Because of the energy storage during melting when outdoor
temperature increased, the time at which the heat �uxes reached
their maximum values were delayed in the retro�t house. That is,
the peak load was shifted to later times of the day. The time lag
caused by using PCMs was calculated by

� D � r,m � � c,m (2)

TABLE 2 | Daily peak heat �ux reduction, time delay and energy savings using 10
wt% PCM.

Wall orientation North South East West

Peak heat �ux reduction (%) 32.25 21.87 22.99 21.23

Time delay (h) 1.5 0 0.5 0.5

Daily energy savings (J/m2) 92,266 96,042 7,258 99,479

FIGURE 4 | Heat �ux through exterior frame walls with 10 wt% PCMs.(A) North-facing walls.(B) South-facing walls.(C) East-facing walls.(D) West-facing walls.
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where0 was the time delay in hours; and� c,m and� r,m were the
times at which the heat �ux reached to its peak value for control
wall and retro�t wall, respectively.

The heat �ux through walls during daytime was reduced
because of the heat storage of PCMs. Therefore, less heat gains
were transferred into indoor environment under this condition.
During the night time, PCMs within the tubes solidi�ed and
released the stored heat both indoors and outdoors. Therefore,
the heat loss (negative values inFigure 3) was less through the
wall with PCMs. The daily energy savings using PCMs were
calculated using Equation (3).

ESD Qc � Qr (3)

Qc D

86400Z

0

�
�qc . � /

�
�d� (4)

Qr D

86400Z

0

�
�qr . � /

�
�d� (5)

where ESwas the daily energy savings, J/m2; and Qc and Qr
were the daily heat transfer through control and retro�t walls,
respectively, J/m2.

Case Study for 10 Wt% PCM Concentration
Figure 4shows the heat �uxes across frame walls facing various
directions in control and retro�t houses. The peak heat �ux
was lower for the wall with 10 wt% PCMs during daytime
because of the heat energy storage. The average reductions in
peak heat �uxes in 3 days in the north, south, east, and west walls
were 31.25, 21.87, 22.89, and 21.23%, respectively. The average
di�erence in peak heat �uxes of the aggregate between the control
walls and the walls with 10 wt% PCMs was approximately 24%.
However, the absolute heat �ux was smaller when it was negative
during night time. That is, the energy loss through the wall with
PCMs was less because of the energy release.

The daily average heat �ux reduction, time delay and energy
savings by using 10 wt% PCMs are summarized inTable 2.
The heat �ux through north-facing wall was reduced the most.
This is because the north-facing wall received the least solar
radiation, resulting in a lower outdoor wall surface temperature.
The heat transfer between outdoor and indoor environment
through this wall was slow (as shown inFigure 4A), so was
the PCM melting process. When the heat �ux in the control
wall reached its peak, the PCM in retro�t wall did not �nish
its melting process, where the temperature was maintained at
its phase transition temperature. This was illustrated in the
relatively �at peak heat �ux curve inFigure 4A. For other
walls receiving more solar radiation, PCM �nished its melting

FIGURE 5 | North, south, east, and west walls inside surface temperatures using 10 wt% PCM.

TABLE 3 | Reductions in inside wall surface temperatures and reductions in temperature amplitudes produced by using 20 wt% PCMs.

Wall orientation Average surface temperature ( � C) Difference ( � C) Average temperature amplitude ( � C) Difference ( � C)

Control Retro�t Control Retro�t

North 23.6 22.5 1.1 2.2 1.1 1.1

South 24.1 22.8 1.3 3.7 1.9 1.8

East 24.4 21.8 2.6 4.2 1.4 2.8

West 23.9 22.9 1.0 3.4 3.4 0.0

Average 24.0 22.6 1.5 3.4 2.0 1.4
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when the outdoor temperature increased. Afterwards, the PCM
temperature increased to store more sensible heat. The heat
transfer increased until it reached its peak. This was the reason for
the time delay results. The peak heat �ux was shifted to 1.5 h later
for the north-facing wall. In contrast to the heat �ux reduction
and time delay, the maximum daily energy savings was observed
on the west-facing wall.

Figure 5 depicts how the walls out�tted with PCMs were
able to keep a more constant inside wall surface temperature
and a narrower temperature �uctuation than the standard
wall. Each segment shows indoor wall surface temperatures
for a standard wall and for a wall out�tted with PCMs. For
example, for the north walls the indoor surface temperature
of the control house was on average 23.6� C; while the surface
temperature of the wall out�tted with PCMs was 22.5� C. The
temperature amplitude in the standard wall was 2.2� C; while, it
was 1.1� C for the wall out�tted with PCMs. It was noteworthy
that the temperature variation of the retro�t house (House B)
was di�erent for walls with various orientations. On the north
walls, the surface temperature in the retro�t house had the
lowest amplitudes and the temperature in the control house
was the lowest. In this case, the PCM was maintained partially
melting or in its solidi�cation process. Therefore, the PCM
temperature was maintained at its phase change temperature.
This phenomenon was also observed in the heat �ux variation
in Figure 4A. On the south and west walls, the temperature
variation in retro�t and control houses followed the same
trend. However, the temperature variation was in a reverse
trend for east walls. The surface temperature of the south and
west walls increased faster than that of the east walls. That

is, the heat transfer rate through the south and west walls
was larger (Figures 4B,D), in a way which the phase change
process �nished faster, resulting in a smaller time delay in
peak temperatures.

Table 3summarizes the �ndings related to the reductions in
inside wall surface temperatures and in the daily temperature
amplitudes. As stated above, the walls with PCMs were able
to not only lower the inside wall surface temperature, but
also their daily temperature amplitudes. The average reduction
of inside wall surface temperature and daily temperature
amplitudes were 1.5 and 1.4� C, respectively. These results
could translate to human comfort and to an increase in
the life of comfort equipment with less on/o� modes and
operation time.

Case Study for 20 Wt% PCM Concentration
Same tests were performed for a 20 wt% PCM concentration. It
was interesting to observe that the di�erence in peak heat �uxes
between the control walls and the walls out�tted with PCMs
was lower than the values for the 10 wt% PCM concentration.

TABLE 4 | Daily peak heat �ux reduction, time delay and energy savings using 20
wt% PCM.

Wall orientation North South East West

Peak heat �ux reduction (%) 5.60 6.65 25.54 11.32

Time delay (hr) 2.25 0.5 0.5 1.5

Daily energy savings (J/m2) 27,950 57 44,398 109,093

FIGURE 6 | Heat �ux through exterior frame walls with 20 wt% PCM.(A) North-facing walls.(B) South-facing walls.(C) East-facing walls.(D) West-facing walls.
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TABLE 5 | Reductions in inside wall surface temperatures and reductions in temperature �uctuations produced by using 20 wt% PCMs.

Wall orientation Average surface temperature ( � C) Difference ( � C) Average temperature amplitude ( � C) Difference ( � C)

Control Retro�t Control Retro�t

North 23.6 22.3 1.3 2.2 0.8 1.3

South 24.2 22.7 1.5 4.2 2.1 2.1

East 24.1 21.7 2.3 3.3 1.1 2.2

West 23.8 22.9 0.9 3.0 2.9 0.1

Average 23.9 22.4 1.5 3.2 1.7 1.4

FIGURE 7 | North, south, east, and west walls inside surface temperatures using 20 wt% PCM.

This means that doubling the amount of PCM did not produce
improvement in peak heat �ux reductions.Figure 6 shows
the heat �uxes through the north, south, east and west walls,
respectively. The average daily reduction in peak heat transfer
rates in the north, south, east and west walls were 5.6, 6.65,
25.54, and 11.32%, respectively. From these results and aside
from the east-facing wall, it was observed that doubling the
quantity of PCM did not improve the performance. The peak
heat �ux reduction was lower for 20 wt% PCM than it for
10 wt% PCM for the north, south, and west-facing walls.
Compared with the heat �uxes inFigure 4, the heat �uxes
through control walls were much lower inFigure 6 because
of the variation of solar radiation and outdoor temperature
on these days, except for the east-facing wall where the total
daily heat �ux was the largest. It was concluded that the PCM
did not complete its phase transitions on these walls except
for the east-facing wall. The PCM without phase transition
served as an insulation. However, its thermal resistance was
lower than the R11 insulation. Therefore, more heat gains
were received when doubling the PCM. For east-facing wall,
doubling the quantity of PCM improved the performance
by 11.58%.

The results by using 20 wt% PCM are summarized inTable 4
for peak heat �ux reduction, time delay and daily energy savings.

Compared with the results for 10 wt% PCM, the peak heat
�ux reduction decreased except for the east-facing wall. The
reason is that the PCM did not complete its melting for the
20 wt% concentration. Therefore, the total material that melted
under this condition was less than that in 10 wt% of cases.
Moreover, the un-melted PCM served as insulation within the
tubes. However, the thermal resistance of the PCM was much
lower than the R11 insulation. Therefore, the peak heat �ux
through retro�t walls increased, resulting in a lower peak heat
�ux reduction. For east-facing walls with similar heat �ux
through control walls for 10 and 20 wt% PCM cases, the peak
heat �ux reduction was improved by using more PCMs. It
was concluded that adding more PCMs improved the thermal
behavior of the walls as long as the PCMs completed their melting
during daytime.

Table 5 summarizes the indoor surface temperatures in the
control and the PCM-out�tted walls with 20 wt% PCM. The
average indoor surface temperature of the four control walls
was 23.9� C while the indoor surface temperatures in the walls
out�tted with PCMs was 22.4� C. The average temperature
amplitude in the control walls was 3.2� C, while it was 1.7� C in
the walls out�tted with PCMs. The surface temperature of the
walls out�tted with PCMs was more constant than those for the
control walls. This is shown inFigure 7.
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CONCLUSIONS

Heat transfer through frame walls with PCM encapsulated in
copper pipes were investigated in well-controlled test houses
under full weather conditions. The heat �ux, time delay and
energy savings were tested and compared with two PCM
concentrations. The following results were retrieved:

1) For a 10 wt% PCM, the largest observed peak �ux reduction
was 31.25% when the PCM pipes were installed within
the north-facing wall. However, for the 20 wt% PCM
concentration, the largest peak �ux reduction of 25.54% was
found when the PCM pipes were installed within the east-
facing wall. The di�erent peak �ux reduction was mainly
impacted by the outdoor air temperature and solar radiation.
To realize a larger peak heat �ux reduction, the PCM should
be within a phase transition state when the heat �ux through
control wall reached its peaks.

2) The total heat �ux was reduced by approximately 24% with
10 wt% PCM and 12% with 20 wt% PCM concentrations.
Doubling the amount of PCM did not produce improvement
on the heat �ux reduction if the PCMs cannot complete
the melting process except for the east-facing walls. The
PCM quantity should be carefully designed to realize a
complete melting and solidi�cation cycle in 1 day. More
tests under di�erent weather conditions should be studied to

obtain the relationship between the PCM quantity and the
climatic condition.

3) The maximum daily energy savings were observed on the
west-facing wall for both 10 and 20 wt% concentration. PCMs
were recommended to be installed on the west-facing walls in
order to obtain larger energy savings.
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