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Functional near-infrared spectroscopy (fNIRS) research rticles show a large
heterogeneity in the analysis approaches and pre-processg procedures. Additionally,
there is often a lack of a complete description of the methodsapplied, necessary for
study replication or for results comparison. The aims of thipaper were (i) to review and
investigate which information is generally included in puished fNIRS papers, and (ii) to
de ne a signal pre-processing procedure to set a common ground for standardization

guidelines. To this goal, we have reviewed 110 fNIRS artidepublished in 2016 in the
eld of cognitive neuroscience, and performed a simulatioranalysis with synthetic fNIRS
data to optimize the signal Itering step before applying tb GLM method for statistical
inference. Our results highlight the fact that many papersatk important information, and
there is a large variability in the Itering methods used. Qusimulations demonstrated
that the optimal approach to remove noise and recover the hemdynamic response

from fNIRS data in a GLM framework is to use a 1000th order bangass Finite Impulse
Response lter. Based on these results, we give preliminarrecommendations as to the
rst step toward improving the analysis of fNIRS data and disemination of the results.

functional near infrared spectroscopy, digital | ter, pre-processing

g guidelines

Keywords: general linear model,

standardization, functional data analysis, pre-processin

INTRODUCTION

The last few years have seen a rapid (almost exponential) grimmthe number of functional
neuroimaging studies performed and published with functiomeear-infrared spectroscopy
(fNIRS) (Yucel et al., 2007 fNIRS has provided neuroscientists and clinicians with a hove
and invaluable tool to study and monitor tissue oxygenatiohanges in the brain non-
invasively. Based on neurovascular coupling, fNIRS meagheedrain tissue concentration
changes in oxyhemoglobin (Hap and deoxyhemoglobin (HbR) associated with an increased
metabolic demand of the brain during neuronal activity, aad increased tissue perfusion
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(Scholkmann et al., 20)4To date, one of the major elds from fNIRS data, any source of variability in tHeHbO, and
of application of fNIRS is cognitive neuroscience, wherel HbR signals not related to the task-evoked hemodynamic
the mechanisms underlying brain functioning are typicallyactivity needs to be removed, or at least minimized. For a
investigated by monitoring the task or stimulus-evokedruyp@s review on the structures and the statistical properties of the
in the brain during the execution of cognitive tasks (S&ati  noises that are often present in fNIRS data, we advise the
et al., 2018or review). fNIRS is well-suited to this application reader to see the publication éfuppert (2016) One typically
since it allows the study of cognition with very few physicalexperienced source of noise is that due to head movements. In
constraints, allowing brain monitoring in a wide range of fact, although fNIRS is more robust to motion artifacts than
cognitive tasks, e.g., those including bodily movementd,ian other modalities [e.g., functional magnetic resonancegimg
a variety of populations, e.g., infants, healthy adults,icdih (fMRI), electroencephalography/magnetoencephalography
patients. A typical sequence of steps performed in a neuroseienfEEG/MEG)], signals can be corrupted by head movements,
with fNIRS is shown inFigure 1, usually comprising 4 main causing fast spikes or shifts from the baseline values. Th& mo
steps. common practice to deal with these motion errors is to include
Step 1The rst step is the design and implementation of the the identi cation and correction of such artifacts as a step
experimental protocol. Block or event-related designs avallys  the signal pre-processing stream. Several techniques have be
employed, in which the stimuli are presented several times tproposed so far and have been reviewed elsewhergadoi
increase the statistical power, and experimental task periodg al., 201} In addition, fNIRS data are also contaminated
are typically interspersed with contrast conditions or stimu by physiological noises not directly related to cortical ibra
(or in some cases rest periods) to better assess the presencedivity that can deteriorate the Signal-to-Noise RatitNR3,
hemodynamic responses. fNIRS data are then collected duriremmd mask and/or mimic the presence of brain hemodynamic
the execution of the designed experiment. A mixed block/évenresponses Tachtsidis and Scholkmann, 2016The origin of
related design can be also employEeéiersen and Dubis, 201L2 these components and the methods developed so far to reduce
Step 2The data acquisition step comprises the placement aheir impact on the estimation of brain activity by fNIRS
a certain number of light sources and detectors (i.e., “opdi have been reviewed bycholkmann et al. (2014Briey, such
on the participants' head by means of ber optics, and at a lighphysiological changes contribute a large amount of variance
source-detector distance of 3cm in case of studies withtadul the fNIRS signals and can be elicited both (i) by the executifon
The raw fNIRS signal measured by the detector, e.g., the ralve cognitive task, and (ii) spontaneously. In the rst cases th
light intensity signal, originates from the tissue volunoedted execution of particularly complex or stressful tasks can atbet
below the source and detector having a maximal depth a bit legsychophysiological state of the participant, resulting inntes
than half the source-detector distance [i.e., thisis dditbannel” in heart rate, breathing rate, blood pressure, carbon diexid
(Patil et al., 201)]. The number of channels and the sampling (CO2) concentration of the blood and autonomic regulatory
frequency of the acquisition depend on the particular fNIRSactivity happening both at the intra- and extra-cerebral
instrument used. levels Rowley et al., 2006; Kirilina et al., 2012; Scholkmann
Step 3:During the pre-processing phase, the raw intensityet al., 2013; Holper et al., 2014; Tachtsidis and Scholkmann,
data are usually visually inspected to assess signals' yqualt01§; the second case refers to the spontaneous hemodynamic
(e.g., the presence of large motion artifacts, and of heaat beoscillations related to physiological vasomotor regulati@md
oscillations indicating a good optical coupling between thebreathing-related uctuations Tachtsidis et al., 2004; Tong
optodes and the scalp). Intensity time-series are converteet al., 201 These spontaneous components are characterized
into changes in attenuation (or optical density,OD) and by signals at speci ¢ frequencies associated with the hedet r
then into concentration changes of HhGand HbR L HbO2,  ( 1Hz), breathing rate (0.3 Hz), Mayer waves (0.1 Hz), and
and 1 HbR), usually by means of the modi ed Beer-Lambertvery low frequency< 0.04, VLF) oscillations. One of the most
law (Delpy et al., 1983 In order to extract useful information common and more straightforward approaches used by the

Experimental fNIRS data fNIRS data Statistical
design acquisition pre-processing inference
Intensity OD to : .
to OD concentration Motion at(tlfact Filtering
conversion conversion COECton

FIGURE 1 | Typical neuroscience experiment pipeline with fNIRS.
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scienti c community to reduce the impact of these components, Whilst all these procedures are almost standardized forrothe
is to remove speci c frequency bands in fNIRS signals by meanmseuroimaging modalities such as fMRI, this is not the case for
of digital lters. Digital ltering is a mathematical procade fNIRS yet. As recently highlighted byocke et al. (2018¥NIRS
applied to discrete time-series to reduce or enhance certajpublications often lack useful information, and there is agbu
properties of the input signals (e.g., frequency ranges).r&iltevariability in the analysis procedures and in the way methods a
are divided into three classes: fiigh-pass lterswhich remove described. For instance, the absence of standardizatiémpot
high frequency components above the cut-o frequency; (ii)parameters for fNIRS pre-processing and analysis methods can
low-pass Iterswhich remove low frequency components belowlead to suboptimal papers or irreproducible studies and results.
the cut-o frequency; (iii) band-pass Iterswhich preserve the In addition, the authors demonstrated how the use and the
frequency range between a lower and a higher cut-o freqyenc combination of di erent methods (e.qg., criteria for identihg
Some research groups apply lters dnOD data prior the noisy channels, motion artifact correction, signals' riteg, etc.)
conversion into concentration changes; others apply the ltercan lead to dierent results, in uencing the neuroscientic
on the 1 HbO, and 1 HbR signals. However, in both cases,conclusions. Another relevant issue is related to the R $-

the frequency range to include needs to be chosen carefully oterived signal to infer functional brain activity, as fNIR®pides
order to preserve the stimulus frequency and to preserve theeasurements of both HbOand HbR. For example, some
task-evoked response. papers draw neuroscienti ¢ conclusions based onlylodbOo.

Step 4:0Once the data are pre-processed, statistical analysBsit, others report total hemoglobinl(HbO, C1 HbR), and
are performed, and the pre-processddHbO, and 1 HbR yet others describe both HbO, and 1 HbR. Therefore, there
signals are used to make inference about task-evoked amadti is an urgent need to move toward a standardization of the
brain activity (seeTak and Ye, 2014or a review). One of experimental procedures, right through from the study design
the most common statistical frameworks employed by thehase to the presentation of results. The aim of the current
community is the General Linear Model (GLM). This approachreport is to start tackling this standardization issue andstt
has more statistical power than other methods commonly usethe ground for the development of toward common guidelines.
for fNIRS (e.g., block averaging). In fact, the GLM consider$/ore precisely, in this work we focus (i) on the Itering step
the entire fNIRS time series taking advantage of the higlof the pre-processing phase and (ii) on the assessment of the
temporal resolution of fNIRS. It also provides good exibildag completeness of the information reported in the published
it allows to test speci ¢ hypothesis by comparing combinationgesearch articles. To this end, we rst review the papers pabts
of the experimental conditions with di erent statistical tegy  in 2016 in the eld of functional neuroimaging with fNIRS
approaches (e.g., t-tests, F-tests, ANOVAs, ANCOVAsnti, to analyse information on (i) the latest most used ltering
201). In addition, it permits the inclusion of other covariates approaches and (ii) the data inclusiveness. Then, we test the
within the model or design matrix [e.g., behavioral performoea, identi ed Iter speci cations on synthetic fNIRS data geneeat
head movement, physiological signals, short-separatiolR8\Il from 18 subjects resting state data with a superimposed task-
channels {achtsidis and Scholkmann, 201@o improve the related component simulating a block-design experiment, and
inference accuracy. However, the GLM has the disadvantagaplore the e ect of lters and their application td OD or
that it assumes a speci ¢ pre-de ned hemodynamic responsé& HbO, and 1 HbR on the outcome of statistical analyses in
function, which e.g., to a great extent is still unknown fororder to optimize the inference procedure in a GLM-based
neonates or might be di erent across brain regions. framework.

It is important to highlight how the experiment pipeline
described abovd-{gure 1) is not made of stand-alone steps. Each
phase in uences the other and, more importantly, they in uenc
the outcome of the statistical analyses and the study iedudr
instance, if the experimental protocol is not carefully desidn
and, for example, a task block duration ofl0s is chosen,
the task frequency (0.1Hz) overlaps with the Mayer wave
oscillation, leading to in ated statistics. Additionallyhe pre-
processing stream has a major impact also on the comparison
results among di erent studies and research groups, and otystu
replication, because the statistical analyses depend ondtze d
content. It is therefore extremely important and good pragetic
to always report detailed information about each individual
step of the experiment pipeling=igure 1), from the protocol
speci cation (type of stimuli, structure, durations, presatibn 1. Papers published in 2016, in order to review the most updated
software), the device features (model, sampling frequency, and advanced pre-processing approaches as a representative
wavelengths), signal pre-processing (algorithm to compute sample of the fNIRS eld
1 HbO, and 1 HbR, motion artifact correction algorithm, lter 2. Original research articles published on peer-reviewed
parameters), to the statistical analyses (hypothesesstitali journals. Conference proceedings and review papers were
test). excluded from further analyses

LITERATURE REVIEW

A literature review of fNIRS articles published in the eld of
cognitive neuroscience was performed as rst step with tme ai

of identifying the most common ltering approaches adopted
by the community, and of evaluating the completeness of the
ir]fformation reported in research papers. To this end, we used
fle PubMed database, plus a manual search from articles,
references, and the publication surveys made available &y th
Society for functional Near Infrared Spectroscopy (httpitén
org/publications/nirs-niri-publications/). Articles werselected

on the basis of the following criteria:
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3. Studies conducted on adults, as infants' fNIRS data havence making it dicult for others to replicate the same
di erent spectral characteristics [e.g., a higher heart ratg@rocedure.
frequency band \on Siebenthal et al., 1999and thus For the following analyses, we focused on the lter types
di erent Itering speci cations must be used being used in more than 3 papers (1.8%igure 2D, red

4. Papers that included task-evoked functional activatiomectangle), these are the Generic, Butterworth (BW), Moving
experiments, as fNIRS is by far mostly used for monitoringAverage (MovAvg) and Finite Impulse Response (FIR) lters.
task-related brain activity in response to cognitive tasks Among these lters, we determined how many articles included

5. Our analysis included only continuous-wave (CW) fNIRSinformation about:
studies looking at concentration changes of oxy- and deoxy-
hemoglobin due to the popularity of CW-fNIRS in current
fNIRS research and neuroscience applications.

the type of lter (LP/HP/BP, where applicable, i.e., Generic,
BW, FIR)

the lter order (where applicable, i.e., Generic, BW, FIR)

A total of 110 papers were selected (see the cut-o frequency ranges (where applicable, i.e., Generic,
Supplementary Material 4 for a complete list). From each  BW, MovAvg, FIR)

full-text, we collected the following informatiori-{gure 2): Results are presented Figures 2E—H Encouragingly enough

1. the sampling frequency§) of the fNIRS acquisition only 1.6% of the papers did not include information about

2. theinclusion of the ltering step in the pre-processingestm  the type of Iters §igure 2B. Figure 2E also illustrates the

3. the type of Itered signalll OD or 1 HbO, and1 HbR) distribution of the Iter characteristics, showing that BR&LP

4. the type of Iter applied (e.g., Butterworth, nite impulse are more often used rather than HP Iters. However, concegi
response (FIR), Moving Average) the Iter orders (Figure 2B, the majority of the papers (59.7%)

5. the Iter characteristic (low-pass (LP), high-pass (HRnd-  did not provide information about this parameter, which is liga
pass (BP) ltering) important for Iters design. For our further analyses (seeti&st

6. the lter order, where applicable Data Analysis), we have focused on BP and LP lté&ig(re 2E

7. the cut-o frequenciesH) red rectangle) since they are the most popular; and on all the

) Iter orders (3, 4, 5, 20Figure 2F red rectangle). Regarding
Note: If the authors stated in the paper that they used thene cyt-o frequencies Figures 2G,H, authors usually reports
Homer2 software package (http://homer-fnirs.org/) for thei hese except for the loweF, for one BP lter (Figure 2G)
analysis and did not report any information about the Iter type 5n4 for 8.1% of the LP lters Rigure 2H). For our tests (see
we automatically considered they used Grder Butterworth section Data Analysis), we used tFe adopted by at least 3

Iter as this is the default option in the software. Papers utihg papers (1.8%) and we indicated those with red rectangles in
more than one functional experiment within the same work Wererigures 2G,H
considered as separate studies.
Out of the 110 papers, 75.5% of the articles reported-tjef
the fNIRS acquisitionKigure 2A). MATERIALS AND METHODS

This result suggests that not all the papers report all thfParticipants
relevant information necessary for replicating or comparingn order to investigate the e ects of the Iters on the outcome
the study results. Indeed, the is an important parameter 10 ¢ statistical analyses, resting-state fNIRS data were tdlec
evaluate the frequency bandwidth of the fNIRS signals or fog, 5 cohort of healthy adults. Sixteen individuals (9 females
assessing the lter stability within a certain frequencyige. ajes: ag 26.9 2.9 years) were recruited and 18 sessions
Additionally, asFigure 2Cshows, there is not a clear agreementyere performed. Prior the experiment, participants acclimated
about whether it is a better practice to_lIter the optical d&ysi o apout 15 min within the testing room. During the experirten
data or concentration data, and the fNIRS community is didde ey ere asked to keep their eyes closed for the entire sessio
between the two approaches. In fact, for the papers we analyzggjle peing awake. The study was approved by the UCL ethics

the lter is applied on1 OD signals in 32.5% of the studies and committee (Reference 1133/001) and participants gave infdrme
onl HbOz and1 HbRin 65%. The rema|n|ng 2.5% of the paperSConsent prior to the experimental session.

did not include this information.

Concerning the use of Iters, the 72.7% of the papers includefNIRS Data Acquisition
a ltering step in the pre-processing pipelineFigure 2B).  Spontaneous changes in prefrontal cortex hemodynamics were
Figure 2D shows the distribution of the Iter types across measured using the Wearable Opt|ca| Tomography (WOT,
these papers. With “Generic'F{gure 2D) we refer to those Hitachi High-technologies Corporation, Japan) fNIRS device.
lters for which the authors did not mention the particular The system is made of a portable box, containing the
lter type (e.g., "...data were band-pass ltered..."). Therlt recording unit, and a headset, containing the optical compuse
types shown inFigure 2D were both used individually or (Figure 3A). The headsetis equipped with 6 laser diodes emitting
in combination with each other (e.g., W-MDL together with jight at 705 and 830 nm, and 6 silicon photodiodessumori
HRF). Within the majority of the papers (36.3%), the lter et al., 200y arranged in an alternating geometry creating 16
type was not properly described (i.e., Generic), further prgvin measurement channel§igure 3B source-detector separation:
that not all the articles provide the most salient informatjo 3 cm). Raw fNIRS data were recorded at 5Hz. In order to place
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FIGURE 3 | (A) Hitachi Wearable Optical Tomography fNIRS device, and corsponding channels con guration onto the prefrontal cortex(B). Sources are
represented as red dots, detectors as blue dots and channelss white dots. Highlighted in green are the channels for whitthe corresponding time-series are
presented in(C). (C) shows examples of rawl HbO, and 1 HbR resting-state signals for one channel for each of threegnticipants.

the WOT headset in a reliable way across all the participantsnd the negative one modeling the undershoot (peak: 6s
we used the 10/20 electrode positioning systetkgmoto and undershoot: 16s after the onset); the boxcar included
et al., 200% and placed channel 8 in correspondence of thel4 task blocks of 20s spaced out by 20s rest periods. This
Fpz point and channel 8 and 9 were aligned to the Nasionresulted in a stimulation frequencyF§im) of 0.025Hz Esiim
Inion line. Resting-state data were collected fatO min while D 1/(20C20) Hz). We used di erent amplitudes for the HBO
participants were comfortably sitting on a chair with theiresy and HbR task-related components, with the HbR one being
closed. Examples of resting-state data for one channel fhoeet -1/3 of the HbGQ component, as HbR has smaller changes

subjects are shown iRigure 3C. than HbO, (Gagnon et al., 20)2More precisely, in order to
generate signals with di erent SNR, we considered the folowi
Data Analysis amplitudes:

Single-su_bject's d_ata analysi; owcha_rt is presentefeiguire 4 . 1. Amplitude 1: 0.8mMol for 1 HbO, and 0.27 mMol for
Raw time-series were visually inspected to detect noisy 1 HbR

channels (e.g., due to large motion errors, sudden amplitud Amplitude 2: 0.5mMol for 1 HbO, and 0.17 mMol for
changes, poor coupling) and channels with a poor optical” 1 HbR T '

cpupling [e._g., absence of thel Hz heartbeat oscillations in raw 3. Amplitude 3: 0.3nMol for 1 HbOz and  0.1mMol for 1 HbR
signals Pinti et al., 201)] were excluded from further analyses.

Raw resting-state fNIRS data were rst converted into opticallhree di erent synthetic datasets were thus generated foh e
density data and then into changes in concentration througtihe 18 resting-state data.

the modi ed Beer-Lambert law, using a di erential pathlength ~ Syntheticl HbO> and 1 HbR signals were re-converted into
factor of 6 (Yiicel et al., 200)6For all channels, a synthetic task- 1 OD data and motion artifacts were identi ed and corrected
related component (the same for all 16 channels) simulatingFigure 4 using the targeted principal component analysis
a block-design experiment was added to bdtiHbO, and (tPCA Yiicel et al., 20)4mplemented in the Homer2 software
1 HbR signals. This was created by convolving a Hemodynamigackage, as it acts only on corrupted data segments, thus
Response Function (HRF) with a boxcar function re ecting thenot altering the frequency content of the signals (function
simulated experimental protocol. The HRF was composed dimrMotionCorrectPCArecurseput parameterstMotion D 0.5,
two gamma functions, the positive one modeling the responsiMaskD 1,STDthresHD 10,AMPthrestD 5,nSVD 0.97 maxlter

Frontiers in Human Neuroscience | www.frontiersin.org 6 January 2019 | Volume 12 | Article 505



Pinti et al. Investigation of fNIRS Signals Filtering

FIGURE 4 | Data analysis ow chart applied to each participant and to eab task-related component amplitude. The procedure is also pplied for each Iter type and
speci cation combinations.
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D 5). Optical density data corrected for motion errors WereTABLE 1 | Type of lter and ler speci cations resulting from the literatire review
converted intol HbO2 and1 HbR. process.

Based on the literature review (see section Literature Rgyie
we ltered both syntheticl OD and,1 HbO, and1 HbR signals

FILTER CHARACTERISTIC: BP

ing the | i cati ized iable 1 All the Fe o 2™° By, FIR
using t € lte(; specilzcatlogsézs;rgmargltte : ad € ‘ 1tooe 5000 Filtered signals 10D, 1 HbO, 1HbR
ranges include ouFsgm (0. z). Filter orders o ’ ’ Filter order 3, 4, 5, 20, 100*, 500*, 1000*

1000 were also included in addition to the ones found in the
literature, as FIR lters require higher orders than IIR I Fe Hz] 001-009,001-02,0.01-03, 0.01-05
) ) FILTER CHARACTERISTIC: LP
(i.e., Butterworth) to achieve a good level of performancerévio _
precisely, for each type of Iter, we used all the combinatiohs Fflter typef BW, FIR, Movivg
Iter type, Itered signals, Iter order, and. Ffltered signals 10D, 1HbOy, 1 HR

Whilst FIR lters are always stable (i.e., for a nite input, """ %" 3, 4.5, 20, 1007, 5007, 10007
the output is always nite, and the region of convergence of e H2] 0.09,0.1,0.14,05
the transfer function of the lIter includes the unit circIe)IR Asterisks indicate Iter orders that were further added.
Iters can be unstable for a given order arig (Ifeachor and
Jervis, 2002 In fact, considering the transfer function of the
Iters, FIR lIters have as many poles as zeros but they are aéixperimental protocol with the HRFF(iston et al., 199 In
located at the origin of the-plane, thus being always stable;our case, the design matrix was composed of the task-related
by contrast, IR lters are stable only if the poles are insile  regressor modeling the hemodynamic response to the simulated
unitary circle in thez-plane. Moving average lters operate by block-design experiment, plus the constant termvalues were
averaging the input signal within a certain window to prodube t  estimated through the least square estimation. These pdease
output signal. They are a particular type of low-pass FIR ltersare indicators of the strength of the relationship between a
where the output signal is not multiplied by Iter coe cients, regressor and the experimental fNIRS data, and represent the
but it is only scaled by 1/(window length). MovAvg are thusoals contribution of each regressor to the fNIRS signal. However,
always stable. Therefore, we rst checked the stabilityPBBd fNIRS data are aected by serial autocorrelations due to the
LP Butterworth lters since they are IIR, for all tH& and orders, oscillating nature of the fNIRS signalBdrker et al., 20J)&hat
using the zero-pole analysis, i.e., looking at the locatibpates  impact on the accuracy of GLM-based analysés ¢t al., 2000
in the z-plane (for this procedure we used the Matlab functionsAutocorrelations originate from the high sampling rate ofiR&
butter, isstableand zplang. Once the stability was assessed, wacquisition and from the physiological noises and motion esror
applied the type of lter with all the possible combination of present in the signalsBarker et al., 2016; Huppert, 20180
speci cations to synthetit OD and,1 HbO2 and1 HbR signals. account for serial autocorrelations and to minimize thegact
Filtered1 OD were then converted into concentration changeson the GLM, we used two approaches: (i) down-sampling, and
We will refer tol HbO% and 1 HbRC if the lter was applied (i) precoloring. In the rst approach, we down-sampled the
directly to concentration data, and tb HbO?D and 1 HbRCP Itered concentration data to 1 Hz using a spline interpolatian t
ifthe Iter was applied to optical density data and then coneelt reduce the sampling rate. Down-sampling the signal before the
into concentration changes. In addition to the lters' stétyi, Iter is applied can introduce a form of distortion in the data
the phase delay introduced by the Iter needs to be taken intealled aliasing, especially at the high-frequencies andithe
account. In fact, the ltered signal can be shifted in timespect new sampling rate is smaller than twice the highest frequeificy o
to the original un Itered signal. In case of a FIR lter, the pb& interest in the signal (Nyquist frequency). To avoid thisuiss
delay is constant, i.e., the same across the whole frequangg, low-pass lIters (i.e., anti-aliasing lter) are typically used
and can be corrected by shifting back in time the Itered signaremove the components above the new Nyquist frequency. In
of the delay amount. With IIR lters (i.e., Butterworth), ¢h the second approach, we applied the precoloring method, i.e.,
phase delay is frequency-dependent, i.e., the shift is dief@n smoothing the fNIRS data and the design matrix with a low-
the di erent frequencies. This phenomenon is known as phaseass Iter shaped like the HRRA(orsley and Friston, 1995;
distortion and can be compensated using a zero-phase lIter thatiuppert, 2019, which is a common method for analyzing fMRI
we performed in Matlab with thdt It function. and fNIRS data\(Vorsley and Friston, 1995; Ye et al., 2D0&

Filtered concentration data were used to carry out stat#dti order to test the impact of serial autocorrelations, we applied
analyses and to establish the best Itering approach. Thihe GLM also to the ltered concentration data without any of
procedure described below was applied for each task-relatéldese correctionsHigure 4). For each participant's data, the GLM
component amplitude, to each channel of each participant'svas applied to each channel and each chromophore individually.
ltered signal (L HbOS, 1 HbRC, 1 HbOSP, 1 HbR®P), each  -values were then estimated for each channel and the median
type of Iter (BP and LP), and each Iter specication value across the 16 channels was computed for each participant.
combination (Table J). Statistical analyses were performed usindledian -values for all the subjects were used to run statistical
the GLM approachKigure 4). This method consists of regressing analyses at group-level. More precisely, we rst checked fanéi) t
fNIRS data with a linear combination of explanatory variablesrormality of the distribution of the group median-values using
(or regressors) and an error term. Regressors are computéde Shapiro-Wilk test as recommended for small sample sizes
through the convolution of the boxcar function describinget (Shapiro etal., 1968; Ghasemiand Zahediasl,;205P), and (ii)
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the presence of outliers. We considered as outliers when the  Figure 7 shows an example of Itered Hbog and 1 HbRC
values are below Q1 1.5 IQR orabove Q¥ 1.5 IQR (Q1l: signals using a BW BP Iter (5th orderf. 0.01-0.2 Hz,
18t quartile; Q3: # quartile; IQR: interquartile range). Amplitude Figures 7A,B, FIR BP lters (5th order, Fc: 0.01-0.2 Hz,
1, Amplitude 2 and Amplitude 3 of the imposed task-relatedFigures 7C,D and FIR BP lters (1000th ordeF.: 0.01-0.2 Hz,
components constitute the referencevalues and represent the Figures 7E,ff to syntheticl HbO, and 1 HbR, demonstrating
metric to assess lters' performance. In fact, the closertaee the need for higher orders for FIR lters respectto IIR ItefEhe
estimated -values to the reference, the better the lter, i.e., corresponding estimated-values are reported as well.
less task-related information and more physiological neigee Whilst the 5th order BW BP lter was able to remove
removed. Therefore, in order to establish the best type of;, Ite the slow drifts in the un ltered1 HbO2 and 1 HbR signals
we used one sampletests to test the null hypothesis that the (Figures 7A,B, a FIR Iter with order 5 is not e ective enough
estimated group median-values are equal to the referencata  (Figures 7C,D. In fact, very low frequency modulations in the
signi cance level D 0.05. The closer the-value to ,the more ltered 1 HbO, signal can still be observed as well as a slow trend
the group -values are similar to the reference and thus the in the ltered 1 HbR (Figures 7C,D and both signals are not
better the Iter performance. centered around the zero-level. This results in an overedton
Additionally, we tested whether the lter performs better if of the -values (9.28 10 7 for 1 HbO, and of 3.38 10 7
applied to optical density or concentration data. To this goalfor 1 HbR). As a property of FIR lters, they require much
we used paired sampletests to compare the group-values higher ordersthanlIR lters to achieve comparable performanc
estimated onl HbO§D and 1 HbRC with the group -values As expected, with a 1000th order FIR lter, slow trends are
estimated onl HbO3*~ and 1 HbRCP, for a given type of Iter e ectively removed Figures 7E,, the signal mean is reported
and speci cation combinations. to be around the zero-level and a similar performance of the
All the analyses were carried out using Matlab (Thesth order BW lter is achieved (light green and cyan signals in
MathWorks Inc., Natick, Massachusetts; v. R2014a) and theigures 7E,. The improvement in Iters' performance is also
Homer2 software package. re ected in the estimated -values. The 1000th order FIR lter
corresponds to a -value of 7.51 10 7 for 1 HbOS and of
2.27 10 7 for 1 HbRC that are more similar to the reference
(8 10 7 for 1HbO, and of 2.7 10 7 for 1 HbR) than
RESULTS the estimated -values for the 5th order FIR lter (-valueD
9.28 10 7for1 HbOS; -valueD 3.38 10 7for 1 HbRS).
Examples of synthetic iconcentration data for a represevdati More precisely, the -values for the 5th order FIR lter are higher
participant and channel generated using task-relatedhan the reference because the slow trends of the signals were
components with Amplitude 1, Amplitude 2, and Amplitude 3 not removed e ectively, worsening the GLM- tting. The 1000th
are shown irFigure 5. order FIR lter also performs similarly to the 5th order BW BP
Due to the poor coupling between the fNIRS headset andter for which the -values are 7.58 10 7 for 1 HbO% and of
the head, channel 11 was excluded from further analyses2.26 10 7for 1 HbRC, demonstrating that FIR Iters require
for participant 11, and channel 14 and 16 were excludedhigher orders than IIR to achieve comparable performance.
for participant 18. Synthetic datasets simulating a block- For each task-related component amplitude, and each type of
design experiment with 20s task blocks were used to tedterand lter speci cation, 1 HbOS and1 HbR®, and1 HbO‘zDD
the performance of lters in reducing the unwanted noiseand 1 HbRCP were used to run statistical analyses by means
components in the fNIRS signals and in preserving the taskef the GLM approach. Since GLM-based analyses of fNIRS
evoked hemodynamic response. To achieve this, we applied tdata can be in uenced by serial autocorrelationsyalues were
type of lters and Iter speci cations summarized ifable 1to  estimated (i) with no correction for serial correlations) own-
the synthetic datasets. More precisely, we Itered botht@D  sampling to 1 Hz the ltered data, (iii) using the precoloring
and,1 HbO, and1 HbR time-series to determine the best signalmethod. The corresponding mediarrvalues computed for each
to Iter to obtain correct statistics. Prior the applicatiorf these participant across the 16 measurement channels were used to
Iters, we tested the stability of BW lters for data sampled atassess lters performance. To achieve this, we rst checked
5Hz using the zero-pole analysis, i.e., looking at the locati for the normality of the group -values distribution using the
of the poles of the lter transfer function with respect to the Shapiro-Wilk test, testing the null hypothesis that median
unitary circle in thez-plane. Filters with poles located within the values are normal at signi cance leveD 0.05. Results referring
unitary circles were considered stable. The procedure wageappl to BP Iters, Amplitude 1 andl HbO(z: obtained using the
to all the combinations of orders anB; and to both BP and precoloring method are shown iffable 2 and in Table 3 for
LP BW lters. Results for BP and LP lters are summarized in1 HbRC. The corresponding normality test results for LP and BP
Figures 6A,Brespectively. Green squares indicate stable Itersjters, all amplitudes,1 Hbog’D and 1 HbRPP are included in
red elements indicate unstable Iters. Supplementary Material 1
For instance, a BW BP lter for data sampled at 5Hz with Median -values were normally distributed for BW lters
order 5 andF; D [0.01 0.2] Hz results stable as all the poles ofp> a) according to the Shapiro-Wilk normality test. By contrast,
the transfer function are inside the unitary circl€igure 6C, for 1 Hbog the null hypothesis of normal distribution was
whereas the same BW with order 20 is unstabigre 6D). rejected p < ) for all the FIR Iters with an order< 500
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FIGURE 5 | Examples of syntheticl HbO, (red) and1 HbR (blue) signals for one channel of a representative pasipant. The black signal represents the task-related
component with Amplitude 1 (A), Amplitude 2 (B), and Amplitude 3 (C) added to the concentration data.

FIGURE 6 | Results of the lIter stability for the BP BW Iters(A) and LP BW lIters (B) for all the combination of orders andF¢. Green and red squares indicate stable
and unstable lters, respectively.(C,D) show examples of lIter stability analysis considering a BW BRter with F¢ D [0.01 0.2] Hz. The lter results stable for a Iter
order 5 (C), as the poles are inside the unitary circle as shown in the zan. By contrast, with an order: 20(D) the Iter becomes unstable. Zeros are indicated by blue
circles and poles by red crosses.
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FIGURE 7 | Examples of Itered 1 Hbog and 1 HbR® signals with Amplitude 1 for one channel of a representativparticipant using a 5th order BW BP lter A,B, red
and blue signals), a 5th order FIR BP IterG and D, green and magenta signals), and a 1000th order FIR BP lteig(F, light green and cyan signals) within the range
[0.01, 0.2] Hz. The estimated -values from the GLM tting of the Itered 1 Hbog' and 1 HbRC are included. The reference are8 10 7 for1 HbO, and of 2.7
10 7 for 1 HbR.

(Table 2 and with an order< 200 for 1 HbRC (Table 3. In  and no outliers are presentSipplementary Figures 910 in
fact, as also shown iRigure 7, FIR Iters require higher orders Supplementary Material 2), further demonstrating the need of
to e ectively remove unwanted noise. For instance, with lowe high orders.

orders, slow trends in the signals related to e.g., instmitiale The same is true for LP ltersTable 4 for 1 HbOS, and
noise or spontaneous physiological uctuations are not properl Table 5 for 1 HbRC), where median -values never follow a
Itered, introducing variability in the group -values, since normal distribution for any lter. In fact, especially in thisase,
these types of noise can dier from subject to subject. Aslower signal modulations related to instrumental noise and
1 HbR is less in uenced by physiological interferencigi(ina  slow vascular regulations are not ltered out since LP ker
et al.,, 2012; Zhang et al., 201&nd there is thus less inter- only attenuate noise with higher frequency content than Ege
subject variability, FIR Iters with orders 200 for are e ective reported inTable 1

enough forl HbR. This variability results in outliers that alter  In fact, outliers can be found for all the three lter
the -values distribution, as it can be observed in the boxiypes Supplementary Figures 1112in Supplementary Material
plots in Supplementary Figures 910 (Supplementary Material 2). This also results in an overestimation of thevalues

2) referring to the data inTables 2and 3, respectively. The since the noise ampli es the signal amplitude and change its
normality assumption is not violated when an order500 for dynamics. This applies for all amplitudes and Itered signals
1 HbO, and order> 200 for 1 HbR is used for FIR Iters (Supplementary Materials 1,2 The use of LP lIters on their
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TABLE 2 | Shapiro-Wilk test results computed onl Hbog BP ltered data, with Amplitude 1.

Order/ F¢ 0.01-0.09 Hz 0.01-0.2 Hz 0.01-0.3 Hz 0.01-0.5 Hz
W1s) p W(1s) p W(1s) p W(1s) p
BW
0.91 0.10 0.91 0.07 0.91 0.07 0.90 0.07
0.92 0.14 0.91 0.08 0.91 0.08 0.91 0.08
5 - - 0.93 0.21 0.93 0.20 0.93 0.19
20 - - - - - - - -
100 - - - - - - - -
200 - - - - - - - -
500 - - - - - - - -
1000 - - - - - - - -
FIR
0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03
0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03
0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03
20 0.77 9.85E-04 0.77 9.96E-04 0.77 1.01E-03 0.77 1.04E-03
100 0.77 1.09E-03 0.78 1.44E-03 0.78 1.43E-03 0.78 1.43E-03
200 0.85 1.14E-02 0.85 1.18E-02 0.85 1.17E-02 0.85 1.16E-02
500 0.92 1.09E-01 0.91 9.55E-02 0.91 9.23E-02 0.91 9.11E-02
1000 0.91 8.16E-02 0.91 7.44E-02 0.91 7.34E-02 0.91 7.34E-@2

W-values and corresponding p-values are reported. p< 0.05 are underlined, meaning that the null hypothesis that the -values are normally distributed is rejected at signi cance level
D 0.05. Results are not reported in case of unstable lters. *-' indicatesinstable lters for which the Shapiro-Wilk test was not carried out.

TABLE 3 | Shapiro-Wilk test results computed onl HbRC BP lItered data, with Amplitude 1.

Order/ F¢ 0.01-0.09 Hz 0.01-0.2 Hz 0.01-0.3 Hz 0.01-0.5 Hz
Wasg) p W 18) p W 18) p W 18) p
BW
3 0.95 0.48 0.95 0.50 0.95 0.50 0.95 0.48
0.95 0.51 0.95 0.44 0.95 0.47 0.95 0.48
- - 0.95 0.50 0.95 0.47 0.95 0.47
20 - - - - - - - -
100 - - - - - - - -
200 - - - - - - - -
500 - - - - - - - -
1000 - - - - - - - -
FIR
3 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03
0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03
5 0.81 3.32E-03 0.81 3.32E-03 0.81 3.32E-03 0.81 3.33E-03
20 0.81 3.11E-03 0.81 3.16E-03 0.81 3.23E-03 0.81 3.35E-03
100 0.82 4.25E-03 0.83 6.28E-03 0.83 6.25E-03 0.83 6.13E-03
200 0.94 2.97E-01 0.94 3.01E-01 0.94 3.01E-01 0.94 2.97E-01
500 0.93 1.76E-01 0.93 2.06E-01 0.93 2.09E-01 0.93 2.10E-01
1000 0.96 6.04E-01 0.96 6.04E-01 0.96 6.03E-01 0.96 6.01E-0L

W-values and corresponding p-values are reported. i< 0.05 are underlined, meaning that the null hypothesis that the-values are normally distributed is rejected at signi cance level
D 0.05. Results are not reported in case of unstable Iters. *-' indicatesinstable lIters for which the Shapiro-Wilk test was not carried out.
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TABLE 4 | Shapiro-Wilk test results computed onl Hbog LP ltered data, with Amplitude 1.

Order/ F¢ 0.09 Hz 0.1 Hz 0.14 Hz 0.5 Hz

W(18) p W (18g) p W (1g) p W (18) p
BW

0.77 1.04E-03 0.77 1.04E-03 0.77 1.03E-03 0.77 1.04E-03

0.77 1.05E-03 0.77 1.05E-03 0.77 1.03E-03 0.77 1.04E-03
5 0.77 1.08E-03 0.77 1.06E-03 0.77 1.04E-03 0.77 1.04E-03
20 - - - - - - 0.77 1.04E-03
100 - - - - - - - -
200 - - - - - - - -
500 - - - - - - - -
1000 - - - - - - - -
FIR

0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03

0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03 0.77 1.04E-03

0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03 0.77 1.03E-03
20 0.77 9.84E-04 0.77 9.85E-04 0.77 9.88E-04 0.77 1.03E-03
100 0.76 8.65E-04 0.77 9.39E-04 0.77 1.03E-03 0.77 1.05E-03
200 0.77 1.02E-03 0.77 1.05E-03 0.77 1.04E-03 0.77 1.05E-03
500 0.77 1.02E-03 0.77 1.05E-03 0.77 1.04E-03 0.77 1.04E-03
1000 0.77 1.04E-03 0.77 1.05E-03 0.77 1.04E-03 0.77 1.04E-03
MovAvg

0.77 1.03E-03 0.77 1.03E-03 0.77 1.04E-03 - -

W-values and corresponding p-values are reported. p< 0.05 are underlined, meaning that the null hypothesis that the -values are normally distributed is rejected at signi cance level
D 0.05. Results are not reported in case of unstable lters and £ D 0.5 Hz that corresponds to a null window length for the MovAvg lter. *-' indicates ustable Iters for which the
Shapiro-Wilk test was not carried out.

own has thus not enough performance for denoising fNIRS dateespect to the median -values computed with no correction
sothat LP Iters were excluded from further analyses. and down-sampling $upplementary Material 3. This further
Concerning the lter performance, we used one-sample establishes the precoloring as an e ective way of accounting f
tests to compare the group-values to the reference for each autocorrelation in fNIRS signal and a fundamental step for GLM
amplitude, ltered signals, type of Iter and Iter speci catizs. analyses\(e et al., 2009
In addition, this was done for data not corrected for serial We did not nd statistically signicant dierences
correlations, corrected through down-sampling and precaigri (p> 0.05) between corresponding -values computed on
(Supplementary Material 3. In Table 6 and Table 7we report 1 HbOSP/1 HbR®P and 1 HbOS/1 HbRC, suggesting that it
the results referring to the -values computed ond HbO‘Z: and does not make any di erence if the Iter is applied ioOD data
1 HbRC data corrected through the precoloring method, for prior the conversion in concentration changes orlt¢1bO» and
Amplitude 1. 1 HbR (Supplementary Material 3.
For our experimental design with thBs;y, of 0.025Hz, we

found that the best compromise across the three amplitude$)|SCUSSION

Itered signals, and in terms of outliersTables 2and 3) is
to use a BP FIR lter with order 1000 anB; D [0.01, 0.09] Since fNIRS is one of the most recent neuroimaging modalities
Hz (Supplementary Material 3. In fact, theF; range is more there is no agreement yet about the way of analyzing data and
centered and narrower around thBsim than the otherF:  describing the methodological details in research asic@e
ranges Table 1), and includes both thésim and the following have identi ed 110 papers published in 2016 which reported
two harmonics (2 Fsim and 3 Fgim), maximizing the task-related investigation of brain activity with fNIRS tteitify
hemodynamic content and removing unnecessary frequenayie most common missing information that is critical for any
components. These lter speci cations generally correspond tatudy replication or comparison. More precisely, we found that
smallestt-value that means more similarity to the referencenearly ¥4 of the papers did not report the sampling frequency

, i.e., a better recovery of the hemodynamic responsef the fNIRS acquisition, which is important for de ning some
Concerning the correction for serial autocorrelations, warfd  preprocessing parameters (e.g., lters' cut-o frequencié4dre
that the best results were obtained using the precoloringhan a half of the reviewed papers used BP lters to denoise fNIRS
method (ve et al., 2009 as the median -values are more dataand nearly halfemployed LP Iters. Among the articles gsin
similar to the reference for all the three amplitudes BP lters, 24 di erent F; were proposed with the most common

Frontiers in Human Neuroscience | www.frontiersin.org 13 January 2019 | Volume 12 | Article 505



Pinti et al. Investigation of fNIRS Signals Filtering

TABLE 5 | Shapiro-Wilk test results computed onl HbRC LP Itered data, with Amplitude 1.

Order/ F¢ 0.09 Hz 0.1 Hz 0.14 Hz 0.5 Hz
W) p W 18) p W 18) p W 18) p
BW
0.81 3.38E-03 0.81 3.38E-03 0.81 3.38E-03 0.81 3.34E-03
0.81 3.36E-03 0.81 3.37E-03 0.81 3.38E-03 0.81 3.34E-03
5 0.81 3.37E-03 0.81 3.37E-03 0.81 3.38E-03 0.81 3.34E-03
20 - - - - - - 0.81 3.34E-03
100 - - - - - - - -
200 - - - - - - - -
500 - - - - - - - -
1000 - - - - - - - -
FIR
3 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03
0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03 0.81 3.33E-03
0.81 3.32E-03 0.81 3.32E-03 0.81 3.32E-03 0.81 3.33E-03
20 0.81 3.11E-03 0.81 3.11E-03 0.81 3.13E-03 0.81 3.34E-03
100 0.80 2.60E-03 0.81 3.05E-03 0.81 3.42E-03 0.81 3.40E-03
200 0.82 3.65E-03 0.82 3.72E-03 0.81 3.47E-03 0.81 3.41E-03
500 0.81 3.48E-03 0.81 3.51E-03 0.81 3.43E-03 0.81 3.36E-03
1000 0.81 3.58E-03 0.81 3.49E-03 0.81 3.42E-03 0.81 3.35E-03
MovAvg
0.81 3.31E-03 0.81 3.32E-03 0.81 3.33E-03

W-values and corresponding p-values are reported. p< 0.05 are underlined, meaning that the null hypothesis that the-values are normally distributed is rejected at signi cance level
D 0.05. Results are not reported in case of unstable Iters and D 0.5 Hz that corresponds to a null window length for the MovAvg lter. *-' indicates ustable Iters for which the
Shapiro-Wilk test was not carried out.

being [0.01, 0.5] Hz (18.4% of the papers), and the most employed Supplementary Materials 1, 2,8 LP lters should thus be
Iter type was not de ned (i.e. Generic, 36.3%) followed by  combined with HP lters or detrending approaches (e.g.,
Butterworth lters (28.8%). In terms of LP lters, B; of 0.09 Hz linear detrending) to remove very slow trends and VLF from
was most often used. However, important Itering parameters  fNIRS data

are very often missing in articles (see section Literaturaéd®®, (3) the bestsignal denoisingis achieved usingaBP FIR lidr w
especially the lter type (36.3%jgure 2D) and the lter order high orders (e.g> 1000)

(59.7% Figure 2F). These are extremely important information (4) better results and more suitable statistics are obtaimieen
that must be explicitly included in research papers to allowrthe correcting the GLM-analysis for serial correlations by means
full replication and understanding. In addition, there is tnan of the precoloring methodupplementary Material 3.
agreement either on the lter typd{gure 2D) and the best signal
to lter ( Figure 20).

In order to clarify these aspects and to start setting the gcou
for common practice in lItering and analyzing fNIRS data, we
investigated the performance of the most frequently useddban
pass and low-pass lters in terms of their inuence on the
outcome of the statistical inference stepigure 1) in a GLM
framework. The main ndings of our simulation analysis using
synthetic fNIRS data were:

Here, we have only tested three di erent types of Iters withe®
speci cations based on the most common practices adopted
by the community. Further studies are needed that explore
additional Itering methods in case of e.g., event-relatexsign
and block-design experiments with variable durations, asithg
additional parameter speci cations. In the following seatio
we provide some recommendations and guidelines that we
believe could help users in designing an appropriate Iter for
fNIRS data and in disseminating the research procedures in
(1) there is no di erence in outcome of the statistical anatysearticles.

in terms of Itered signals (optical density or concentratjo

Supplementary Material 3

(2) low-pass lters and FIR lters with low orders<(500) RECOMMENDATIONS FOR FILTER

are not eective in removing the physiological VLF DESIGN AND THE WAY EORWARD
components and slow trends in the fNIRS signals, resulting

in higher inter-subjects variability that impacts on group- Figures shows the ow-chart of practica| steps (A_E)
level statistical analyses (section Materials and Methodgat we advise to follow to design an e ective lter for
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TABLE 6 | One samplet-test results computed on 1 Hbog BP lItered data, with Amplitude 1, comparing the group median -values to the reference , in case of
precoloring correction.

Order/ F¢ 0.01-0.09 Hz 0.01-0.2 Hz 0.01-0.3 Hz 0.01-0.5 Hz
tar p tar) p tar) p tr) p
BW
3 5.12 8.59E-05 5.10 8.98E-05 5.09 9.04E-05 511 8.69E-05
5.32 5.62E-05 5.22 6.87E-05 5.22 6.93E-05 5.25 6.49E-05
5 - - 5.09 9.04E-05 5.20 7.25E-05 5.20 7.27E-05
20 - - - - - - - -
100 - - - - - - - -
200 - - - - - - - -
500 - - - - - - - -
1000 - - - - - - - -
FIR
0.80 4.32E-01 0.88 3.91E-01 0.99 3.36E-01 1.32 2.04E-01
0.82 4.25E-01 0.95 3.57E-01 1.14 2.71E-01 1.68 1.12E-01
0.83 4.17E-01 1.03 3.18E-01 1.31 2.09E-01 2.05 5.58E-02
20 1.38 1.85E-01 3.11 6.32E-03 3.94 1.05E-03 2.35 3.13E-02
100 1.43 1.72E-01 5.95 1.59E-05 5.99 1.45E-05 5.98 1.48E-05
200 10.37 9.04E-09 10.63 6.29E-09 10.67 5.90E-09 10.74 5.41E-09
500 5.76 2.32E-05 5.93 1.66E-05 5.93 1.66E-05 5.93 1.66E-05
1000 -4.73 1.93E-04 4.93 1.27E-04 4.92 1.28E-04 4.92 1.29E-04

Underlined is the highest negative t-value obtained for a 1000th order BP Rl Iter. The t-value is negative as the reference (0.8) is higher than the group median -values (0.7).
*-'indicates unstable lters for which the t-test was not carried out.

TABLE 7 | One samplet-test results computed on 1 HbRC BP Itered data, with Amplitude 1, comparing the group median -values to the reference , in case of
precoloring correction.

Order/ F¢ 0.01-0.09 Hz 0.01-0.2 Hz 0.01-0.3 Hz 0.01-0.5 Hz
ta) p tar p tar p tar) p
BW
4.94 1.23E-04 4.82 1.61E-04 4.85 1.49E-04 4.88 1.41E-04
5.15 8.06E-05 5.06 9.67E-05 5.05 9.95E-05 5.01 1.07E-04
5 - - 4.96 1.19E-04 4.98 1.13E-04 4.94 1.25E-04
20 - - - - - - - -
100 - - - - - - - -
200 - - - - - - - -
500 - - - - - - - -
1000 - - - - - - - -
FIR
3.05 7.31E-03 3.12 6.24E-03 3.23 4.94E-03 3.55 2.45E-03
3.06 7.12E-03 3.18 5.42E-03 3.37 3.63E-03 3.90 1.16E-03
3.07 6.90E-03 3.26 4.58E-03 3.54 2.54E-03 4.27 5.22E-04
20 3.59 2.26E-03 5.28 6.12E-05 6.10 1.19E-05 455 2.81E-04
100 3.65 1.99E-03 3.71 1.76E-03 3.75 1.59E-03 3.74 1.64E-03
200 10.09 1.35E-08 10.48 7.79E-09 10.52 7.33E-09 10.59 6.65E-09
500 5.36 5.23E-05 5.56 3.49E-05 5.55 3.54E-05 5.55 3.54E-05
1000 4.01 9.05E-04 4.24 5.49E-04 4.23 5.61E-04 4.22 5.71E-04

Underlined is the lowest positive t-value obtained for a 1000th order BP FIfRer. The t-value is positive as the reference (-0.27) is smaller than the group median -values ( 0.24).
*-'indicates unstable Iters for which the t-test was not carried out.
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More precisely, the steps are the follows:

Step A) Frequency content assessrtientrst step we advise
to perform is to evaluate the frequency content of fNIRS signal
This will allow the identi cation of the stimulus frequencyabd
to preserve and of the physiological noise components (e.gt, hea
rate, respiration, Mayer waves) to remove. To this goal,aher
are di erent algorithms that can be used to e.g., compute the
Fast Fourier Transform (FFT) of the signal or the Power Sgectr
Density (PSD). For instance, iRigure 9 we used the Welch's
estimation method to compute the PSD (functiopwelch
window length: 120s; overlap: 50%) of the synthédtiebO,
and 1 HbR signals to assess the physiological noises frequency
ranges to remove. The PSD shows how the power of a signal is
distributed as a function of frequency. From the PSD of thiRN
signals of a representative participaktqure 9), we can identify
the heart rate component (1.3 Hz), the respiration component
( 0.25Hz), and the Mayer wave componentQ.09 Hz); these
are frequencies that we want to remove. We can also identiy th
stimulation frequencyKsim D 1/40 sD  0.025Hz in our case)
that we want to preserve; and that guides the choice ofthaf
the lter.

Step B) Filter characteristitie rst choice to make prior to
designing a lter is the lter characteristic (BP/LP/HP). Based
on the literature review (see section Literature Review) aund
results, a BP lter achieves the highest performances in the
outcome of statistical analyses. In fact, a LP Iter aloneas n
enough as it does not remove the VLF frequencies correspgndin
to the very low vasomotion regulations and instrumental s®i
(e.g., low trends) (see section Materials and Methods).

Step C) Filter typ®i erent BP lters are available (e.g., FIR or
IIR). Based on our results (see Section Materials and Methods),
we recommend the use of BP FIR lters as they are (i) more
stable and hence easier to control than IIR Iters (i.e., thiput
is always nite), and (ii) do not introduce phase distortionsca
phase shift across the whole frequency band.

Step D) Cut-o frequencies selectidar BP lters, two cut-o
frequencies must be selected. The lovilg$E. |ow,) Will allow the
frequencies higher thaR o to pass. The highest (F¢ high)
will allow the frequencies lower thef, high to pass. In this way,

Fe, low @nd Fg high de ne the passband of the BP lter, i.e. the
frequency range that can pass through the It€idure 10A).

The cut-o frequency choice is a compromise between noise
reduction and hemodynamic signal maximization. In fact,ilsh
it is relatively easy to remove e.g., the heart rate component
and the VLF such as those related to vascular endothelial
regulations £ 0.01 (Ylcel et al., 20)f other components [e.g.,
Mayer waves or vascular neurogenic regulation8.04 HzY ticel
et al., 201 might overlap or be very close to the stimulation
frequency. This must be taken into consideration when desmgn
the experimental protocol, e.g., avoiding 10 s blocks oventeppi
FIGURE 8 | Digital Iter design ow-chart. the Mayer waves frequency and using variable rest durations.
We also have to consider that it is impossible to design ideal
digital lters (Figure 10A) where the Iter amplitude response
is rectangular with very sharp passband edges that allow an
fNIRS data. Here, we considet HbO, and 1HbR as exact separation between passband and stopband and e.g., a
the signals to Iter, but the same ow-chart applies to precise separation between stimulation and noise frequericies
10D. reality, one also has to consider the transition band (whidth w
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FIGURE 9 | Example of1 HbO, and 1 HbR signals with Amplitude 1 for one channel of a representate participant in the time domain (left panel) and frequegc
domain (right panel). The PSD transforms the fNIRS signal frothe time domain into the frequency domain. This allows thelenti cation of the noise components
(heart rate, breathing rate, Mayer waves) and the stimulati component, as shown in the left panel.

FIGURE 10 | Filter amplitude response for ideal IterqA) and real Iters (B).

depend on the Iter order and type, s&ep EandFigure 108, frequency as task block/event durations smaller than 10@s a
which includes the frequency components that are progrelssivetypically used. In case of stimulation protocols in which brai
attenuated from 3 dB (i.e., theF;) to the total attenuation activity is expected to be sustained for periods longer thahs]0
of the lter. Therefore, some of the signal's frequenciessme then a smaller; |0, Should be used. Neurogenic regulations
the passband will be attenuated and will still pass through thé 0.04 Hz) can be di cult to remove as they are really close to
Iter. our stimulation frequency (0.025Hz). By choosing a passband
In our case with 20s task-rest periods, the stimulationin the range [0.01, 0.09] HZ={gure 11A), we can ensure that
frequency (0.025Hz) does not overlap with the Mayer wavéhe stimulation frequency falls within the at passband regi
component ( 0.09 Hz). In this way, based dfigure 9, we can (0 dB attenuation;Figure 10B and is not attenuated, and
setF¢ high D 0.09Hz so that the Mayer wave, breathing ratethat additional unnecessary components are not preserved. Fo
heart rate components can be ltered out, and we include alsinstance, if higheiF nigh is used such as 0.6 HFigure 118
the second and third harmonic of the fundamental stimulatio and 1.2 Hz Figure 11Q, higher frequency oscillations in the
frequency (i.e., 2 Fsimand 3 Fsiim) that still have substantial signals are included, worsening the GLM-tting as shown
information. In terms of F; jow, F; 1ow D 0.01Hz is typically by the estimated -values that are more dissimilar to the
used Figure 2). It allows to e ectively remove very slow trends reference (8 10 7 for 1 HbO, and of 2.7 10 7 for
and vascular endothelial regulation¥'i(cel et al., 20)6in 1 HbR) than the ones obtained with the range [0.01, 0.09] Hz
fNIRS signals, as slow as 100s, and to preserve the stimulatif@figure 11A).
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FIGURE 11 | Examples of Itered 1 HbO, (red) and1 HbR (blue) signals with Amplitude 1 for one channel of a repsentative participant. Un Itered1 HbO, and 1 HbR
are presented in black. -values (in red forl HbO, and in blue forl HbR) are included as well(A) shows properly Itered 1 HbO, and 1 HbR data (BP FIR lter, order
D 1,000, F¢ D [0.01, 0.09] Hz) where the stimulation frequency (0.025 Hz$ correctly included in theF¢ range, so that the hemodynamic response component is
preserved and the -values are the closest to the reference (8 10 7 for 1 HbO, and of 2.7 10 7 for 1 HbR).(B,C) present ltered 1 HbO, and 1 HbR (BP FIR
Iter, order D 1,000) with wider passband ranges ¢ D [0.01, 0.6] Hz andF¢ D [0.01, 1.2] Hz, respectively) that let pass also unnecessgthigher frequency noise (i.e.,
faster oscillations in the signals) that worsen the t with ta GLM approach. (D), wrongly Itered 1 HbO, and 1 HbR data (BP FIR lter, orderD 1,000, Fc D [0.01 0.015]
Hz) are presented, where the stimulation frequency (0.025%) is not included in theF¢ range, and the hemodynamic response component is strongly tenuated.

Including the stimulation frequency in the at passband— should be used. This is not always possible with IIR Iters
and in the passband in general—is extremely important to avoibecause, as demonstratedHigure 6, they can become unstable
removing the hemodynamic responses that can correctly pasgth higher orders in certain passband ranges. On the cogtrar
through the lter (Figure 11A). If the F¢ pign is lower than the FIR lters are always stable and high orders can be used to
stimulation frequency, for instandg, nigh D 0.015Hz as shown maximize the performance. Based on our analyses, e ective
in Figure 11D, the task-related component is strongly attenuatedltering can be achieved with orded 1000. Through the use of
and can lead to false negatives in the statistical infereteyg as a high order and a passband with a range of [0.01, 0.09] Hz, we
proven by the very small-values compared to the reference  obtain a lter that has a at passband region (0 dB attenuation)

In case the stimulation protocol has dierent task-restincluding the stimulation frequency and a narrow transitiband
durations, a stimulation frequency rang&sfm min Fstim_mad  (Figure 12 for illustration purposes, the frequency axis limit is
must be identi ed and preservedrstim_min iS the inverse of the setat 0.2 Hz).
maximum block duration (e.g., the maximum rest duratiGrthe For an e ective lter design and to choose appropriate lters
maximum task duration)Estim_maxiS the inverse of the minimum  parameters, a useful tool is to look at the amplitude response
block duration (e.g., the minimum rest duratidd the minimum  of the lIter [e.g., using the Matlab functiorfireqz or the Iter
task duration); visualization tool FVtoo)] to optimize the passband based

Step E) Order selectidm: order to minimize the transition on the task design and the transition band. For instance, a
band (Figure 10B and make the Iter response more similar to sharper transition band can be achieved increasing the Iter
the response of an ideal lterHigure 10A), high Iter orders order (i.e., the higher the order, the higher the slope of the
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response in the transition band). Di erent formulas have beerestimation accuracy can decrease when the band ripples are not
proposed for the estimation of the optimal FIR Iter order equal and the passhand and stopband are very narrow respect to
to meet the design specication. The two oldest ones ar¢he transition band. Hermann-Rabiner-Chan's formula prdes

the Kaiser's aiser, 197y and the Hermann-Rabiner-Chan's a solution for equiripple lters with either very narrow or ver
(Herrmann et al., 1973formulas. The Kaiser's formula is the wide bandwidth. However, both formulas were optimized for
simplest and expresses the Iter order as inversely proportionalter orders smaller than 150 and only for FIR Iters with odd

to the transition bandwidth (functiorkaiserordin Matlab). The orders or length. New estimation methods were later proposed,
e.g.,Ichige et al. (2000{Ichige et al., 2000 to overcome the
abovementioned limitations.

Besides the optimization of fNIRS signals preprocessing, there
are other aspects that have to be taken into consideration
to improve the information communicated within the fNIRS
papers. Following the experimental stream kigure 1, we
summarized inFigure 13the work ow that we think should be
applied when conducting a typical neuroscience experiment with
fNIRS. More importantly, for each stage of the process, we have
indicated in red the information that we recommend to use and
report in the methods section of any fNIRS research article.

Our recommendations refer to basic procedures and the
work ows shown in Figures 12 13 can be expanded with
further improvements, such as integrating fNIRS measuresient
with simultaneous systemic physiology recordings or using
short-separation channels to allow a better interpretatidn o
fNIRS neuroimaging data and to formulate more accurate
neuroscienti ¢ conclusionsTachtsidis and Scholkmann, 2016
For instance, these measurements can be easily integnated i
the GLM framework as additional regressors in the design
matrix, making this approach even more powerful and versatile.
Moreover, other approaches can be included as an additional ste
between phase 3 and phase 4 of the work owFigure 13 such
as the principal component spatial Iter developed by Zhang and

FIGURE 12 | Filter amplitude response considering a BP FIR lter with ordeD
1000 and F¢ D [0.01, 0.09] Hz.

FIGURE 13 | Basic work ow to conduct a typical neuroscience experiment wth fNIRS. Information and parameters that we advise to repoih research papers are
indicated in red and the ones we recommend to use are presentgin green.
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colleagues4hang et al., 20)6to remove the global systemic FS, IT, AH, and PB contributed to the interpretation of the

e ects from fNIRS data, or combining the HhOand HbR
signals in e.g., the activation signal [through the cotiela
based signal improvemen€(i et al., 201)], total hemoglobin
(HbT D HbO, C HbR) or hemoglobin dierence [H D
HbO, — HbR (Tachtsidis et al., 200Pand use the combined
signal to carry out the statistical inference. However, fihesent
work ows (Figures 12 13) represent the starting point toward

results and to the manuscript writing. All authors provided
critical feedback and helped shape the research, analysls, an
manuscript.
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