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Vitamins are micronutrients that have physiological effé® on various biological
responses, including host immunity. Therefore, vitamin deiency leads to increased

risk of developing infectious, allergic, and in ammatory i$eases. Since B vitamins are
synthesized by plants, yeasts, and bacteria, but not by mamrals, mammals must acquire
B vitamins from dietary or microbial sources, such as the iestinal microbiota. Similarly,
some intestinal bacteria are unable to synthesize B vitansrand must acquire them from

the host diet or from other intestinal bacteria for their gneth and survival. This suggests
that the composition and function of the intestinal microlmta may affect host B vitamin
usage and, by extension, host immunity. Here, we review the@rimunological functions
of B vitamins and their metabolism by intestinal bacteria Wi respect to the control of

host immunity.
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INTRODUCTION

The gut is continuously exposed both to toxic (e.g., pathogemicroorganisms) and bene cial
(e.g., dietary components, commensal bacteria) compoundsn@inroorganisms; therefore, the
intestinal immune system must maintain a healthy balande/ben active and suppressive immune
responses. This balance is controlled not only by host imnfaotrs such as cytokines but also by a
variety of environmental factors such as dietary componantsthe composition of the commensal
bacteria. Furthermore, several lines of evidence have dstraded that immune homeostasis in
the intestine is related not only to intestinal health bus@lto the health of the whole body+
3). Therefore, immune regulation by environmental fact@sattracting attention as a means of
maintaining immunological health and preventing many dises

Nutrients are essential for the development, maintenannd, fanction of the host immune
system 4, 5). Vitamins are essential micronutrients that are synthediby bacteria, yeasts, and
plants, but not by mammals. Therefore, mammals must obtaimviita from the diet or rely on
their synthesis by commensal bacteria in the gastroimastract. Some vitamins are water-soluble
(e.g., vitamin B family and vitamin C), whereas others atrestduble (e.g., vitamins A, D, E, and K).
Water-soluble vitamins are not stored by the body and any ex@eexcreted in the urine; therefore,
it is important to consume a diet containing the necessary ante of these vitamins. Vitamin
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de ciency associated with insu cient dietary intake ocaunot  de ciency leads to decreased IgA antibody responses to oral
only in developing countries but also in developed countreaa vaccinesZl).
result of increased use of unbalanced dit ( Vitamin B1 is found in high concentrations as thiamine
In addition to the diet, the commensal bacteria are recogdiz pyrophosphate (TPP) in meat (particularly pork and chicken);
as important players in the control of host health-0). Fromthe  eggs; cereal sprouts and rice bran; and beans. Dietary TPP
point of view of vitamins, commensal bacteria are both provéde is hydrolyzed by alkaline phosphatase and converted to free
and consumers of B vitamins and vitamin K. Although dietarythiamine in the small intestine2?). Free thiamine is absorbed
B vitamins are generally absorbed through the small imesti by the intestinal epithelium via thiamine transporters (g.g.
bacterial B vitamins are produced and absorbed mainly throug THTR-1, THTR-2) and transported to the blood for distribution
the colon (L0, 11), indicating that dietary and gut microbiota- throughoutthe body{1). Free thiamine is converted back to TPP
derived B vitamins are possibly handled di erently by the humanand is used for energy metabolism in the TCA cycle.
body. B vitamins are important cofactors and coenzymes in Various types of intestinal bacteria, mostly in the colorsoal
several metabolic pathways, and it has been reported recenflyoduce vitamin B1 as both free thiamine and TPPL(23).
that B vitamins also play important roles in the maintenance ofn the colon, free bacterial thiamine is absorbed mainly by
immune homeostasislg, 13). Thus, both dietary components thiamine transporters, transported to the blood, and disttiuxl
and the gut microbiota modulate host immune function via throughout the body; this mechanism is similar to how free
B vitamins. Here, we review the metabolism and function ofietary thiamine is taken up in the small intestine. However
dietary and gut microbiota-derived B vitamins in the coritad  unlike in the small intestine, TPP produced by the gut micathi
host immunity. is not converted to free thiamine, because alkaline phospéatas
is not secreted in the colon2{). Instead, TPP is absorbed
directly by the colon via TPP transporters (e.g., TPPT-1) that
VITAMIN B1 are highly expressed on the apical membrane of the colon
(29. The absorbed TPP enters the mitochondria via MTPP-1,
Vitamin B1 (thiamine) is a cofactor for several enzymesa TPP transporter that is expressed in the mitochondrial inner
including pyruvate dehydrogenase and-ketoglutarate membrane and is used as a cofactor for ATP generatiéh This
dehydrogenase, which are both involved in the tricarboxaticl ~ suggests that bacterial TPP is important for energy germrati
(TCA) cycle (4, 15). World Health Organization (WHO)/Food the colon. Thus, dietary and bacterial vitamin B1 appears teha
and Agriculture Organization (FAO) recommend a daily di erentroles inthe host.
vitamin B1 intake of 1.1-1.2mg for adultlf). Vitamin B1 The vitamin B1 structure consists of a thiazole moiety linked
de ciency causes lethargy and, if left untreated, can dgvel to a pyrimidine moiety. Bacteria obtain the thiazole moietyrf
into beriberi, a disease that aects the peripheral nervouglycine or tyrosine and 1-deoxy-xylulose-5-phosphate, and
system and cardiovascular system. Accumulating evideng#ants and yeasts synthesize it from glycine and 2-pentul®se (
suggests that energy metabolism—particularly the baland). In both bacteria and plants, the pyrimidine moiety is dedve
between glycolysis and the TCA cycle—is associated with tfiem 5-aminoimidazole ribonucleotide, an intermediate inet
functional control of immune cells, in what is now referremlds  purine pathway 29). Metagenomic analyses of the human gut
immunometabolism {7). microbiota predict thatBacteroides fragiliand Prevotella copri
Immunometabolism is well studied in T cells and (phylum Bacteroidetesflostridium di cile, somelLactobacillus
macrophages; quiescent or regulatory-type cells (e.g.,enaispp., andRuminococcus lactarigirmicutes); Bi dobacterium
T cells, Treg cells, and M2 macrophages) use the TCA cycle fepp. (Actinobacteria); andrusobacterium variunare vitamin
energy generation, whereas activated or pro-in ammatoryB1 producers Table 1) (10, 46), implying that many intestinal
cells (e.g., Thl, Th2, Thl7, and M1 macrophages) udeacteria possess acomplete vitamin B1 synthesis pathway, which
glycolysis (8 19). includes pathways for the synthesis of thiazole and pyringdin
Previously, we examined B cell immunometabolism in thdndeed, Lactobacillus caseproduces thiamine during the
intestine. In the intestine, naive immunoglobulin (Ig)%B cells  production of fermented milk drinks %1), and Bi dobacterium
di erentiate into IgAC B cells in Peyer's patches (PPs) by clasmfantisand B. bi dum produce thiamine in culture supernatant
switching, and then Ig& B cells di erentiate into IgA-producing  (32). HoweverFaecalibacteriurapp. (Firmicutes) lack a vitamin
plasma cells in the intestinal lamina propriadj. Naive B cells B1 synthesis pathway even though they require vitamin B1 for
in PPs preferentially use a vitamin B1-dependent TCA cycle fatheir growth (L0). Therefore, these bacteria must obtain their
the generation of ATP. However, once the B cells di erentiatevitamin B1 from other bacteria or from the host diet via a
into IgA-producing plasma cells, they switch to using glysady thiamine transporter, suggesting that there is competition f
for the generation of ATP and shift to a catabolic pathway forvitamin B1 between the host and certain intestinal bacteria
the production of IgA antibody Figure 1). Consistent with the
importance of vitamin B1 in the maintenance of the TCA cycle,
mice fed a vitamin B1-de cient diet show impaired maintenanc \/|[ TAMIN B2
of naive B cells in PPs, with little e ect on IgA-producing plaam
cells. Since PPs are the primary sites of induction of antigerVitamin B2 (ribo avin) and its active forms (avin adenine
speci ¢ IgA responses, PP regression induced by vitamin Bdinucleotide [FAD] and avin mononucleotide [FMN]) are
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FIGURE 1 | Vitamin B1 and B2-mediated immunometabolism in B cell diffentiation in the intestine. Vitamin B1 acts as a cofactor foenzymes such as pyruvate
dehydrogenase anda-ketoglutarate dehydrogenase that are involved in the TCAycle. Vitamin B2 acts as a cofactor for enzymes such as succate dehydrogenase
in the TCA cycle and acyl-CoA dehydrogenase in fatty acid odation (FAO, also known ash-oxidation). Naive B cells preferentially use the TCA cycler ef cient
energy generation. Once B cells are activated to differemtie into IgA-producing plasma cells, they utilize glycolysifor the production of IgA antibody.

Naive B cell

cofactors for enzymatic reactions in the TCA cycle and inyfat L. fermentum and Ruminococcus lactar{&irmicutes) express
acid oxidization (also known as-oxidization) (15). WHO/FAO  factors essential for vitamin B2 synthesis, suggestingttieste
recommends a daily vitamin B2 intake of 1.0-1.3 mg for adultdacteria are an important source of vitamin B2 in the large
(16). Vitamin B2 de ciency suppresses the activity of acyl-intestine {Table 1). In contrast, Bi dobacterium spp., and
CoA dehydrogenases involved in the oxidation of fatty a¢als Collinsellaspp. (Actinobacteria) lack a vitamin B2 pathway.
generate acetyl-CoA, which is used by mitochondria to preduc Supplementation of fermented soymilk containibhgctobacillus
ATP via the TCA cycle. Fatty acid oxidization is involvedplantarum with ribo avin de cient diet has been shown to
in the activation, di erentiation, and proliferation of immua promote vitamin B2 production and prevent vitamin B2
cells through the generation of acetyl-CoA and its entryoint de ciency in mice 35). L. fermentumisolated from sourdough
TCA cycle ¢7). This suggests that vitamin B2 is associate¢an synthesize ribo avinin vitro (36). Furthermore, recent
with the control of dierentiation and function of immune evidence indicates that some species in Bacteroidetes phylum
cells through regulation of fatty acid oxidizatiorFigure );  produce more ribo avin than do Actinobacteria and Firmicste
however, the immunological roles of vitamin B2 in the cortro phyla (5. However, Actinobacteria and Firmicutes phyla
of host immunity remain to be investigated. In addition to still express ribo avin transporter and the enzymes necgssar
energy generation, vitamin B2 is associated with reactkygen for FAD and FMN generation from free ribo avin (i.e., FAD
species (ROS) generation inimmune cells through the priming afynthases and avin kinases)L{ 56), suggesting that all
NADPH oxidase 248); ROS are important e ector and signaling bacteria, including those that are unable to synthesizanviih
molecules in in ammation and immunity. B2 themselves, require FAD and FMN for their growth and
Vitamin B2 is found at high levels in leafy green vegetablesurvival. Thus, as with vitamin B1, there is likely competitfor
liver, and eggs. Dietary vitamin B2 exists as FAD or FMN and isibo avin between the host and the commensal bacteria.
converted to free ribo avin by FAD pyrophosphatase and FMN In addition to being able to produce vitamin B2, some
phosphatase in the small intestiné9( 50). Free ribo avin is bacteria (e.g., commensals such_astobacillus acidophilwsd
absorbed via ribo avin transporter expressed on the epithreliu pathogens such aslycobacterium tuberculosésd Salmonella
of the small intestine and is then released into the bloodthe  typhimurium) produce the vitamin B2 intermediaté& (-59), 6-
blood, free ribo avin is converted back to FAD or FMN and hydroxymethyl-8p-ribityllumazine 60, 61). 6-Hydroxymethyl-
distributed throughout the bodyH1-53). 8-D-ribityllumazine binds to major histocompatibility complex
Bacterial vitamin B2 is synthesized from guanosinelass I-related gene protein (MR1) on antigen-presenting
triphosphate (GTP) and-ribulose 5-phosphate5d). Bacterial cells; this causes mucosal-associated invariant T (MAITS,ce
vitamin B2 exists as free ribo avin, which is directly aldsed in an abundant population of innate-like T cells, to produce
the large intestine, converted to FAD or FMN, and distributedcytokines such as interferon gamma and interleukin (IL) 17,
throughout the body as described aboaS)( A metagenome which contribute to host defense against pathogefigyre 2
analysis of the human gut microbiota by Magnusdottir et al.(62). It is thought that stimulation by commensal bacteria
(10) has predicted thaBacteroides fragiliand Prevotella copri contributes to the development and activation of MAIT cells
(Bacteroidetes)Clostridium di cile, Lactobacillus plantarum for immunological surveillance against pathogens. MAIT cells
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TABLE 1 | Vitamin B family producing bacteria.

Vitamins  Forms Bacteria References
B1 Thiamin Bacteroides fragilis (10, 31-33)
pyrophosphate Prevotella copri
(TPP) Clostridium dif cile

Lactobacillus casei
Lactobacillus curvatus
Lactobacillus plantarum
Ruminococcus lactaris
Bi dobacterium infantis
Bi dobacterium bi dum
Fusobacterium varium

B2 Flavin adenine Bacteroides fragilis (10, 34-36)
dinucleotide (FAD)  Prevotella copri
Flavin Clostridium dif cile
mononucleotide Lactobacillus plantarum
(FMN) Lactobacillus fermentum
Ruminococcus lactaris
B3 Nicotinic acid Bacteroides fragilis (10, 32)
Nicotinamide Prevotella copri

Ruminococcus lactaris
Clostridium dif cile
Bi dobacterium infantis
Helicobacter pylori
Fusobacterium varium
B5 Free pantothenic Bacteroides fragilis (20)
acid Prevotella copri
Ruminococcus lactaris
Ruminococcus torques
Salmonella enterica
Helicobacter pylori
B6 Pyridoxal Bacteroides fragilis (10, 32)
phosphate (PLP) Prevotella copri
Bi dobacterium longum
Collinsella aerofaciens
Helicobacter pylori
B7 Free biotin Bacteroides fragilis (20, 37)
Lactobacillus helveticus
Fusobacterium varium
Campylobacter coli
B9 Tetrahydrofolate Bacteroides fragilis (10, 38-41)
(THF) Prevotella copri
Clostridium dif cile
Lactobacillus plantarum
Lactobacillus delbrueckii
ssp. bulgaricus
Lactobacillus reuteri
Streptococcus thermophilus
Bi dobacterium
pseudocatenulatum
Bi dobacterium
adolescentis
Fusobacterium varium
Salmonella enterica
B12 Adenosylcobalamin  Bacteroides fragilis (20, 32, 33,
Prevotella copri 42-45)
Clostridium dif cile
Faecalibacterium prausnitzii
Ruminococcus lactaris
Propionibacterium
freudenreichii
Lactobacillus plantarum
Lactobacillus coryniformis
Lactobacillus s reuteri
Bi dobacterium animalis
Bi dobacterium infantis
Bi dobacterium longum
Fusobacterium varium

also produce in ammatory cytokines and have tissue-homing
properties, suggesting that these cells are also involved in the
development of autoimmune and in ammatory diseas&s)(

VITAMIN B3

Vitamin B3 (niacin) is generally known as nicotinic acid and
nicotinamide. These compounds are precursors of nicotinamid
adenine dinucleotide (NAD), a coenzyme in the cellular redox
reaction with a central role in aerobic respiration. WHO/FAO
recommends a daily vitamin B3 intake of 11-12mg for
adults (L6).

Vitamin B3 is also a ligand of GPR109a, a G-protein coupled
receptor expressed on several types of cells, including immune
cells 64). Vitamin B3—GPR109a signaling induces di erentiation
of regulatory T cells and suppresses colitis in a GPR109a-
dependent mannerds). Vitamin B3 also inhibits the production
of the pro-in ammatory cytokines IL-1, IL-6, and tumor necss
factor alpha (TNFa) by macrophages and monocytésdure 3)

(66). Thus, vitamin B3 has anti-in ammatory properties by
modulating host immune cells and playing an important role
in the maintenance of immunological homeostasis. Indeed, in
humans, vitamin B3 de ciency causes pellagra, which is a diseas
characterized by intestinal in ammation, diarrhea, dertitig,

and dementia§7).

Unlike the other B vitamins, vitamin B3 can be generated
by mammals via an endogenous enzymatic pathway from
tryptophan and is stored in the liver, although it is also obtain
from the diet £8). Animal-based foods such as sh and meat
contain vitamin B3 as nicotinamide, and plant-based foodshsu
as beans contain vitamin B3 as nicotinic acid. Both nicatiide
and nicotinic acid are directly absorbed through the small
intestine, where nicotinic acid is converted to nicotinal®i

Vitamin B3 is also synthesized from tryptophan by intestinal
bacteria 69, 70). Bacteroides fragiliand Prevotella copri
(Bacteroidetes);Ruminococcus lactarisClostridium di cile
(Firmicutes); Bidobacterium infantis (Actinobacteria);
Helicobacter pyloriProteobacteria); anéusobacterium varium
(Fusobacteria) possess a vitamin B3 biosynthesis pathway
(Table J) (10, 71). Thus, many intestinal bacteria from various
genera can produce vitamin B3, suggesting that both dietary
and commensal bacteria-derived vitamin B3 are important for
host immunity.

VITAMIN B5

Vitamin B5 (pantothenic acid) is a precursor of coenzyme A
(CoA), which is an essential cofactor for the TCA cycle arityfa
acid oxidation 2. WHO/FAO recommends a daily vitamin
B5 intake of 5.0 mg for adultsif). Like vitamins B1 and B2,
vitamin B5 is involved in the control of host immunity via
energy generation by immune cells. Vitamin B5 de ciency cause
immune diseases such as dermatitis, as well as non-immune-
related conditions such as fatigue and insomnigd( In a
randomized, double-blind, placebo-controlled study in ddu
dietary supplementation with vitamin B5 was shown to improve
facial acne 14), suggesting that epithelial barrier function
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FIGURE 2 | Regulation of MAIT cells by microbial metabolites deriveddm vitamin B2 and B9. Commensal bacteria/pathogens producelte vitamin B2 metabolite
6-hydroxymethyl-8-D-ribityllumazine. It binds to major Btocompatibility complex (MHC) related protein (MR1) on aigen-presenting cells, which activate mucosal
associated invariant T (MAIT) cells to promote the productioof in ammatory cytokines such as IFNg and IL-17. These reactions contribute to defense against
pathogens and conversely are associated with in ammation. Ircontrast, the vitamin B9 metabolite acetyl-6-formylpteri binds as an antagonist to MR1, thus inhibiting
the activation of MAIT cells.

FIGURE 3 | Pivotal roles of vitamins B3, B7, and B9 in maintenance of imomological homeostasis. Vitamin B3 binds to GPR109a in denitic cells and
macrophages, and GPR109a signaling leads to an increase inndi-in ammatory properties, resulting in differentiatiorinto regulatory T cells (Treg). Vitamin B7 binds to
histones and, by histone biotinylation, suppresses the saetion of pro-in ammatory cytokines. Once naive T cells difrentiate into Treg cells, they highly express folate
receptor 4 (FR4). Consistent with this nding, vitamin B9 isequired for the survival of Treg cells.

improves via the promotion of keratinocyte proliferation and cysteamine inhibits peroxisome proliferator-activated efgtor
di erentiation into broblasts (75. To maintain vitamin B5 gamma (PPAB) signaling, causing in ammation77). Indeed,
levels during times of deciency, CoA is converted backcolitis has been improved in pantetheine-producing-enzyme
to vitamin B5 or cysteamine via pantethein€6|. However, knockout mice (8. Thus, vitamin B5 de ciency causes
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in ammation through both dysfunction of the epithelial bder  arthritis (86). However, the mechanism underlying the regulation
and the production of pro-in ammatory molecules. of in ammation by vitamin B6 is currently unknown. Vitamin
In terms of immune responses, vitamin B5 enhance®6 contributes to intestinal immune regulation through the
protective activity againg¥lycobacterium tuberculosisfection  metabolism of the lipid mediator sphingosine 1-phosphate (S1P).
by promoting innate immunity and adaptive immunity. In mice, S1P regulates lymphocyte tra cking into the intestines, espkly
vitamin B5 supplementation activates phagocytosis and ayéoki in the large intestine. Lymphocyte tra cking is dependent ohFS
production (including IL-6 and TNFa) by macrophages and gradient which is created by S1P production and its degradati
subsequently promotes Th1l and Th17 responses for the clearar81P degradation is mediated by S1P lyase that requiresimitam
of M. tuberculosisfrom the lungs (9. Thus, vitamin B5 B6 as a cofactor. The administration of vitamin B6 antagbnis
contributes to host defense by activating immune responsesnpairs S1P lyase activity and creates an inappropriate S1P
suggesting that this vitamin has an important role as &gradient, resulted in impairing lymphocyte migration from
natural adjuvant. lymphoid tissues and reducing the numbers of lymphocytes
Vitamin B5 is found in high concentrations as CoA or in the intestines §7). The lymphocytes located between gut
phosphopantetheine in liver, eggs, chicken, and fermentedpithelial cells are known as intraepithelial cells (IELs) Wwhic
soybeans. CoA and phosphopantetheine are converted to freee involved in the protection against pathoge88)( Therefore,
pantothenic acid by endogenous enzymes such as phosphatagamin B6 is important role for immunosurveillance in
and pantetheinase in the small intestine. Free pantotheritt acthe intestines.
is absorbed via sodium-dependent multivitamin transporter Vitamin B6 is abundant in sh, chicken, tofu, sweet potato,
(SMVT) expressed on the epithelium of the small intestine anénd avocado. Dietary vitamin B6 exists as PLP or PMP; it
is then released into the bloo@(@). Finally, free pantothenic acid is converted to free vitamin B6 by endogenous enzymes such
is converted back to CoA and distributed throughout the bpdy as pyridoxal phosphatase and is then absorbed by the small
particularly to the liver and kidney. intestine. Although absorption of vitamin B6 through acighiel-
Bacterial vitamin B5 is synthesized from 2-dihydropantoatalependent and carrier-mediated transport has been shown, an
and b-alanine viade novosynthesis pathwaysl(). Bacterial intestinal pyridoxine transporter is yet to be identied in gn
vitamin B5 exists as free pantothenic acid, which is directlynammalian specied (). After the absorption of free vitamin B6,
absorbed in the large intestine, converted to Co0A, andtenters the blood and is converted back to PLP or PMP.
distributed in the same way as dietary vitamin B5. According Microbial vitamin B6 is synthesized as PLP from
to a genomic analysigacteroides fragiliand Prevotella copri deoxyxylulose 5-phosphate and 4-phosphohydroxy-L-threonine
(Bacteroidetes); somBuminococcuspp. R. lactarisand R.  or from glyceraldehyde-3-phosphate abndibulose 5-phosphate
torque$ (Firmicutes);Salmonella enteri@ndHelicobacter pylori  (10). In the large intestine, bacteria-derived PLP is conwkrte
(Proteobacteria) possess a vitamin B5 biosynthesis pathwdg, free vitamin B6, which is absorbed by passive transport,
indicating that intestinal commensal bacteria can producdransported to the blood, and distributed throughout the body
vitamin B5. In contrast, mostrusobacterium(Fusobacteria) Metagenomic analysis has shown tHBacteroides fragilis
and Bi dobacteriumspp. (Actinobacteria) and some strains ofand Prevotella copriBacteroidetes)Bi dobacterium longum
Clostridium di cile, Faecalibacteriurspp., and_actobacilluspp. and, Collinsella aerofacien@ctinobacteria), andHelicobacter
(Firmicutes) lack such a pathwaygble 1), although some of pylori (Proteobacteria) possess a vitamin B6 biosynthesis
them do express pantothenic acid transporter to utilize vitami pathway. Bacteroidetes and Proteobacteria likely produce
B5 for energy generationl(), suggesting that these bacteriavitamin B6 starting from deoxyxylulose 5-phosphate and 4-
compete with the host for vitamin B5. phosphohydroxy:-threonine, whereas Actinobacteria likely
start from glyceraldehyde-3-phosphate amotribulose 5-
phosphate. In contrast, most Firmicutes geneké&i(lonella
VITAMIN B6 Ruminococcuys Faecalibacterium and Lactobacillus spp.),
except for someClostridium (C. bartlettii C. leptum, C.
Vitamin B6 exists in several forms, including as pyridoxinemethylpentosumand C. sporogengsind Lactobacilluspp. (.
pyridoxal, and pyridoxamine. These forms of vitamin B6 arebrevisand L. ruminig) lack a vitamin B6 biosynthesis pathway
precursors of the coenzymes pyridoxal phosphate (PLP) and() (Table J).
pyridoxamine phosphate (PMP), which are involved in a variety
of cellular metabolic processes, including amino acid, |ipid
carbohydrate metabolisn8(). WHO/FAO recommends a daily V| TAMIN B7
vitamin B6 intake of 1.3—1.7mg for adultd€). Vitamin B6
de ciency is associated with the development of in ammatoryVitamin B7 (biotin) is a cofactor for several carboxylaskestt
diseases such as allergy and rheumatoid arthritis, as welith  are essential for glucose, amino acid, and fatty acid méisaho
neuronal dysfunction§2-84). Vitamin B6 de ciency disruptsthe (89). For example, vitamin B7 is an essential cofactor for acetyl
Th1-Th2 balance toward an excessive Th2 response, resintingCoA carboxylase and fatty acid synthase, which are enzymes
allergy 85. Moreover, low plasma vitamin B6 levels, togethelinvolved in fatty acid biosynthesi®( 91). Thus, vitamin B7
with increased levels of pro-in ammatory cytokines such adikely in uences immunometabolism. WHO/FAO recommends
TNF-a and IL-6, have been observed in patients with rheumatoid daily vitamin B7 intake of 30ng for adults (6). Vitamin
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B7 suppresses gene expression by binding to (biotinylatingontributes to the maintenance of immunologic homeostasis.
histones; these genes include that encoding KBF-which is Regulatory T cells (Treg) express high levels of vitamin B9
a major signaling molecule for the production of several proteceptor (folate receptor 4 [FR4]). Administration of anti-FR4
in ammatory cytokines (e.g., tumor necrosis factor alphb; | antibody results in speci c reduction in the Treg cell populatio
1, IL-6, IL-8) ©2 93. Nuclear transcription of NFKB is (106, suggesting that the vitamin B9—FR4 axis is required for
activated in response to vitamin B7 de ciency4], suggesting Treg cell maintenancén vitro culture of Treg cells under vitamin
that biotinylation of histones suppresses the expression d@9-reduced conditions leads to impaired cell survival, with
genes encoding pro-in ammatory cytokines in NdB signaling decreased expression of anti-apoptotic Bcl2 molecules, athou
(Figure 3. Therefore, vitamin B7 has anti-in ammatory e ects naive T cells retain the ability to di erentiate into Treg czll
by inhibiting NF-kB activation, and dietary vitamin B7 de ciency this suggests that vitamin B9 is a survival factor for Trelisce
causes in ammatory responses via enhanced secretion of pr¢37). Consistent with these ndings, de ciency of dietary vitén
in ammatory cytokines 05, 96). B9 results in reduction of the Treg cell population in the small
Vitamin B7 is abundant in foods such as nuts, beans, andhtestine (L07 108. Since Treg cells play an important role in
oilseed. However, raw egg-white contains a large amount dfie prevention of excessive immune response)( mice fed
avidin, which binds strongly to vitamin B7 and prevents itsa vitamin B9-de cient diet exhibit increased susceptililib
absorption in the gut97). Therefore, vitamin B7 de ciency can intestinal in ammation (L07).
be caused not only by insu cient vitamin B7 intake, but alsg b Foods such as beef liver, green leafy vegetables, and asparag
excessive intake of raw egg-white. Dietary biotin exis@ fise  contain high levels of vitamin B9. Vitamin B9 exists as both
protein-bound form or as biocytin{1). In the small intestine, mono- and polyglutamate folate species in the diet. Folate
biotinidase releases free biotin from the bound protein ahd t polyglutamate is deconjugated to the monoglutamate form and
free biotin is absorbed via the biotin transporter SMVJI8). then absorbed in the small intestine via folate transporters
Vitamin B7 is also produced by intestinal bacteria assuch as proton-coupled folate transporter (PCFT)(117). In
free biotin synthesized from malonyl CoA or pimelate viathe intestinal epithelium, folate monoglutamate is coneerto
pimeloyl-CoA @9, 100. Bacterial free biotin is absorbed tetrahydrofolate (THF), an active form and cofactor, befbeing
by SMVT expressed in the colom2g 101). Metagenomic transported to the blood1(17]).
analysis has shown thaBacteroides fragili@nd Prevotella Intestinal bacteria synthesize vitamin B9 as THF from GTP,
copri (Bacteroidetes);Fusobacterium varium(Fusobacteria) erythrose 4-phosphate, and phosphoenolpyruvai, (112).
and Campylobacter col{Proteobacteria) possess a vitaminBacterial THF is directly absorbed in the colon via PCFT and
B7 biosynthesis pathwayl(@. In contrast, Prevotellaspp. distributed through the body by the blood {3. Metagenomic
(Bacteroidetes),Bi dobacterium spp. (Actinobacteria), and analysis has shown th&acteroides fragilsnd Prevotella copri
Clostridium Ruminococcys$-aecalibacteriupnand Lactobacillus  (Bacteroidetes)Clostridium di cile, Lactobacillus plantarum
spp. (Firmicutes) lack such a pathwalable 1); however, they L. reuterj L. delbrueckiissp. bulgaricus and Streptococcus
do express free biotin transportefl@ 102, suggesting that thermophilugFirmicutes), some species Bi dobacteriumspp
these bacteria also utilize dietary and bacterial vitamiaBd (Actinobacteria); Fusobacterium varium(Fusobacteria) and
therefore may compete with the host. Thus, free biotin maysalmonella enterig@roteobacteria) possess a folate biosynthesis
in uence the composition of the gut microbiota, because lnieé¢  pathway {Table 1) (10, 40). This suggests that almost all species
necessary for the growth and survival of the microbiota.ded, in all phyla produce folate. Indeed, dietary supplementation
biotin de ciency leads to gut dysbiosis and the overgrowth owith Bi dobacterium probiotic strains B. adolescentisnd
Lactobacillus murinysleading to the development of alopeciaB. pseudocatenulatymenhances folate production in the
(103. Furthermore, vitamin B7 production appears to proceedarge intestine of folate-de cient rats and folate-freeltate
in a cooperative manner among di erent intestinal bacteria;medium 38, 41, 114). Furthermore,Lactobacillus plantarum
Bi dobacterium longunin the intestine produces pimelate, which L. delbrueckiissp. bulgaricus and L. reuteri enhance folate
is a precursor of vitamin B7 that enhances vitamin B7 produttio production in bacterial culture supernatant lacking the
by other intestinal bacterial(Q4). components needed for folate synthesis 39, 115.
In commensal bacteria, a vitamin B9 metabolite, 6-
formylpterin  (6-FP), is produced by photodegradation
VITAMIN B9 of folic acid (L169. Like the vitamin B2 metabolite 6-
hydroxymethyl-8b-ribityllumazine, 6-FP binds to MR1,
Vitamin B9 (folate), in its active form as tetrahydrofolate but unlike 6-hydroxymethyl-85-ribityllumazine it cannot
is a cofactor in several metabolic reactions, including DNAactivate MAIT cells €2, 117). An analog of 6-FP, acetyl-6-FP, is
and amino acid synthesis. WHO/FAO recommends a dailyan antagonist of MR1, which inhibits MAIT cell activatioh19).
vitamin B9 intake of 400mg for adults (6). Owing to the As mentioned in the section on vitamin B2, 6-hydroxymethyl-8
high requirement of vitamin B9 by red blood cells, vitamin D-ribityllumazine activates MAIT cells, which provide defense
B9 de ciency leads to megaloblastic anemi)( Vitamin B9  against pathogens, so vitamin B9 metabolites may suppress
de ciency also inhibits the proliferation of human CIS8T cells  excess MAIT cell responses and prevent excessive allergic and
in vitro by arresting the cell cycle in the S phase and increasinig ammatory responses Kigure 2. The quantitative balance
the frequency of DNA damagel(5. Moreover, vitamin B9 between dietary vitamin B2 and B9 and the composition of
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FIGURE 4 | Schematic representation of B-vitamin-mediated interadon between commensal bacteria and host immunity.

the microbiota and its ability to metabolize these vitammay (Table ) (10, 32, 42, 43, 45). Indeed,Lactobacillus plantarum

be keys to understanding MAIT-cell-mediated homeostasis imnd L. coryniformisisolated from fermented food produce

the intestine. vitamin B12 @3), and Bi dobacterium animalissynthesizes
vitamin B12 during milk fermentation123.

VITAMIN B12 CONCLUSION

Vitamin B12 (cobalamin) is a cobalt-containing vitamin tha g \itamin-mediated immunological regulation is specic
in its active forms of methylcobalamin and adenosylcobatam to dierent immune cells and immune responses: that is,
catalyzes methionine synthesislf). WHO/FAO recommends ;i grent B vitamins are required for di erent immune responses
a daily vitamin B12 intake of 2.#g for adults (6). Together (rjq e 4). It was once thought that B vitamins were obtained

with vitamin B6 and B9, vitamin B12 plays important roles o from the diet; however, we know now that this is not the
in red blood cell formation and nucleic acid synthesis,ca5e and that the intestinal microbiota is also an important
especially in neurons. Therefore, vitamin B12 de ciencySesu sqyrce of vitamins. Within the intestinal microbiota, notl a
megaloblastic anemia and nervous system symptoms SUgfcteria produce B vitamins and some bacteria utilize djetar
as numbness of the hands and feell9). In terms of g \itamins or B vitamins produced by other intestinal badteri
host immunity, dietary vitamin B12 de ciency decreases thgq; their own needs; therefore, there may be competition
number of CD& T cells and suppresses natural Killer T-ponveen the host and the intestinal microbiota for B vitasin
cell activity in mice; supplementation with methylcobalamln(Figure4)_ Research in this eld is complicated, because not

improves these conditionsl@(), suggesting that vitamin B12 1y goes the composition of the intestinal microbiota vary
contributes to the immune response via CB8 cells and natural among individuals, but also the composition of the diet can

killer T cells. _ o alter both the composition and function of the intestinal
Beef liver, bivalves, sh, chicken, and eggs contain higbl® icropiota.  Therefore, vitamin-mediated immunological
of vitamin B12. Dietary vitamin B12 exists in complex with .ointenance also  varies among individuals. Further

dietary protein and is decomposed to free vitamin B12 by pepsipyaminations in this eld are needed, and the new information

in the stomach. Free vitamin B12 is absorbed by the epitheliglycovered will help to develop a new era of precision health
cells of the small intestine via intrinsic factor (IF), a B&S  4nq nutrition.

glycoprotein. Inside the epithelial cells, IF-vitamin B12nmex

is decomposed to free vitamin B12 by lysosome and then release

into the blood, where it is converted to the active form andAUTHOR CONTRIBUTIONS
distributed throughout the bodyl(21, 122).
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