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Spectrum Disorder by Performing
Resting-State Functional Network
Community Pattern Analysis

Yugqing Song, Thomas Martial Epalle and Hu Lu *

School of Computer Science and Telecommunication Engine@rg, Jiangsu University, Zhenjiang, China

Growing evidence indicates that autism spectrum disorderASD) is a neuropsychological
disconnection syndrome that can be analyzed using variousamplex network metrics
used as pathology biomarkers. Recently, community deteabin and analysis rooted in the
complex network and graph theories have been introduced tonvestigate the changes
in resting-state functional network community structure nder neurological pathologies.
However, the potential of hidden patterns in the modular orgnization of networks derived
from resting-state functional magnetic resonance imagintp predict brain pathology has
never been investigated. In this study, we present a novel atysis technique to identify
alterations in community patterns in functional networks mder ASD. In addition, we
design machine learning classi ers to predict the clinicatlass of patients with ASD
and controls by using only community pattern quality metris as features. Analyses
conducted on six publicly available datasets from 235 subjets, including patients with
ASD and age-matched controls revealed that the modular strcture is signi cantly
disturbed in patients with ASD. Machine learning algorithmishowed that the predictive
power of our ve metrics is relatively high ( 85.16% peak accuracy for in-site data and

75.00% peak accuracy for multisite data). These results lend furén credence to the
dysconnectivity theory of this pathology.

Keywords: autism spectrum disorder, resting-state connec tivity analysis, community detection, machine learning,

linear discriminant analysis

1. INTRODUCTION

The study of the human brain often confronts problems arisimgni the brain's inherent
complexity Bullmore and Sporns, 2009To overcome this challenge, complex network analysis
methods have been extensively used in neurosciences, thieenaman brain is typically modeled
as a network or graph whose nodes represent brain regions agese@present the anatomical
or functional interactions among thendg Vico Fallani et al., 20)4Network representation has
been a promising computational model to capture the brain's togizal organization as well as
its dynamicsRubinov and Sporns, 20).CStudies in this area have revealed that the human brain
has a scale-free small-world topolo@g(iluz et al., 20Q'with modular fragmentation and highly

connected hubd\(eunier et al., 2010; Nicolini et al., 2017

One problem eliciting interest in the analysis of restingtstfanctional brain networks by using
complex network methods is community detectigroftunato, 201)) which can be described as
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the unsupervised discovery of subgroups of brain regions thatatterns indices beyond the individual capability of single
are typically activated together and densely connected len  metrics. Here, we used modularity as well as other descriptive
Heuvel et al., 2008; Shen et al., 208g&veral studies have showncommunity pattern metrics drawn from the complex networks
that this modular structure of the functional network re ecthe  literature that have not been previously used for analysirg th
anatomical and functional segregation of the human braithw community structure of resting-state functional connedttiv
the presence of hub nodes or regions sharing numerous interetworks built from neuroimaging data. By using experimental
community edges. Recent studies have suggested that coymurdata from 235 subjects in six publicly available datasets and
hubs are highly vulnerable to the e ects of brain disordersyalidation data from 214 subjects in six additional datasete
resulting in an altered community structure observed ineg@V  showed that these ve community pattern metrics alone canser
neuropsychiatric pathologiesl{colini et al., 201Y. as e cient single-subject predictors of autism.
Previous studies using complex networks methods to the
study of neurological disorders aimed to characterize the MATERIALS AND METHODS
di erences between normal and pathological brains. Graph
theoretical metrics illustrated alterations in the resgn 2.1. Datasets
state functional connectome under specic neurologicalExperimental data were selected from the Autism Brain Imggin
pathologies, including traumag@n der Horn et al, 20)7 Data Exchange (ABIDE), a large multisite, publicly avadabl
amnestic mild cognitive impairmenthen et al., 2012 repository of resting-state fMRI scans, forming part of the 1000
Alzheimer's diseas&(ipekar et al., 20)gepilepsyPonten et al., Functional Connectomes ProjedD{ Martino et al., 201} The
2007, attention de cit/hyperactivity disorder(ADHD)\{ang datawere downloaded from ve sites: Stanford UniversityART
et al., 2009; Ahmadlou and Adeli, 2Q1and autism spectrum University of Leuven Sample 1 (LV1), University of Leuven
disorder (ASD)Zhou et al., 201¢ In addition, machine Sample 2 (LV2), Olin Institute of Living at Hartford Hospital
learning techniques using dierent types of features havdOLl), University of Pittsburgh, School of Medicine (PIT),
been increasingly used not only to detect pathology-relategnd California Institute of Technology (CAL). The imaging
alterations but also to make individual subject predicticsfs data included technical scan parameters as well as phenotypic
brain disordersArbabshirani et al., 20)7 information of each individual. Demographic information @it
ASD is typically characterized by de cits in social intefant ~ participants in each dataset is shown Table 1, Table S1
and communication, rigid and stereotypical behaviors, androvides the technical details of the scans. As part of the
abnormal sensory processirig4pin and Tuchman, 2008This  professional and ethical protocol of the 1000 Functional
neurological disorder has been classi ed as a dysconnggctiv Connectomes Project, all datasets have been anonymized, an
syndrome manifesting as the disruption or abnormal integmat no protected health information was included. Despite the
of brain regions evidenced by changes in network propertiegvailability of phenotypic information, this study did not use
used as diagnostic markeisill et al., 2015 In the task of any of this medical or biological information to analyse gpou
automatically detecting ASD by using resting-state fusal  di erences or predict the clinical class of individual particiga.
MRI (rsfMRI) data, dierent types of features, including . .
independent component analysis (ICA)ddin et al., 201).and 2.2. I_Descrlptlve Community Pattern
functional connectivity among regions of interest (ROIg)¢ka, Metrics
2015; Plitt et al., 20)5have been used in conjunction with In the last decade, community detection has become a prolic
various machine learning algorithms, such as logisticasgion, research areain complex networks and pattern recognitiamé
random forest, and neural network algorithms. and Latapy, 2006; Fortunato, 2010; Epalle and Liu, £016
In this study, we compared the resting-state functionawith many application domains, such as social network
community patterns of patients with ASD and controls at themining (Girvan and Newman, 20Q2graph visualizationfastian
group and individual level to gain a detailed understandofg et al., 200 compressionkiernandez and Navarro, 20,2
the relationship between impaired connectivity and thisibra
pathology. We also reconstructed the communities of each ROI
and used a permutation test based on the Rand index to detect
the brain regions whose community structures di er signimdy oL 1 | Daasets.
between patients with ASD and controls. ASD Control Age( N ) Total
In previous studies applying network community pattern

analysis to research brain disorders, modularity (a compleR@set MF  Age MIF— Age ND 235
network metric) has emerged agle factostandard to quantify o, 164 75429 16/ 78-124 9.9 15 D 40
the alterations in the distribution of inter-community vsitra- 1560  18-32 140 18-32 225 35  nD29
community edges under a specic brain disorder. Despitel_v2 1253 121168 155 122-169 1416 142 nD 35
the increasing popularity of this single metric in community oLl 173 1124 142 1023 168 34 0D 36

detection approaches, one common drawback of single indic
is their low sensitivity and speci city §tam and van Straaten,

201). Autism being a complex disorder, the underlying neural
phenomenon could be better captured by combined community4, male; F, female;y mean; , standard deviation.

26/4  9.3-35.2  23/4 9.4-33.2 189 6.8 nD 57
15/4 17.5-451 15/4 17-56.2 28.15 0.41 nD 38
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parallel computing lgonmang et al., 20)2and recommender 2.2.2. Global Density

systemsl(iben-Nowell and Kleinberg, 200.7In neuroscience, The global density community quality function (not to be
community detection has been applied as an important step iconfused with the popular density metric) is de ned as
resolving more complex problems, such as localizing network

alterations in speci ¢ brain disordet €rman-Sinko and Barch, Qcep(G,V) D }[QiGD(G'V) Cl QG V), )
2019. In this subsection, we introduce the basic mathematical 2

notations for community detection and review modularity as

B . . where
well as four other metrics used to describe community sticet
in graphs. _ Py P p
A network or graphG D (V, E) is composed of a set of nodes . G\)D KDL _ x2Vi  y2Vy Axy
V and a set of edgds In this study, the node¥, representing Qep(G V) r

nda-s . k011 Vid?
brain regions, are labeled 1,2, 3\..,with N D 90. If an edge
(%,y) isin E, then nodexis connected to nods If Gis undirected  represents the global internal density and
and unweighted, the adjacency matAxof G is the matrix of Os
and 1s such, thad,y D 1if and only if ,y) 2 E. Community Py P P

i i ; - D1 x2Vi  y2v v Axy

detection, being a clustering &, can be de ned as a partition QG V) D —F - k k
of V into the setsVs, ...V such thatVy [ ...[ Vk D V, and kw1lVi iV Vi
Vi\ V; D; foranyi 60, with none of theV; being empty. The
setsV1,..Vk are called communities or clusters. Any partition

represents the global external density. This formula assiinags
VD fV Vi QIS 2 Community Structure or community pattern Axx D 1forallx 2 V, and all other edges are counted twice.
L - VKY y ypP Qcp(G, V) takes values in [0,1], where the value 1 is assigned only

of a network withK D jVj communities. to graphs with perfect community structure
Community patterns are commonly described in terms of grap P y '

quality functions, which depend on both the grahand the 2 2 3 | ocal Density

partition V and whose optimization is typically believed to yieldThe |ocal density quality function is de ned as
the best community pattern. However, these metrics can be

considered as descriptive of a network's modular organinatio X Vi )
rather than true performance metrics, because they do not Q.p(G,V)D SV [dVkGC1 (V.G ()
provide strict quantitative criteria for more and less optima w1 V!

partitioning (Steinhaeuser and Chawla, 2p.10

In this study, we investigated the community organizationWhere the local inner and outer densities are, respectively,

of resting-state functional brain networks in ASD by usigt € nedas
following descriptive metrics: p p

_ A
2.2.1. Modularity d(Vk,G) D W
Modularity (Q) is the most popular community characterization Vi
metric in the literature. In a networks D (V, E) and a partition and
V D fVy,...Vkg the edges d& can be grouped into community
bridge setd; as follows: X,y) 2 By if and only ifx 2 Vy and P P Ay
y 2 V. In particular, we noteB, D By as the set of internal (V.G D ](f/\g j {/ZV c(kj Y

edges oY/ having all their ends in the same community; we note
By D [ kenBu as the set of external edgeswgfhaving one endin - Q_p is de ned slightly di erently than iSQgp, but both are based
V\ and the otherinvV  Vy. By using these notations, a network's on the idea of communities being formed by subsets of nodats th
modularity is de ned as are more densely connected with each other than exterr@lly.
also takes values in [0,1].

X 2B . :
Q(G,V)D @ (ﬂ)2 , 1 224 Distance-Based Metric
kD1 2m 2m The distance-based community quality function is de ned as
P P : . 1. .
wheremy D~ 5y, oy Axy is the total degree of community Qps(G,V) D WJJAG Avij, 4)
V]

Vi andm the total number of edges in the network.

The four other community pattern metrics which were
rst introduced in(Mitalidis et al., 201} have so far
received little attention from the scientic community matrix of G, andAy,, D 1 if X,y belongs to the same cluster
probably because they were proposed after the publicatiofunderV), whereasAy,, D 0 if x,y belongs to di erent clusters
of two authoritative review articles on complex network(underV). Qpg takes values in [0,1], but unlike with the other
measures of brain connectiviti(llmore and Sporns, 2009 metrics, the value 0 is obtained for graphs exhibiting a pérfec
(Rubinov and Sporns, 2010 community structure.

P P
wherejjBjj D iBxyi is a matrix norm,Ag is the adjacency
X2Vy2V
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2.2.5. Node Membership Metric neuromarkers for discriminating between ASD patients and
The node membership community quality function is de ned ashealthy controls. In this study, we veried the hypothesis
follows: that the values of), Qgp, QLp, Qps, and Quu are signi cantly

1 X altered under ASD, 0,0,1which would indicate greater eviden
w(GV)D — [ (x,V[x])C1 X,V V[X])].- (6) of an altered community organization. In addition, we tebte

V] X2V the hypothesis that these metrics can be used as features for
predicting the clinical class of a particular participant.

The mathematical formulation of each of these metrics
combines both the ideas of both functional integration and
segregation, and they are used in this study to capture
and re ect the imbalance between intra- and inter-cluster
connections in autism. Using these ve metrics together
provides dierent indicators that map the brain's functional
Hence, (x,U) D 1if and only ifx is connected to every2 U  community patterns and helps highlight signi cant changes
and (x,U) D Oifand only ifx is connected to ny 2 U; for between health and disease states that can be leveraged by
intermediate situations, we obtain(x, U) 2]0, 1]. machine learning classi ers.

Brain's functional connectivity networks are known to ) .
be fundamentally modular. The neuronal regions within2-2-6. Comparing Community Patterns
a community cluster have strong interconnections amongn this study, we used the Rand index for comparing pairs
themselves and weak interdependencies with neuronal regioRf community patternsigand, 1971; Steinhaeuser and Chawla,
outside the cluster. Modularity, global density, local dsns 2010. The Rand index is a statistical metric based on the
distance-based, and node membership metrics try to quatité community assignment of each pair of nodes and measures the
quality of assignment of regional nodes into cohesive soipgs ~ degree of agreement between two community pattéfresdR;
or neural functions. All these metrics take values betweand itiS computed using the following parameters:

1. A low value of the distance-based metric and a high value of - the number of pairs of nodes assigned to the same
th_e f_our other metncs indicate that connections betyveqmcnes community according to bottu andR
within community clusters are dense, and connections betwe 1y the number of pairs of nodes assigned to the same

regions in di erent community clusters are sparse. Anadvaeta  community according toU but dierent communities
of these ve community pattern metrics is that they can all be  gccording toR

computed based solely on the connectivity of the grapgure 1 ¢ the number of pairs of nodes assigned to the same

provides an illustration of how these metrics are computed for community according to R but dierent communities

a particular community partitioning of the popular Zachary  according tou

Karate's club network{achary, 1977 d: the number of pairs of nodes placed in dierent
Several prior studies have investigated the modular strectur communities according to botl) andR

of resting-state structural and functional connectivitgtworks

derived from MRI in autistic patients compared to healthy The suma C d is the number of agreements between the

individuals. For instance, Rudie and coauthors used the hpuy WO community patterns, whereas C c is the number of

algorithm (Blondel et al., 2008to partition the brain into disagreements. The Rand index betweeandR is de ned as

functional subsystem&(die et al., 20)3 They performed

additional analyses with small-world metrics, includinget RandU,R) D aﬁd' (6)

clustering coe cient, the characteristic path length, and 2

modularity, to discover that children and adolescents with

autism display reduction in network modularity. In another 2.3. Preprocessing Parameters

di erential study, the authors used the Louvain method toThe rsfMRI data listed inTable 1 were preprocessed in the

partition functional brain networks into various subnetw, conventional order to facilitate comparison across the six

and the Scale Inclusivity metric to estimate the within anddatasets \(Vaheed et al., 20)6 The data were preprocessed

between group similarity of community structures. Theirima using the following software tools: MRIcron, SPM12, DPABI

nding was that ASD is characterized with atypical conneityiv  V2.3170105Yan et al., 2013 and DPARSFA V4.317010%(n

in the ventro-temporal-limbic subnetworks that may underli and Zang, 2010 The rst 10 volumes of each series were

social impairments in ASDGlerean et al., 20)6In a similar  discarded for signal equilibrium. Slice timing was performed

study, Keown et al. (20173howed that functional subnetworks to correct images for the acquisition time delay betweecesli

are globally atypical in ASD, together with reduced networkof each volume, followed by head motion correction by using

integration and increased dispersion. Altogether, thesdings a six-parameter (rigid body) spatial transformation. Nexiet

suggest an aberrant reorganization of community structire images were normalized to the Montreal Neurological Institute

ASD, globally characterized by a reduction in modularity inEPI template and resampled into 3-mm isotropic voxels. The

persons having autism. These pioneering results provide amsulting signals were successively smoothed using a 4 mm

important indication that community patterns might be good FWHM Gaussian kernel, detrended, and band-pass lItered by

V[X] indicates the cluster to whichx belongs and node
membership is de ned by

1 X
x,U)D — Axy.

Vi
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Network properties

Number of nodes: 34

Number of edges: 78

Number of communities: 5

Community pattern V = {V,, V,, V;, V,, Vs}
V, ={15, 16, 19, 21, 23, 27, 30, 33, 34}
V, = {24, 25, 26, 28}

V,=1{3,9, 10, 14, 29, 31, 32}
V,={1,2,4,8,12,13, 18, 20, 22}
Vy=1{5,6,7,11,17}

Modularity Q = 0.35

Global density Qg = 0.63

Local density Q , = 0.65

Distance based-metric Q,; = 0.19
Node membership metric Q,, = 0.33

FIGURE 1 | Examples of values of modularity, global density, local desity, distance based and node membership metric for a speci ccommunity partition of the
popular Zachary Karate's Club network.This network partibn is composed of ve communities or modules. Intra-communiy connections are colored in black and
inter-community connections in red. The ve community patten measures yielded different values for this graph partin.

using the frequency interval of 0.027-0.073 Hz (this in&rv algorithms for community detection have been proposed, among
was reported to be more reliable when the global signal is nathich Newman's spectral modularitijdéwman, 2006 and
regressediang et al., 2002 The normalized images were nally Infomap (Rossval and Bergstrom, 2Q0kave been extensively
mapped with the Automated Anatomical Labeling atlas (AAL) toused in neuroscience studies. In this study, we used Newman's
obtain 90 ROIs representing functional network nodésd{urio- community detection algorithm because it rapidly optimizes
Mazoyer et al., 200 2After preprocessing each dataset separatelyhe quality function (modularity) even with poor hardware
we merged the time-series extracted from each site to form performance, and is accurate. Community detection and

multisite cohort. evaluation were performed using the Community Detection
Toolbox (ComDet) [italidis et al., 201}t in Matlab. Visual
2.4. Group-LeveI Analysis of Community inspection of networks across the datasets at di erent spassit

allowed the identi cation of general tendencies of groupdk

Structures dﬁetworks toward under- or overconnectivity.

To analyse group-level community patterns, rst, we compute
the correlation matrix for each participant from time-serista,
by taking the average Pearson's correlation between als pai2.5. Subject-Level Analysis
of ROIs for each dataset. Next, we constructed the averag@mmmunity detection was also performed at the subject level
correlation matrix (average brain network) for each diagtio and generated four sets of community patterns for sparsity
group. Third, these average networks were binarized usingpresholds ranging from 0.1 to 0.9. Community pattern megric
di erent threshold values ranging from 0.1 to 0.9. Finally,were computed for all participants in each site separately, and
community detection was performed for each threshold valuenultisite data were generated by merging community pattern
and compared between the two diagnostic groups. metrics computed for each site at each level of sparsity. Weaised
Generating graphs at dierent sparsity levels has thdéwo-sample Kolmogorov-Smirnov test to assess the di erence in
advantage of allowing comparison between dierent graptthe distribution of community quality metrics between thed
representations at di erent levels of correlation. Commuynit diagnostic groups. This test was run on each individual dztas
structures were detected using Newman's spectral modularignd on the multisite data independently. In addition, kernel
algorithm in the Matlab Community Detection Toolbox density estimation (KDE) curves were plotted at each sparsity
and visualized with BrainNet VieweK(a et al., 2013 a level to visualize the di erences in community pattern mesric
specialized Matlab toolbox for visualizing brain data. Manybetween the two clinical groupké€dl, 200). Additionally, a
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pairwise correlation analysis was performed to visualize theecall the classi cation process using LDA. LDA classier is
distribution of data from patients with ASD and controls faaeh  derived from a probabilistic model which models, for each class
value of the binarization threshold. or diagnostic grougk, the class conditional distribution of the
The dierences in community partition quality indexes, dataP(Djy D k). Predictions can then be obtained by applying
although important, do not indicate how community Bayes'rule:
composition or node assignments dier between the two
diagnostic groups. To this end, the Rand index between each . P(Djy D k)P(y D k) P(Djy D k)P(y D k)
. P g . - P(y D kjD) D D -
pair of individuals was computed within each clinical group P(D) 6 P(DjyD )P(yD I)
according to Equation (6). The Rand index was also extended 12f0,1g

to test for group di erences in each dataset and in the mutisi ) o . . _(7)
data. Intuitively, in case of a signi cant group di erencehet and we select the clads which maximizes this conditional

mean within-group pairwise similarity should be higher than probability. More speci callyP(Djy) is modeled as a multivariate

the mean between-group pairwise similarity. Because thi§@ussian distribution with density:
cannot be tested directly, a non-parametric test comparing

the average within-group Rand index in the original datatwit ppiv p k) D ex 1 D te 1D
that in permuted data with randomized group membership (Diy Bk (2 )P?6 12 P 2( g ( J
was performedP-values were computed based on the number (8)

of times the within-group Rand index on the permuted datawherep is the number of features,x 2 RP the class mean
was greater than that on the original data, divided by theltot Vector,and D coyD]thep pcovariance matrix. To use this
number of permutationsr{ D 50,000). model as a classi er, we estimate the class pifssD k), the

To locate the brain regions that could be responsible for thélass means and the covariance matrig from the training
di erence in the Rand index between the two clinical groups, wélata (Hastie et al., 2009
performed another statistical test proposed/dygxander-Bloch To estimate the performance of each classi er, LOO-cross-
et al. (2012)This test was implemented only on multisite data.validation was used to evaluate the performance of these
For each network node X, the other 89 nodes were relabeled @gorithms on each dataset at each sparsity threshold and a 10
indicate whether they are in the same module as X. These labdfd cross validation was applied to multisite data at each siyars
were subsequently compared across participants. In terms lgvel. The performance of each of these classi ers was repiorted
node X's functional community, the similarity of two partgzints ~ terms of accuracy, precision, and recall.
was quanti ed using the Rand index. Similar to the previous In order to rank community quality metrics based on
test, the pairwise similarity metric was used to test for dodatheir ASD predictive ability, we employed recursive feature
group di erence through a permutation of group labels. Thearu €limination (RFE) on our best classi er§(iyon etal., 2002RFE
within-group mean Rand index was computed for all within- iS performed by recursively removing predictors and buildang
group subject-by-subject ROI pairs. Subsequently, the |ateeks classi cation model based on those predictors that remdinses
shu ed 10,000 times and the average permuted within-groupC|aSSi cation accuracy to identify predictors and (comMioa of
Rand index was computed and compared with that of the redpredictors) that contribute the most to predicting the diagitio
data to generate pvalue. Thus, for each binarization threshold, 9roup. RFE algorithm outputs a score between 0 and 1 for
a set of 90 p-values was generated to indicate whether eac R(ch predictor, and the larger the score, the more important
community assignment was more similar across participantée predictor.
in the same original group than across those in randomly .
permuted groups. 2.7. Robustness of Community Features to

Methodological Variation
. L . , Because of concerns about the e ect of specic preprocessing

2.6. Automatic Prediction of a Participant's parameters, we tested the robustness of the predictive power of
Class the ve community structure metric using a di erent validatio
The spatial distribution of data as visualized in the subjegel dataset preprocessed with several methodological perturizatio
analysis prompted us to verify whether the ve community To this end, we formed a separated multisite validation dzttas
features (modularity, global density, local density, alise- composed of six additional sites, totalizing in 214 particiigan
based, and node membership) could serve as reliab(dSD D 97, CTRD 117). These data were downloaded from
predictors of ASD. Therefore, the following classicationthe preprocessed version of ABIDE repositatydddock et al.,
algorithms were implemented using Scikit-Learn in a Pythor2013. Our validation cohorts included data from the following
environment: logistic regression (LR), linear discrimibhan imaging centers: Carnegie Mellon University (CMU, ABDL4,
analysis (LDA), k-nearest neighbors (KNN), classicatiand CTR D 13), Kennedy Krieger Institute (KKI, ASD 20, CTR
regression trees (CART), naive Bayes (NB), and support vectdr 28), Oregon Health and Science University (OHSU, ASD
machines (SVM). 12, CTRD 14), Social Brain Laboratory (SBL, AED15, CTR

Given that LDA which yielded the best ASD classi cationD 15), San Diego State University (SDS, ABDL4 , CTRD
accuracy with community quality metrics as features is eath 22) and Trinity Center for Health Sciences (TRI, ASD 22,
often used as a supervised feature extraction method, we/brieCTR D 25). Participant demographic information is provided
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in Table S3and imaging acquisition parameters are summarizeatontrol group, in the ASD class we observed a greater spread of
in Table S4 The downloaded imaging data derivatives werghe values of the metrics in STA, LV1, and LV2,and a smaller on
previously preprocessed using the DPARSF pipeline. Tha OLI, PIT, and CAL, possibly re ecting subtypes of ASD.
preprocessing treatments included the removal of the rst ten Multisite data atT D 0.5 exhibited signi cant di erences
volumes, slice timing and motion correction. Nuisance ghté  in modularity, distance-based and node membership metrics,
regression was carried out using 24 motion parameters and lowvith an overall increase in modularity and node membership,
frequency drifts. Imaging signals were then band-pass Hereand a decrease in the three other metrics for the ASD group
with a frequency range of 0.01 Hz to 0.1 Hz, without globalFigure 5. This increase in modularity suggests that there
signal correction, registered to Montreal Neuroimagingtitude  are relatively fewer connections between clusters and more
template using DARTELAshburner, 200, and smoothed using connections within clusters in patients with ASD. Howevée t

a 6-mm FWHM Gaussian Kernel. The mean time courses forelationship between community quality metrics and under-
regions of interest were extracted for each subject basatieon and overconnectivity remains unclear because a decrease in
CC200 functional atlas which comprises 200 RQIssddock modularity was associated with underconnectivity in CAL{ bu
et al., 201p. Functional connectomes for each participant werewith overconnectivity in STA.

constructed as described previously, and community pattern

metrics were computed for dierent network sparsity levels3.1.2. Differences in Community Composition

0.1 T 0.9). We retrained KNN and LDA classiers While the community pattern quality metrics revealed
with features extracted for each value of the binarizatiordi erences in the structure of resting-state functional netks,
threshold. Just as previously, A 10-fold cross-validatidreste we still needed to quantify the degree of similarity of node

was employed to evaluate these additional classi ers. assignment to clusters within each clinical group. To this,end
Rand index similarity was computed between the ASD and
3. RESULTS control groups in the dataset34ble 2. The Rand index showed
a high level of agreement and further con rmed the overadual
3.1. Variations in Community Patterns similarity of network structures observed (across binatiam
3.1.1. Difference in Overall Network Structure thresholds: mean Rand ind&x0.82, standard deviatiob 0.14).

Visual inspection of community patterns in the group-averagedHowever, the Rand index permutation testing on individual
networks at all sparsity levels revealed no signi cant dimre subject network partitions revealed that, for some levels of
in the number of community clusters between patients withsparsity, the within-group similarity of community struates of
ASD and controls. Another important observation was an ollera pairs of participants in the same diagnostic group is higher than
similarity in topological cluster organization between tveins would be expected if the group di erence was not signi cant
of patients with ASD and those of controls. However, at highefTable 3. Moreover, this dierence was also signicant for
sparsities, over- and underactivation of some communities i multisite data p D 0.033).
the average networks of ASD cohorts was gradually observed.
Notably, overall underconnectivity was found in ASD colsort 3.1.3. Investigating Group Differences by Using
in LV1, LV2, PIT, and CAL dataFigure 2), and resting-state Subject-Level Analysis
group network overconnectivity was observed in the OLI andlhe methods used in the group-level analysis enabled gtiaéta
STA datasetsHigure 3). and quantitative characterization of the di erence betweha

To further investigate the extent to which community two clinical groups. However, they do not allow the estimatid
structures of task-free functional connectivity were m@dtein  the degree of variability of community structural metricglvin
ASD, we computed the ve descriptive community patterna clinical group compared with that across groups. Visualizing
metrics and generated plots of their average and standatthe inter-subject variability inside and across the two ugre
deviation in patients with ASD and controlsFigure 4. P-  was possible using KDE plots combined with scatter plots
values for mean group di erences were estimated using the twalisplaying the organization of data from both clinical groups
sample Kolmogorov-Smirnov test. Thevalues obtained were with respect to each pair of features (sEgures§ 7 and
subsequently FDR-corrected for multiple comparisons. Ow v Figures S£S4). Although group-level analyses revealed similar
metrics are di erent ways of capturing the intuition that nosle patterns in the ASD and control groups, KDE showed important
within the same cluster should be more densely connected witperturbations in the distribution of community quality meas
each other than the rest of the network; however, they varin all datasets and across sparsity densities. Moreover, thialspa
in their mathematical formulations. Communities were s@d organization displayed via feature pairing plots revealed an
through modularity maximization, and modularity was used ininteresting tendency of the data from members of each ofwee t
addition to the other four metrics to compare the resulting groups to cluster together. These two-dimensional visutdina
community patternsFigure 4 shows that the mean di erence provided an encouraging basis for applying machine learning
between patients with ASD and controls is signi cant at saler algorithms to predict the class of a particular participant byngsi
sparsities. For example, modularity is signi cantly higherthe  community structure metrics as features.
ASD class in STA and CAL, whereas it remains signi cantly A rigorous regional permutation test of community
lower in OLI. The spread of the metrics around their averageassignments adapted fromAlexander-Bloch et al.(2019)
also di ers between the two clinical classes. Compared with thwas applied to multisite data and found several regions
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FIGURE 2 | Group-average network community pattern for the LV2 dataskeat sparsity thresholdT D 0.8. ROlIs are de ned according to the AAL90 brain atlas and
colored based on community assignments by Newman's spectrhalgorithm. (A) ASD cohort. (B) Control cohort. The group-level community pattern showed a
overall reduction of connectivity in the brains of patientsith ASD. Underconnectivity was also observed in LV1, CAL,ral PIT.

FIGURE 3 | Evidence of overactivation in the community colored in yelv observed in the average STA dataset network at the sparsitthreshold T D 0.4, despite the
community pattern showing an overall preservation of netwtdx morphology. (A) ASD cohort. (B) Control cohort. ROIs are de ned according to the AAL90 atlas ad
colored on the basis of community assignment by using the Newman's spectral algorithm. At this density level, group-avege network overconnectivity was also
observed in the OLI dataset.

with functional community structure assignments diering structure quality metrics of the participants resting-state
signi cantly between the two clinical populations (s&able 4 functional connectivity networks alone could predict the atil

and Figure 8. There was variability across groups in thegroup of a particular participant. Among the classi cation
community assignment of ROIls across all network sparsitglgorithms, LDA and KNN yielded the best results with

levels. Full details of the test results are presentd@ie S2 the LOO-cross-validation test; the performances of these
. ) o two algorithms are reported infable 5 LDA achieved peak

3.2. Single Subject Clinical Group accuracy ranging from 74.86% (CAL) to 85.16% (STA).

Prediction KNN obtained a range of peak accuracy from 68.42% (PIT)

As previously mentioned in this document, six classi cationto 76.12% (STA). However, these results were obtained at
algorithms were implemented by using Scikit-learn in adierent network sparsity levels. We merged all the ve
Python environment to investigate whether the communitycommunity pattern features computed for each sparsity level,
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FIGURE 4 | Comparing average and standard deviation of community pagrn quality metrics between patients with ASD and controlsoi the full range of thresholds.
Community quality metrics were computed for each participat, and plots were created based on the average for patients wh ASD and controls. Each row
represents a dataset and each column one metric. Group stastical differences were analyzed using the two-sample Kologorov-Smirnov test. Only signi cant
FDR-corrected p-values are reported p < 0.05).

FIGURE 5 | Evidence of community pattern alteration in ASD. Box plotseveal group differences in terms of community quality indees at T D 0.5 in pooled data
across experimental sites P-values were generated with the two-sample Kolmogorov-Smiov test and subsequently FDR-corrected.

retrained the classi ers and performed a 10-fold crossedatlon  recent autism classi cation studies, this study obtained a
test. Multisite data yielded peak accuracy Bt D 0.5 relatively high classi cation accuracy with the lowest roen of
(65.66% for KNN and 74.86% for LDA). Compared with predictors able 6).
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3.3. Feature Importance parameter, the smoothing parameter, the bandpass Itering
To determine which community pattern features were mostrequency range and the ROI parcellation atlas. Our validation
predictive, we performed Recursive Feature Elimination (RFE)ohorts were used for this purpose. Group-level analyses of
on in-site as well as multisite data with strati ed-10-foldbss- community structure for validation datasets are summatize
validation. This procedure used our LDA model to rank thein Tables S5 S6 Subject-level analyses of community quality
ve community pattern metrics according to their predictive metrics are recapitulated ifrigures S5S11 Single validation
performance during the classi cation process. For CAL, LV1sites obtained peak classi cation accuracy of 68.12% for CMU
LV2, and PIT, the order of feature importance are global dgmsi (T = 0.3), 76.23% for KKIT = 0.6), 82.02% for OHSUT(=
node membership, local density, modularity and distanceeda 0.4), 71.09% for SBLT(= 0.7), 80.73% for SDSUT (= 0.3)
metric, starting from the most important feature. For OLI and and 72.58% for TRINITY T = 0.8), using LDA and leave-
STA, important features are global density, node membershimne-out cross-validation method. Again, classi cationaecies
local density, distance-based metric, modularity and nodebtained on in-site data using KKN were consistently lower
memebership. RFE on multisite data showed that local densitjran those obtained with LDA. For multisite classi cation on
was the most important predictor (scoi® 0.95), followed by the whole validation set, the highest classi cation obtdine
global density (scor® 0.75) and node membership (sc@e.5). is 75.04% T = 0.4) obtained with LDA and 10-fold cross-
Modularity and distance-based metric were the less predictivwalidation (sedable 7for full classi cation results on the whole

features with a score of 0.25 and 0.10, respectively. validation dataset). Taken together, these results sudgbas
the discriminative capability of community patterns metrics

3.4. Robustness to Methodological used in this study is relatively well-preserved on novel

Variation datasets and under alternative preprocessing choices. Howev

Finally, we examined how community pattern metrics wouldth® range of ltering thresholds values that yielded peak
perform on novel datasets and under a dierent set ofclassi cation accuracy di ers considerably between expenitae

preprocessing parameters, including the head motion comecti @nd validation data. Furthermore, the most important feasir
diers sightly from those obtained with experimental data.

RFE applied on the whole validation dataset revealed global
TABLE 2 | Rand Index values measuring the degree of agreement of commiifry density was most discriminative (score = 0.90), followed by
structures between control and ASD groups in real data. local density, node membership, modularity and distancestas
metric that obtained predictive scores of 0.80, 0.70, 0.80, a

T STA Lv1 Lv2 oLl PIT CAL 08, respectively.

0.1 0.69 0.64 0.76 0.84 0.97 1

02 0.62 0.53 0.69 071 0.68 oss 4. DISCUSSION

0.3 0.55 0.68 0.6 0.83 0.65 0.65

04 0.77 0.77 074 071 0.75 os6  This study addressed two separate but closely related problems

05 0.89 074 0.72 0.82 0.83 077 the characterization of di erences in the resting-state fiimical

06 0.92 0.86 0.64 0.85 0.67 076 Network community patterns between patients with ASD and

0.7 0.99 0.95 0.89 0.95 0.92 0.9 age-matched controls and the single-subject predictionhig t

08 1 1 0.95 0.99 0.99 097 Same neurological disorder. We repeated the same analyses

0.9 1 1 0.95 1 1 1 on six experimental datasets originating from dierent sites

N 0.82 08 0.79 0.86 0.85 0.83 a_nd |nclu_d|ng_ parﬂmpa_n'_ts_ of dierent ages, obtained using
017 017 012 011 013 016 dl_erent imaging gcqu_lsm_on parameters: _We also applied

this same analysis pipeline on a multisite cohort formed
T, sparsity threshold;X mean; , standard deviation. by merging experimental data from the six sites. We used

TABLE 3 | Rand index permutation testing revealed signi cant diffeneces between ASD and CTR network community structures.

Dataset Mean Mean Mean of all within-group Mean of all Within-group P-value
within-CTR within-ASD pairings in real data pairings with permuted labels real > permuted data
STA([T =0.4) 0.557 0.548 0.552 0.547 0.017
LV1 (T =0.3) 0.549 0.551 0.550 0.540 0.032
Lv2 (T =0.3) 0.562 0.536 0.549 0.544 0.019
OLI (T =0.4) 0.555 0.558 0.557 0.551 0.046
PIT T =0.4) 0.541 0.550 0.546 0.541 0.027
CAL (T =0.4) 0.569 0.564 0.565 0.558 0.001
Multisite T = 0.5) 0.565 0.557 0.563 0.557 0.033

P-values for mean group differences were estimated using a perntation test with n D 50,000 permutations.
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FIGURE 6 | Left column: KDE plots of variations in the ve community patrn metrics across subjects and clinical groups in the CAL daset at thresholdT D 0.4
with a Gaussian kernel bandwidth of 0.02. These plots show ghi cant differences in the distribution of community struture metrics between the two groups. Middle
and right column: organization of ASD and control group dataisualized by scatter plots of all pairs of community patter metrics.

ve community pattern comparison metrics to reach more between the two classes; (4) the dierences in community
robust conclusions. The major ndings of our investigation assignments was driven by specic regional nodes, most of
are as follows: (1) Underconnectivity in the networks fromwhich are known to be impaired in ASD; (5) community
patients with ASD compared with controls was found inquality metrics yielded a minimum of 79% peak classi cation
four of the six datasets (LV1, LV2, CAL, and PIT) andaccuracy for experimental datasets, and 76% for validation
overconnectivity was observed in two (STA and OLI); (2)datasets. Classication accuracy was lower for multisiteada
statistical analyses provided strong evidence for alwmatin  (74.86% for experimental data and 75.04 for validation data)
functional community patterns in ASD, as determined usingThe originality of our ndings stems from the use of four
community quality indexes; (3) group-averaged networksrfro complex network metrics that have not been previously used to
patients with ASD and controls exhibited a high level of Randanalyse the functional modular organization of the humanitra
index similarity; however, testing of an individual's comnity ~ using neuroimaging data. To the best of our knowledge, this
structures revealed signi cant di erences in cluster comifios  study is the rst to reveal that the modular organization ries
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FIGURE 7 | Left column: KDE plots of variations in the ve community pattrn metrics across subjects and clinical groups in the STA daset at threshold T D 0.4
with a Gaussian kernel bandwidth of 0.02. These plots show ghi cant differences in the distribution of community stru¢ure metrics between the two groups. Middle
and right column: organization of ASD and control group dataisualized by scatter plots of all pairs of community patter metrics.

alone are used to design individual subject predictive modgls same intuition, they vary considerably in their mathemaitica
neurological disorders. formulations. Modularity Q is the fraction of the edges that
Our ve metrics are derived from the concept of community fall within the given clusters or communities minus the
structures in complex networks. While the notion of communit expected fraction if connections were distributed randomly.
structure has not been explicitly de ned, community quality Global densityQgp is the average of global inner density and
metrics formalize the intuition that while nodes in a commityn  global outer antidensity. Global inner density is the sum of
are densely interconnected, they are only sparsely corshectall within-cluster connections over all communities, digidl
to the rest of the network. Many quality functions have beerby the number of all possible internal edges; global outer
proposed to formalize this intuition, which may suggest thatantidensity is evaluated as one minus the number of edges
none of them is completely satisfactory. This justi es thes us between the given clusters divided by the number of all péssib
of ve metrics in this study to investigate community pattern bridge connections. Local densif® p is the average of a
in ASD. Although the ve metrics are formalizations of the cluster's (local) inner densities and its (local) outer dstisities
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FIGURE 8 | Altered brain regions in autism as revealed by ROl communigssignment test. This test was conducted on pooled data acrgs experimental sites.

weighted by a term proportionate to the cluster's size (to easu few have addressed connectivity di erences at the wholé@bra
that small dense clusters do not in uence the total clustgri level by using community detection and analysis over multiple
quality disproportionately)Qpg tries to formalize the theoretical datasets, as was done in the present study. While statisitaig
hypothesis of perfect community structure stipulating thatyan revealed signi cant di erences in the network structure and
two nodes within the same community are connected andcommunity composition, a test at the node level indicated tha
any two nodes in dierent communities are not connected.this di erence was caused by several brain regions. These bra
The node membership quality function computes the averageegions include the insula, thalamus, hippocampus, lingualgyr
(over all nodes of the graph) of a statistic that measures theiddle temporal gyrus and other functional areas that arewno
likelihood of each node to belong to his assigned cluster antb be impaired in autismi{ielsen et al., 2013; Chen et al., 2016;
not other clusters. We can see that each of these metrié§ang etal., 2017; Heinsfeld et al., 218

summarizing whole-brain connectivity with a single statst As shown inTable 6 descriptive community pattern metrics
captures a speci ¢ aspect of the quality of functional commynit yielded over 79% accuracy on all of the individual datasets.
structures. Considering that all these ve measures offion@l  Moreover, they yielded a maximum accuracy of 75.04% on a
segregation are highly sensitive to every single connectiadi erent multisite validation dataseffable 7), thus proving to be
and every meaningful grouping of connections in the graphrobust, viable predictors of autism. While comparing accigac
they provide a robust method for comparing connectivityacross studies is not always straightforward, depending as
between normal and pathological individuals. Neverthelesshey do on additional parameters such as the number of
although both underconnectivity and overconnectivity wer participants recorded and the preprocessing pipeline used, there
discovered in our datasets, any potential relationship betw is evidence that our classication signi cantly outperfosn
these two potential subtypes of autism and functional comrtwni even at the group level, recent approaches that used ne-
patterns remains unclear. This diversity in ndings may bescaled pairwise correlations on single-site data. Furtloeem
explained by the multifaceted manners in which ASD manifesteur classi cation was achieved with the lowest number
across individuals. of features.

With respect to functional connectivity di erences between Despite the encouraging prediction performance obtained in
the ASD and control groups, our results are in agreement witthis study, we do not advocate these metrics as potential ASD
previous ndings and support the dysconnectivity theory ofclinical biomarkers. One of their limitations for this purpose
autism. Early studies on functional connectivity at resairtism is that those network indexes are not complete invariants, in
tended to support the underconnectivity theory, whereas a fewhe sense that non-equivalent graph structures can yield the
recent studies have reported either over connectivity odente same values in those metrics. While this limitation is soraiv
for both (Hull et al., 201% However, most of these studies alleviated in this work by the use of several measures, they
have focused only on specic ROIs or resting-state networksjevertheless fall short of neuromarker standardg( et al.,
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TABLE 4 | Regions displaying high disagreement between ASD and cortt group
for community cluster assignment.

Label Region Hemi Coordinates
X y z

Precental gyrus R 41.37 8.21 52.09

Superior frontal gyrus, dorsolateral R 21.9 31.12  43.82

Middle frontal gyrus, orbital part L 30.65 50.43 9.62
12 Inferior frontal gyrus, opercular part R 50.2 14.98 21.41
15 Inferior frontal gyrus, orbital part L 3598 30.71 12.11
16 Inferior frontal gyrus, orbital part R 4122 3223 1191
17 Rolandic operculum L 47.16 8.48  13.95
20 Supplementary motor area R 8.62 0.17 61.85
23 Superior frontal gyrus, medial L 4.8 49.17 30.89
24 Superior frontal gyrus, medial R 9.1 50.84 30.22
29 Insula L 35.13 6.65 3.44
30 Insula R 39.02 6.25 2.08
37 Hippocampus L 25.03 20.74 10.13
38 Hippocampus R 29.23 19.78 10.33
47 Lingual gyrus L 14.62 67.56 4.63
49 Superior occipital gyrus L 16.54 84.26 28.17
57 Postcentral gyrus L 42.46 22.63 48.92
60 Superior parietal gyrus R 26.11 59.18 62.06
66 Angular gyrus R 4551 59.98 38.63
7 Thalamus L 10.85 1756  7.98
78 Thalamus R 13 17.55 8.09
82 Superior temporal gyrus R 58.15 21.78 6.8
85 Middle temporal gyrus L 55.52 33.8 2.2
86 Middle temporal gyrus R 57.47 37.23 1.47
89 Inferior temporal gyrus L 49.77 28.05 23.17

This test was performed on merged data across experimental sites. Heimhemisphere;
L, left; R, right. These regions can be visualized iRigure 8 .

TABLE 5 | Classi cation performance on our data cohorts by using the ve
community pattern descriptors as features with KNN and LDA Igorithms.

Algorithm KNN LDA

Dataset Accuracy Precision Recall Accuracy Precision Reca Il
STA (T=0.2) 76.12 7448 7291 85.16 84.25  83.95
LV1 (T =0.3) 70.31 66.83 61.00 82.77 80.10 81.89
LV2 (T =0.3) 69.69 48.17 51.67 8133 80.79  80.29
OLI (T =0.4) 74.44 77.58 72.01 80.28 79.08 80.04
PIT T =0.3) 68.42 57.50 52.49 79.59 78.03 78.77
CAL (T =0.6) 72.00 73.33 71.21 83.35 82.92 83.01
MultisiteT =0.5) 65.66 59.00 59.00 74.86 76.07 71.67

T, Threshold; KNN, K-nearest neighbor; LDA, linear discrimima analysis. We only report
the sparsity thresholds that yielded the highest classi cation accuacy.

methods. Further research may provide a solid basis for their
clinical application in the future. Autism spectrum encompasse
several neurological disorders and manifests itself thinaugyide
range of symptoms and di erent characteristics. The way the
brain's architecture breaks down under the e ects of autism i
subtle and complex. A single metric, modularity, for example, is
not enough to capture all the changes in brain structure agros
the spectrum. The use of several structural metrics is, thezg
more appropriate to capture and identify this disease.

Classi ers designed based on features extracted from ABIDE
rsfMRI data typically perform better on single-site data than
multisite data. Decreased accuracy in multisite data cowd b
attributed to ASD subtypes or other heterogeneities across
the ABIDE siteslpi Martino et al., 201}t Dierent studies
employed dierent approaches for utilizing multisite data
for ASD classi cation in the literature. One approach is to
learn biomarkers of neurological status and perform separate
classi cation at individual sites and then combine the résu
in a meta-analysisthen et al., 2006 Another approach
consists of treating multisite data as a single, homogeseou
datasetl{lielsen et al., 20)3These two approaches were used
in this study to assess the viability of functional network
community pattern metrics as predictors of ASD. While these
two approaches fail to account for the variability that has
been proven to be signi cant between sites, their use in this
study provides preliminary evidence for community quality
metrics as potential predictors of autism. Recent approaches
for combining imaging data from multiple sites leverage
similarity across sites while accounting for individual esit
di erences through a joint optimization\(Vang et al., 2017;
Heinsfeld et al., 20)8While these novel approaches yield better
classi cation accuracy in multisite studies, they may nat b
suited for studies that extract imaging features based ohajlo
connectivity indexes.

In this study, community detection was performed by
optimizing the modularity quality function. Then the commuyi
quality indexes were calculated based on the found community
structures. Given the results for feature importance, it is
interesting to see that modularity is one of the least impotta
predictive features for the ASD classiers. One might then
suspect that optimizing some of the other quality functions
might lead to communities that yield better discrimination
between persons with ASD and typical controls. In this worle, th
modularity maximization algorithm was chosen for community
identi cation mostly because of its good performance on
functional brain networks in previous studies. We cannot,
therefore, rule out the fact that the predictive power of the
other quality measures is a consequence of using modularity
for the original clustering. Using an alternative graph chusig
algorithm such as Infomapg~ossval and Bergstrom, 200t
perform the original clustering could be useful for verifying

2015. Another major limitation is their great dependence on this hypothesis. In addition, it would be interesting to cordu
network ltering threshold for which there is no objective a comparative study where the initial community detection is

selection criterion.

That said, community quality patternsperformed by optimizing each of the other quality functions

remain a valuable tool for investigating network conneityiv and then computing and using all the metrics as features
disruptions in ASD pathology and anticipating the polarity of afor classication. This, however, is beyond the scope of
particular participant before using the recommended diagitost this paper.
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TABLE 6 | Comparing our classi cation results with recent works.

Types of features # of features Classi er

# of subjects (ASD, CTR, Total) Peak accuracy % References

Functional connectivity 26,393,745 Thresholding (40, 4080) 79.0

Anderson et al., 2011
ICA components 10 Linear Regression (20, 20, 40) 78.0 Uddin et al., 2011
Functional connectivity among 7266 ROIs 26,400,000 Generdlinear Model (447, 517, 964) 60 Nielsen et al., 2013
Functional connectivity among 220 ROls 24,090 Random Forest (126, 126, 252) 91 Chen et al., 2015
Functional connectivity among 90 ROIs 4005 Probabilistic Ne-al Network (312, 328, 640) 90 lidaka, 2015
Functional connectivity Variable Support Vector Machine 59, 89, 148) 76.7 Plitt et al., 2015
Functional connectivity among 84 ROIs 7,056 Support Vector fassi cation (468, 403, 871) 67 Abraham et al., 2017
Functional connectivity among ROIs 600 Deep neural network 505, 530, 1035) 70 Heinsfeld et al., 2018
HOG and personal characteristic data a7 Support Vector Macime (538, 573, 1111) 65 Ghiassian et al., 2016
ROIs HMMs likelihoods 114 SVM (121, 171, 292) 75.86 Jun et al., 2019
Time series 90 LSTM (529, 571, 1100) 68.5 Dvornek et al., 2017
Community metrics from 90-ROI networks 5 Linear Discriming Analysis (117, 118, 235) 74.86 This work

HOG, Histogram of Oriented Gradients; LSTM, Long Short-Term Memoryeatwork; HMM, Hidden Markov Models.

TABLE 7 | Classi cation performance on the entire validation set by usg the ve
community pattern descriptors as features with KNN and LDA Igorithms.

Threshold KNN LDA
Accuracy Precision Recall Accuracy Precision Recall

0.1 58.25 59.23 59.27 65.14 64.34 64.89
0.2 55.69 56.61 61.55 68.85 68.15 68.18
0.3 65.95 64.29 64.07 69 70.15 71.58
0.4 65.97 66.13 64.13 75.04 73.16 74.28
0.5 66.16 67.81 64.51 72.49 71.44 72.77
0.6 64.33 62.45 63.18 71.16 70.98 69.14
0.7 64.17 65.3 64.41 67.24 66.88 65.69
0.8 58.09 54.75 56.85 65.55 65.11 63.13
0.9 55.75 55.78 54.07 66.82 67.12 66.33

KNN, K-nearest neighbor; LDA, linear discriminant analysis.

One limitation of the classi cation framework proposed in
this study, and graph-based approaches in general, is th
the classi cation results are very dependent on threshadin
parameterT. Graph screening is a major and most recurring
issue for the binarization of functional brain networks. In

this study, we performed a systematic analysis of functioneﬂJ

brain networks for increasing threshold values rangingnfro
0.1 to 0.9, as there is no objective criterion for determgnin
an interval of thresholds for which community quality mesic
would remain relatively stable. Our classi cation resualissingle
and multisite data show that, broadly, threshold valuesingl
between 0.3 and 0.6 yielded the best classi cation ac@sdsee
Tables 5 7). This suggests that brain networks that are eithe

metrics directly from un Itered networks. A drawback of this
solution could be the challenge of de ning and interpreting
communities in the context of signed networks with positivelan
negative connections.

Other limitations of this study include the fact that the sam
spatial normalization template was used for all participants
despite age dierences in the experimental populations.
Detection of regional distortions could probably be more
accurate by using multiple brain templates adapted to di erent
age ranges. Also, many subjects with ASD were on medication a
the time of scanning, and it cannot be ruled out that treatrsen
could in uence resting-state functional connectivity camnity
patterns in these individuals. Third, community detectiorasv
performed on unweighted networks, ignoring the potential
signi cance of the information carried by edge weights. Hina
we used values of Pearson's correlation coe cient as node
weights before binarization; however, dierent correlatio
metrics may yield di erent graph representations of the same
datasets and yield dierent characterizations of functibna
connectivity di erences in ASD. Further studies are necsssa

investigate community pattern dierences in ASD by
using weighted network representation. Further studiesase
warranted to determine the e ects of di erent correlation nieis
nd other network construction techniques on resting-state
nctional network community patterns.

5. CONCLUSION

We propose a framework to characterize and discriminate
patients with autism spectrum disorder from normal control
isubjects. Our approach is based on graph-based feature

too densely connected or too sparse are not good choices fektraction. A combination of ve well-selected community

reaching “optimal” classi cation accuracy on new data. | Stil
nding a general rule for choosing the best network Itering
threshold remains a challenging endealer VVico Fallani et al.

(2019. A potential good workaround solution to the threshold

pattern quality indexes was used as features for classi cation.
In addition, various statistical tests were applied to evauhe
overall network topology and community composition in ASD
at the group as well as subject levels. Results for functional

problem could be to perform community detection and computeconnectivity di erence between autistic patients and normal
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subjects were consistent with existing studies, revediop FUNDING
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that the discriminative power of the modular structure as
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