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Dimensionality reduction using the t-Distributed Stochastic Neighbor Embedding (t-SNE)
algorithm has emerged as a popular tool for visualizing high-parameter single-cell
data. While this approach has obvious potential for data visualization it remains
unclear how t-SNE analysis compares to conventional manualhand-gating in stratifying
and quantitating the frequency of diverse immune cell populations. We applied a
comprehensive 38-parameter mass cytometry panel to human blood and compared
the frequencies of 28 immune cell subsets using both conventional bivariate and
t-SNE-guided manual gating. t-SNE analysis was capable of stratifying every general
cellular lineage and most sub-lineages with high correlation between conventional
and t-SNE-guided cell frequency calculations. However, speci�c immune cell subsets
delineated by the manual gating of continuous variables were not fully separated in t-SNE
space thus causing discrepancies in subset identi�cation and quanti�cation between
these analytical approaches. Overall, these studies highlight the consistency between
t-SNE and conventional hand-gating in stratifying generalimmune cell lineages while
demonstrating that particular cell subsets de�ned by conventional manual gating may
be intermingled in t-SNE space.

Keywords: cyTOF, t-SNE, cytometry informatics, dimensionalit y reduction, immunophenotyping,
high-dimensional cytometry

INTRODUCTION

The analysis of cytometry data through manual “hand-gating”has progressively become more
and more impractical as cytometry data sets continue to increase in dimensionality and size (1).
The sequential inspection and gating of more than 20 bivariate plots is now necessary to conduct
even a basic immunophenotyping analysis of 40-parameter data. The primary problems with
conventional cytometric analysis are the subjectivity of operator-de�ned gating thresholds and
the low throughput of manual gating (2, 3). Frequency quantitation of cell subsets de�ned by
the subjective discretization of continuously distributed markers, such as CCR7 and CD45RA in
de�ning T cell subsets, are particularly subject to inter-analyst variability. The goal of cytometry
informatics is to automate, or at least augment, the objective strati�cation of cell populations in
cytometry data sets. Although an overwhelming variety of computational tools have been developed
as potential alternatives to manual hand-gated analyses (4), the �eld has yet to unite around a single
computational approach.
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Clustering and dimensionality reduction are algorithmic
methods that have frequently been applied to cytometry
data. Over the past decade, clustering algorithms have been
critically assessed through comparison to expert manual
analysis as well as through the cross-validation of clustering
results between di�erent clustering algorithms (5, 6). In
contrast, there have been very few critical assessments of
dimensionality reduction as a cytometric analytical tool oreven
as a tool that simply enables the visualization of single-cell
data (7, 8).

Recently, the dimensionality reduction algorithm, t-
distributed stochastic neighbor embedding (t-SNE) (9), has
gained popularity as a means to visualize high dimensional
single-cell data (10–12). While t-SNE produces bivariate
dot-plot based visualizations that are inherently intuitivefor
cytometrists to comprehend, there is still an important need
to assess the strengths and limitations of this approach,
especially in respect to how t-SNE relates to expert
manual hand-gated analysis which has historically been the
gold standard.

Currently, in cytometric analysis t-SNE is typically used
as a visualization tool to qualitatively assess cell population
diversity, rather than as a quantitative analytical tool for
calculating the frequency of speci�c cell populations. In
these studies, we sought to quantitatively compare cell
population frequencies determined by both conventional
bivariate plot-based and t-SNE-guided manual gating.
Our goal was not to de�nitively validate dimensionality
reduction as a quantitative analytical approach, but simply to
understand the relationship between dimensionality reduction
and conventional manual gating in de�ning canonical cell
populations. Given that t-SNE analysis is primarily being
used to explore novel cellular landscapes, the ability of this
approach to accurately represent well-characterized and de�ned
populations is important for establishing its general validity.
Alternatively, t-SNE mapping could reveal �aws in conventional
gating strategies.

We found that immune populations strati�ed by divergent
and discrete marker expression in a conventional analysis
were also well separated by t-SNE dimensionality reduction.
As expected, the projection of general cell lineages identi�ed
via conventional gating onto the t-SNE map demonstrated
congruence in the cell populations distinguished by these
analytical approaches. In contrast, particular T cell subsets
de�ned by continuous markers were often not well separated
in t-SNE space. In these cases, the projection of hand-
gated T cell populations onto the t-SNE map showed high
levels of interspersion between subsets. Isolation and t-SNE
analysis of only the CD4C T cell lineage produced only
marginally better separation between canonical subsets than
in the global analysis. In summary, cell populations that are
well strati�ed by conventional bivariate plot-based gatingwill
also be separated via t-SNE-based dimensionality reduction;
however, subsets de�ned by the gating of continuous markers
on a bivariate plot will not be fully separated in t-SNE space
unless discrete orthogonal markers are included that facilitate
further strati�cation.

MATERIALS AND METHODS

PBMC Isolation
Healthy human donors (N D 10) peripheral blood mononuclear
cells (PBMCs) were isolated using 50 mL LeucosepTM tubes
(Greiner Bio-One International, Germany) and Ficoll-PaqueTM

PLUS (GE Healthcare, Sweden). Whole blood was drawn into
sodium heparin anticoagulant collection tubes and diluted with
phosphate-bu�ered saline (PBS) without calcium or magnesium
(Lonza, Walkersville, Maryland). Whole blood was centrifuged
for 15 min at 800x g at room temperature (RT). PBMCs were
then harvested and washed with PBS and centrifuged for 10 min
at 250x g at RT before preparation for cell staining.

Source of mAb-Isotope Conjugates
SeeTable S1 for a list of the metal conjugated mAbs used
in these studies. In-house conjugations were performed
using Multi-Metal MaxparR Kits (Fluidigm, South San
Francisco, California). 115In was purchased from Trace Sciences
International Corporation.

Staining of Cells
Washed PBMCs were re-suspended at a cell concentration
of 107 cells/mL with PBS. Cells were then incubated with
a viability reagent, Cell-IDTM Cisplatin (Fluidigm, South San
Francisco, California) at a �nal concentration of 5mM for 5 min
on ice. Viability staining was quenched with a 5x volume of
MaxParR Cell Staining Bu�er (Fluidigm, South San Francisco,
California) and centrifuged at 300x g, then re-suspended to a
�nal concentration of 30 million cells/mL in staining bu�er.
For antibody labeling, 3 million cells were transferred to
FalconR 5 mL 12 � 75 mm tubes (Corning, New York). To
block Fc receptor binding, cells were incubated with 5mL of
Human TruStain FcXTM (BioLegend, San Diego, California) for
10 min on ice. A master mAb cocktail containing all metal-
conjugated surface antibodies (50mL of total staining reagent
volume) was added to samples for cell-surface staining and
incubated for 30 min on ice. SeeTable S1 for a list of the
metal conjugated mAbs used in these studies. Cells were then
washed once with 4 mL cell staining bu�er to prepare for
intracellular staining. Brie�y, cells were re-suspended in 1 mL of
�xation/permeabilization solution by using the FoxP3 Staining
Bu�er Set (eBioscience, San Diego, California) for 45 min on ice,
washed with 3 mL of permeabilization bu�er at 800x g for 5 min,
and re-suspended in 50mL of permeabilization bu�er. Cells
were then stained for intracellular targets by addition of 50mL
antibody cocktail. After 30 min incubation on ice, the cells were
washed with 4 mL cell staining bu�er and �xed overnight at 4� C
in a 1 mL solution containing Cell-IDTM Intercalator-Ir in 1.6%
EMS Fix (Electron Microscopy Sciences, Hat�eld, Pennsylvania).

For �ow cytometry, 20mL of the TBNK cocktail from BD
Biosciences was added into each of the 10 TruCount FACS tubes.
100 mL of each donor's blood was reverse pipetted into the
TruCount tubes and incubated for 30 min. After incubation, 450
mL of 1x BD FACS Lysing solution was added and incubated for
15 min. Samples were then acquired within an hour from lysing
on a FACS Canto II (BD Biosciences, San Jose, CA).
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Acquisition on CyTOF ® Instrument
Cells were washed with 3 mL of MaxParR cell staining bu�er
and centrifugated at 800x g for 5 min followed by a 2x wash
with 4 mL MaxParR Water (Fluidigm, South San Francisco,
California). Before introduction into the HeliosTM , a CyTOFR

System (Fluidigm, South San Francisco, California), pelleted
cells were re-suspended with MaxParR Water containing
EQTM Four Element Calibration Beads (Fluidigm, South San
Francisco, California) and �ltered using a 12� 75 mm
tube with a 35mm nylon mesh cell-strainer cap (Corning,
New York).

Data Processing and Analysis
All FCS �les were normalized using the MATLABR

(MathWorksR , Natick, Massachusetts) normalizer and analyzed
using FlowJoR software (Flowjo, Ashland, Oregon).

Dimensionality Reduction (t-SNE) Analysis
Individual donor fcs �les were imported into R and their
expression matrices containing measured intensities for each
marker at single-cell level were extracted using functionsfrom
the �owCore package (13). A subset of 50,000 cells were selected
for each donor at random and merged into a single expression
matrix prior to t-SNE analysis. The following channels were
removed from the expression matrix to only include protein
markers in t-SNE analysis: beads, event length, intercalator,
viability, center, o�set, residual, and time. Marker intensities
were transformed using the inverse hyperbolic sine (arcsinh)
function. A total of 500,000 cells and 38 markers (Table S1)
were used to create a t-SNE map of the peripheral human
immune system.

The Barnes-Hut implementation of t-SNE by the Rtsne
package (14) with 1,000 iterations, a perplexity parameter of
30, and a trade-o�" of 0.5 (9, 15), was used for applying the
dimensionality reduction algorithm. The output was in the form
of a matrix with 500,000 rows and 2 columns corresponding
to t-SNE dimension 1 and dimension 2. t-SNE maps were
generated by plotting each event by its t-SNE dimensions in
a dot-plot. Intensities for markers of interest were overlaid
on the dot-plot to show the expression of those markers on
di�erent cell islands and facilitate assignment of cell subsets
to these islands. The t-SNE dimensions were appended to the
original expression matrix as derived parameters and exported
as an fcs �le, which could subsequently be opened and analyzed
using FlowJo (Ashland, Oregon). For �ow cytometry data
FCS Express (Glendale, California) was used to conduct t-
SNE analysis.

To evaluate the impact of modulating pre-speci�ed
parameters on t-SNE map generation, a subset of the 10-
donor data (50,000 cells) was analyzed using varying perplexity,
iteration number and trade-o�" values. Perplexity of 5, 30, and
100, iteration number of 1,000 and 10,000 and trade-o�" of 0.2,
0.5, and 0.8 were compared. The impact of limiting the markers
used to construct a global t-SNE map to only general lineage
markers was examined by running t-SNE with only the following
markers: CD45, CD3, CD4, CD8,gdTCR, IgD, CD19, CD20,

HLA-DR, CD14, CD11c, CD66, CD56, CD16, CD1c, CD38, and
CD11b (data not shown).

Concordance between manually hand gated populations
projected onto t-SNE space and computationally de�ned clusters
was qualitatively assessed for Phenograph (16), DensVM (17),
and FlowSOM (18) clustering methods. Clustering and overlay
with t-SNE maps was performed using the cytofkit package
in R (19).

Comparison of Hand-gated and
t-SNE-guided Gated Subsets at Single-cell
Level
To evaluate the concordance between hand-gating and t-SNE-
guided gating at single-cell level, the FlowJo workspace �le (tsp)
of the aggregated and t-SNE appended fcs �le was imported into
R. For each population, the cells captured in the corresponding
subset using hand-gating or t-SNE-guided gating were extracted
and compared between the two methods. t-SNE-guided manual
gates were drawn based on observed boundaries of canonical
phenotypic marker expression rather than on cell subset density.
The ability of the t-SNE-guided gating to match the hand-gating
results was quanti�ed by the fraction of cells in the hand-gated
population that matched with the t-SNE-guided population. This
was calculated by dividing the number of cells in the overlap
between the two gates by the total number of cells in the hand-
gated population. The fraction of cells in the t-SNE-guided gated
population that matched with the hand-gated population was
similarly calculated by dividing the number of cells in the overlap
between the gates by the total number of cells in the t-SNE-guided
gate (Supporting InformationFigure S5). The �owWorkspace
package (2) was used for analysis of wsp �le in R.

RESULTS

Conventional Bivariate Plot-based Gating
Strategy De�ning the Peripheral Human
Immune System
In order to de�ne the relationship between cell populations
strati�ed by a global t-SNE map of the peripheral immune
system and a conventional hand-gating analysis, a diverse 38-
parameter cytometry panel was applied to identify 28 distinct
immune cell populations in human blood (Table S1). Peripheral
blood mononuclear cells (PBMCs) from 10 healthy donors
were isolated and processed for mass cytometric analysis.
Figure 1 shows the conventional manual gating strategy used
to de�ne these populations. Neutrophils and Eosinophils were
identi�ed based on CD66 positivity and further subsetted
based on CD16 and CD49d expression (20). CD3, CD4, CD8,
CCR7, CD45RA, CD25, and Foxp3 were used to identify
regulatory, naïve, central, e�ector, and e�ector memory T cells
expressing CD45RA (TEMRA) (21). gd TCR, Va7.2 TCR,
and CD161 expression de�nedgd and mucosal associated
invariant TCR (MAIT) T cells (22). CD19C B cell subsets
were de�ned based on the di�erential expression of CD27,
CD38, and IgD into plasmablast, naïve, memory, transitional,
and double-negative subsets (23). Following the exclusion of
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FIGURE 1 | Conventional manual gating strategy for 38-parameter human immunophenotyping. Human PBMCs were isolated and prepared for mass cytometry
analysis as described in Materials and Methods section. Data shown are from the merger of 10 donor samples (50,000 cells per donor) into a single fcs �le. Single
living cells were identi�ed based on intercalator 193Ir, event length, cisplatin 192 & 195Pt, EQ Bead (140Ce), and residual signal intensity. Differential expression of
CD66, CD16, and CD49d was used to discern Neutrophils and Eosinophils from other immune cell populations. CD3, CD4, CD8,CD25, CD45RA, CD161, Va7.2,
CCR7, Foxp3, andgd-TCR expression were used to de�ne 11 T cell subsets. CD19, CD20, CD27, CD38, and IgD were used to de�ne 5 B cell subsets. Two NK cell
subsets were de�ned based on CD56 and CD16 expression. Plasmacytoid dendritic cells (pDCs) were CD11clo, HLADRhi, and expressed high levels of CD123.
Monocyte and myeloid dendritic cell subsets (mDCs) were identi�ed based on the differential expression of HLADR, CD11c,CD14, CD16, CD11b, and CD1c.
Basophils co-express high levels of CD123 and Fc+R1.

the lineages described above, two NK cell populations were
identi�ed based on the expression of CD56 and CD16 (24).
Monocytes and dendritic cell subsets were identi�ed based on

the di�erential expression of CD11c, CD11b, HLADR, CD14,
CD1c, and CD123 (25). Lastly, Fc+RI and CD123 co-expression
identi�ed basophils.
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Comparison of Conventional and
t-SNE-guided Manual Analysis Across
General Immune Cell Lineages
For t-SNE analysis singlet and viability gating was performed
manually prior to data export for downstream computation (see
Figure S1for a work�ow schematic and Materials and Methods
section for details on t-SNE analysis). Due to the stochastic
nature of t-SNE, analyzing each donor independently would yield
maps in which the same cell populations would be in di�erent
locations. Data merger was therefore conducted to ensure spatial
alignment of the same cell populations between donors in t-SNE
space. 50,000 cells were randomly sampled per donor to create a
�nal �le containing 500,000 total cells. Speci�c donor identi�ers
were integrated prior to data merger to enable deconvolution
of the merged t-SNE map into individual maps speci�c to each
donor. Following dimensionality reduction, coordinates for each
t-SNE dimension (i.e., t-SNE1 and t-SNE2) were determined for
every cell and were integrated into a new appended fcs �le as
novel parameters.

In contrast to conventional sequential biaxial plot-based
analysis, t-SNE analysis generates a single map in which the
complex multi-dimensional geometric relationships between
single cells are represented in a two-dimensional space. A
third dimension using a color-based representation of the
expression levels of a single parameter is then used in order
to facilitate the identi�cation of speci�c cellular lineages(10)
(Figure 2A). Islands of cells can usually be deciphered on
the t-SNE map, which often uniformly express lineage-speci�c
markers such as CD3, CD19, and CD14.A priori knowledge of
immunophenotyping can subsequently be applied to a series of
these single-parameter maps in order to facilitate the supervised
annotation of di�erent cellular lineages. In this manner, onthe
global t-SNE map, 8 general cell populations were manually
gated in t-SNE space and putatively identi�ed as: basophils,
neutrophils, eosinophils, plasmacytoid dendritic cells (pDCs),
NK cells, monocytes and conventional dendritic cells (cDCs), B
cells, and T cells. A small fraction of cells (0.24% of total)was
left unidenti�ed.

The overlap between cell populations identi�ed via
conventional and t-SNE-guided gating was qualitatively
assessed by projecting hand-gated cell populations onto t-SNE
space (Figure 2B). This approach showed minimal intermingling
of cell populations between the di�erent islands of cells strati�ed
by dimensionality reduction. Subsequently, more quantitative
methods to assess the relationship between conventional and
t-SNE-guided gating were also applied both on a population
level as well as single-cell level. Speci�cally, the frequencies (as %
of total CD45C cells) of each general cell population for each of
the individual ten donors and the aggregated data (11 total data
points) were determined and correlated between each analysis
method (Figure S2A). This population-based analysis was
highly correlated between both methods. The reproducibility of
t-SNE-guided analysis across multiple independent t-SNE runs
was also evaluated (Figure S3A). Due to the stochastic nature of
t-SNE, the same cell populations fell in di�erent parts of each
map; however, the overall quantitation of the 8 general lineages

was nearly identical between di�erent runs (Figure S3B). A
comparison of these analytical approaches also showed high
correlation in the analysis of a 6-parameter �ow cytometry data
set demonstrating that high dimensional data is not required for
separating distinct cell population in t-SNE space (Figure S4).

In order to assess overlap between conventional and t-SNE-
guided analysis at the single-cell level, the cells that were captured
by either analytical method for the aggregated donor data were
compared for each cell subset. The fraction of cells captured
by conventional gating that overlapped with those captured by
t-SNE-guided gating were calculated to quantify the sensitivity
of the t-SNE-guided gating method for replicating results from
the conventional analysis. Analogously, the fraction of cells
captured by t-SNE-guided gating matching those in the hand-
gated population was also calculated (see Materials and Methods
and Figure S5for more details).Figure 2C shows that for the
8 general cell populations identi�ed, 97% or more of the cells
that were conventionally hand-gated were matched with the
t-SNE-guided analysis. Cell populations identi�ed based on t-
SNE strati�cation were matched with hand-gated populations
at slightly lower levels but still above 93% matching for these
8 populations. Similar results were obtained for manually
segregating general T cell lineages in t-SNE space based on
CD3, CD4, CD8,gd TCR, Va7.2 TCR, and CD161 expression
(Figures S6, S2B).

Comparison of Conventional and
t-SNE-guided Manual Analysis Across
Immune Cell Subsets
Subsequently, we evaluated the ability of t-SNE mapping to
stratify the deeper subsets of lymphocytes, monocytes, and
mDCs which we identi�ed via conventional gating inFigure 1.
Speci�cally, the di�erential expression of the markers shown in
Figure S7were used to manually gate these general populations
into sub lineages. Importantly, in contrast to the t-SNE-guided
gating used to identify more general cell lineages, which leveraged
the intrinsic topography of clearly separated cellular islands,for
some subsets clear separation in t-SNE space was not observed.
Thus, manual gates were drawn based on marker expression
levels (analogous to the approach used in conventional gating in
Figure 1) in the absence of topographic features that informed
more objective boundaries (Figure 3A). Figure 3Bdemonstrates
that certain subsets, especially central and e�ector memory T
cell subsets, de�ned by conventional hand-gating were often
commingled in t-SNE space.

While some cell subpopulations were well matched (> 90%)
by both manual and t-SNE-guided gating others were only
matched at low levels (< 30%) (Figure 4). Naïve lymphocytes
were matched most concordantly (> 80%) most likely due to
redundancy between markers speci�c to the naïve state such as
CD45RA, CCR7, CD27, and IgD. In contrast, central and e�ector
memory T cell subsets de�ned even in high dimensional space
by the expression of continuous markers were not well matched.
Overall, when t-SNE map topography inherently de�ned discrete
boundaries between cellular islands there was a higher likelihood
for overlap between both gating approaches.

Frontiers in Immunology | www.frontiersin.org 5 June 2019 | Volume 10 | Article 1194



Toghi Eshghi et al. Conventional vs. t-SNE-guided Gating Analyses

FIGURE 2 | t-SNE-guided manual gating analysis of general immune lineages. (A) 10 healthy donor PBMC samples were merged to create a single t-SNE map with
the signal strength of key phenotypic markers de�ning speci�ccellular lineages expressed with a green-black-red continuous color scale. t-SNE analysis was
performed using 1,000 iterations, a perplexity of 30, a trade-off " of 0.5, and all 38 of the phenotypic markers listed inTable S1. (B) Cell populations de�ned by the
manual gating strategy inFigure 1 were projected onto t-SNE space and assigned speci�c colors.(C) The level of overlap or matching between conventional and
t-SNE-guided manual gating analyses was calculated for every general cellular lineage. See Materials and Methods andFigure S5 for details on how the level of
matching between analytical strategies was calculated. The proportion of cells that were not matched is shown in red while the proportion of cells that were matched
is shown in blue.
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FIGURE 3 | t-SNE-guided manual gating analysis of immune cell subsets. (A) Immune cell subsets were identi�ed and manually gated in t-SNEspace based on the
signal intensity of the phenotypic markers shown inFigure S7A in order to correspond to the subsets de�ned inFigure 1 . (B) Cell subsets de�ned by conventional
manual analysis were projected into t-SNE space and assigned different colors.

Isolated t-SNE Analysis of the CD4 T
Cell Lineage
We next sought to determine whether t-SNE mapping of a
single lineage that exhibited interspersion between manually
de�ned canonical subsets in our global t-SNE map, could be
better strati�ed with more discrete topographies when mapped
as an individual lineage (Figure 5). To address this question,
we isolated only the CD4C T cell lineage (25,0000 cells from
each of 10 donors) and ran t-SNE on this general population
alone (with the entire 38 marker panel).Figure 5A shows the
expression levels of markers relevant to the CD4 T cell lineage.
While this approach led to more separation of minor T cell
islands which became more distant from the main population
in the CD4 T cell restricted analysis, it did not achieve clear
resolution between general CD4C T cell subsets other than the
naïve subset (Figure 5B, left panel).

We hypothesized that parameters that were common to all
CD4 T cells such as CD3 and CD4 were potentially restricting the
ability of t-SNE to segregate CD4 T cell subsets. We compared t-
SNE analysis of the CD4 T cell lineage with and without including
markers either universally present or absent within this lineage
and found little e�ect of constraining the markers used by t-SNE
on the segregation of CD4 T cell subsets (data not shown).

Alternatively, it is possible that our inability to clearly
delineate these populations in t-SNE space was the result of
merging of di�erent donors within a single map. This is because
the conventional hand-gating performed on the merged �le

might not have been su�ciently tailored to the individual
di�erences in marker expression which could vary between
donors for either technical or biological reasons. To address this
question t-SNE analysis was performed on individual donors
with manual gating being tailored to each individual's particular
expression patterns of CD25, Foxp3, CCR7, and CD45RA
(Figure 5B, right panel). Again, we observed that while the naïve
population is reproducibly segregated to one side of the map
and shows little commingling with memory subsets, the other
subsets are not clearly strati�ed within the t-SNE map. Thus, the
lack of separation between memory T cell populations in t-SNE
space was not due to the merger of di�erent donors into a single
t-SNE map.

Subsequently, we asked whether the application of a variety
of clustering algorithms [Phenograph (16), DensVM (17), and
FlowSOM (18)] could at least qualitatively stratify the 5 speci�c
hand-gated T-cell populations we projected onto t-SNE space in
Figure 5B; Figure S8. Naïve T-cells and a subset of T-regulatory
cells were captured by one or a few clusters by each algorithm
in a manner that was congruent with t-SNE map topography
as well as manual hand gating. In contrast, the 3 other subsets
of CD4 memory T-cells were not as clearly related to projected
hand gates.

To further examine the e�ect of continuous markers on
separation of phenotypes in t-SNE space, synthetic datasets
containing two markers, M1 and M2 were created. Marker
expressions for these channels were sampled from distributions
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FIGURE 4 | Correspondence between conventional and t-SNE-guided manual gating analyses for immune cell subsets. The level of overlap or matching between
conventional and t-SNE-guided manual gating analyses was calculated for every general cellular lineage as inFigure 2C . The proportion of cells that were not
matched is shown in red while the proportion of cells that were matched is shown in blue.

with varying levels of continuity, including discrete bimodal,
continuous bimodal, and unimodal (Figure S9). This was
achieved by sampling two normal distributions with �xed mean
values at negative and positive expression and variable standard
deviation values to tune the level of continuity across these two
levels. Dimensionality reduction using t-SNE was applied to
these datasets to generate 2-dimensional projection of the data
onto the t-SNE space. We observed that in the absence of a
marker with discrete distribution, t-SNE is unable to fully resolve
populations with continuous marker expression. This suggests
that the distribution of marker expression is a contributingfactor
in the separation or intermingling of cells in t-SNE space.

Modulation of t-SNE Parameters Does Not
Fully Separate Cell Populations De�ned by
Continuous Variables
The pre-speci�cation of iteration number, perplexity, and trade-
o� " can potentially impact cell strati�cation in t-SNE space
and we qualitatively assessed whether the modulation of these
parameters could lead to more concordance between t-SNE-
guided and manual gating (Figure S10). Increasing perplexity
and iteration number and decreasing the trade-o�" resulted in
more separation between distinct cellular lineages with discrete
marker distribution (Figure S10A). In contrast, modulating
these parameters only marginally impacted the analysis of

memory T-cell populations with continuous marker distributions
(Figure S10B). Barnes-hut approximation through introduction
of trade-o� parameter" enables practical application of t-SNE
on large datasets. Importantly, increasing the trade-o� parameter
" to 0.8, thus moving away from exact t-SNE, resulted in the
inability of t-SNE-based mapping to resolve pDCs, a rare cell
population (Figure S10A).

DISCUSSION

The inability of t-SNE to clearly separate canonical memory Tcell
subsets de�ned by a priori knowledge is not an inherent defectin
dimensionality reduction as an analytical approach. Our analysis
revealed that the information in our data set was insu�cient
to fully separate central and e�ector memory T cell subsets
using t-SNE most likely because the parameters we expected to
fully di�erentiate memory T cells were continuously distributed.
In contrast, conventional bivariate gating arbitrarily discretizes
cell populations based on operator de�ned areas of low density
between largely continuous underlying data distributions as
in the case for CCR7, CD45RA, and CD45RO. In contrast,
the t-SNE maps we examined did not arbitrarily separate cell
populations with similar patterns and levels of cell surface marker
expression. This does not mean that these observations call into
question the existence of the central and e�ector memory T
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FIGURE 5 | Local t-SNE mapping of only the CD4 T cell lineage does not clearly separate memory subsets de�ned by conventional manual analysis.(A) 250,000
CD4 T cells were extracted from the 10-donor data set and werereanalyzed using t-SNE as an isolated lineage using the entire panel as inFigure 2 . Signal intensity
for individual markers involved in de�ning various T cell subsets are shown.(B) Projection of hand-gated CD4 T cell subsets from 10 donor data set into t-SNE space
(left panel). CD4 T cell t-SNE maps were independently generated for 3 individual donors (25,000 cells per donor right panel).

cell subsets, but that our data set did not provide su�cient
information to clearly di�erentiate memory T cell populations in
t-SNE space. We found this to be true both in the context of a
global as well as local t-SNE map in which only the CD4 T cell
lineage was visualized (Figure 5). Lineage extraction and local
t-SNE map generation was also performed for the monocyte
& dendritic cell lineage (data not shown). We found that in
global t-SNE maps dendritic cells typically formed a peninsular
structure jutting out from the “mainland” of classical CD14hi

monocytes, and in at least one local map we generated, DCs
did achieve full separation from the major monocyte population
(data not shown). Thus, �ner resolution can be achieved in
a local map; however, this did not seem to signi�cantly alter
the interpretation of the topography of a global t-SNE map. A
hierarchical approach to t-SNE has been described (26), and the
�eld should continue to evaluate the relative value of global t-SNE
analyses vs. local analyses in which only speci�c lineages are
isolated and visualized.
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It is becoming convention for dimensionality reduction and
clustering algorithms to be applied in tandem to single-cell data
sets with populations de�ned by clustering algorithms being
projected onto t-SNE space (16). This approach is undoubtedly
more objective and reproducible than performing t-SNE-guided
manual gating to segregate populations with continuous marker
distributions, which recapitulates the “original sin” of manual
hand gating.

It is currently unclear whether the use of t-SNE derived
coordinates as part of a clustering approach is preferable to using
these tools independently. Distance in t-SNE space should not
be overinterpreted since distinct cell populations that are close
in one t-SNE analysis can be distant in a second analysis of the
same data set (Figure S3). Thus, it is questionable whether t-
SNE coordinates should be included in de�ning cellular clusters.
Regardless, a comparison of how clusters projected onto t-SNE
space compare to conventional manual analysis is outside the
scope of these studies and would be redundant with publications
that have already performed this comparison without t-SNE
visualization (6).

Going forward, an essential question for visualizing single-
cell data with both dimensionality reduction and clustering
is whether these approaches can deliver messages that are
contradictory about the same data set. For example, what doesan
analyst conclude if a t-SNE map does not display distinct and well
separated cellular islands but a clustering algorithm appliedto the
map parses out a variety of clusters that are only continuously
di�erentiated in t-SNE space (as inFigure S8)? The biological
relevance of poorly di�erentiated clusters should be assessed with
orthogonal functional assays or additional markers providing
more robust phenotypic strati�cation.

The application of t-SNE to single cell analysis probably
provides the most value in e�orts to survey the cellular
heterogeneity of complex tissues and to characterize novel or
poorly de�ned cell populations. In these studies, we tested the
ability of the t-SNE approach to stratify familiar cell populations
in an extremely well characterized sample matrix. If our studies
had identi�ed profound discrepancies between our “ground
truth” conventional analysis of canonical subsets and the t-SNE-
guided analysis, we may have questioned whether this approach
is appropriate for the characterization of poorly de�ned cell
populations or whether our ground truth assumptions were
incorrect. Instead, a high degree of overlap in the general
cellular lineages de�ned by these approaches was found, and the
identi�ed discrepancies led us to revisit the logic of subjectively
discretizing continuous variables rather than the validity of
dimensionality reduction.
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Figure S1 | Overview of t-SNE-guided analysis strategy. PBMCs were prepared
from 10 healthy donors and analyzed via mass cytometry. Livesinglet cells were
manually gated using FlowJo software and individually exported as fcs �les.
Following �le merger t-SNE analysis was conducted as described in Materials and
Methods. A new fcs �le was written for the merged data set as well as each
individual donor with appended t-SNE parameters, which wasthen manually
gated in t-SNE space using Flowjo. t-SNE-guided gates were then copied from
the merged data to each individual donor.

Figure S2 | Correlation of cell subset frequencies. Cell frequencies were obtained
from conventional and t-SNE-guided gating of individual donors and the
aggregated data for(A) general immune lineages,(B) general T cell lineages, and
(C) immune cell subsets.

Figure S3 | The stochastic nature of the t-SNE algorithm results in different maps
in multiple runs.(A) Hand-gated subsets were projected onto t-SNE maps
generated from 3 independent t-SNE runs.(B) Cell frequencies of general immune
subsets obtained from t-SNE-guided gating of multiple runsare not affected by
the topological changes of the maps.

Figure S4 | t-SNE analysis of PBMCs analyzed by a 6-parameter �ow cytometry
assay. (A) t-SNE map overlaid with expression of phenotypic markers.(B) Cell
populations de�ned by the manual gating strategy inFigure 1 were projected
onto t-SNE space and assigned speci�c colors.(C) Correlation of cell population
frequencies obtained from conventional and t-SNE-guided gating.

Figure S5 | Comparison of hand-gated vs. t-SNE-guided analysis at the
single-cell level. Concordance between the two gating strategies was quanti�ed
by the fraction of cells present in both gates. For every cellpopulation Ah
represents the number of cells included in hand-drawn conventional gate and
excluded from the t-SNE-guided gate, At is the number of cells included in
t-SNE-guided gate and excluded from the hand-gated conventional gate and B is
the number of cells that were present in both gating strategies.

Figure S6 | t-SNE-guided manual gating analysis of T cell lineages.(A) t-SNE
map overlaid with signal intensities of key phenotypic markers. (B) Cell
populations de�ned by the manual gating strategy inFigure 1 were projected
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onto t-SNE space and assigned speci�c colors.(C) Level of overlap between
conventional and t-SNE-guided manual gating is shown in blue.

Figure S7 | Additional t-SNE maps of aggregated 10-donor data.(A) Markers
used for t-SNE-guided analysis of immune cells subsets.(B) Additional markers
included in the generation of the t-SNE map but not for t-SNE-guided subsetting.

Figure S8 | Computationally de�ned CD4 T-cell clusters projected onto t-SNE
space. Data fromFigure 5 were clustered with 3 different computational
algorithms: Phenograph(A), DensVM(B), and FlowSOM with kD 20 (C).

Figure S9 | Impact of marker expression distribution on separation of subsets in
t-SNE space in synthetic datasets with 1,000 data points and2 markers. (A)
Markers have a bimodal and discrete distribution. Data points are fully separated

in the t-SNE space.(B) Markers have a bimodal, yet continuous distribution.
Although some structure is seen on the t-SNE map that distinguishes double
positive, double negative, M1hi M2lo and M1lo M2hi groups, the data subsets are
not fully separated.(C) Markers have a unimodal distribution. t-SNE is unable to
resolve any subsets. t-SNE was run with perplexity parameter of 30 and trade-off
" of 0.5.

Figure S10 | Evaluation of the impact of algorithm parameters (iteration number,
perplexity, and trade-off" values) on t-SNE. 50,000 cells were analyzed using
iteration number of 1,000 and 10,000, perplexity of 5, 30, and 100, and trade off "
values of 0.2, 0.5, and 0.8 for all PBMC lineages(A) and only CD4 T cells(B).

Table S1 | List of metal conjugated mAbs and their targets used in the
38-parameter cytometry panel.
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