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Pressures Inside a Nano-Porous
Medium. The Case of a Single Phase
Fluid
Olav Galteland *, Dick Bedeaux, Bjørn Hafskjold and Signe Kjelstrup

PoreLab, Department of Chemistry, Norwegian University ofScience and Technology, Trondheim, Norway

We de�ne the pressure of a porous medium in terms of the grand potential and
compute its value in a nano-con�ned or nano-porous medium, meaning a medium
where thermodynamic equations need be adjusted for smallness. On the nano-scale,
the pressure depends in a crucial way on the size and shape of the pores. According
to Hill [1], two pressures are needed to characterize this situation;the integral pressure
and the differential pressure. Using Hill's formalism for anano-porous medium, we derive
an expression for the difference between the integral and the differential pressures in a
spherical phase� of radius R, Op� � p� D  =R. We recover the law of Young-Laplace
for the differential pressure difference across the same curved surface. We discuss the
de�nition of a representative volume element for the nano-porous medium and show that
the smallest REV is a unit cell in the direction of the pore in the fcc lattice. We also show,
for the �rst time, how the pressure pro�le through a nano-porous medium can be de�ned
and computed away from equilibrium.

Keywords: nano-porous media, thermodynamics of small systems, r epresentative elementary volume, single
phase �uid, molecular dynamics simulations

1. INTRODUCTION

The description of transport processes in porous media poses many challenges that are well
described in the literature (see e.g., [2–6]). There is, for instance, no consensus, neither on the
de�nition nor on the measurement or the calculation, of the pressure in a porous medium with
�ow of immiscible �uids. The problem with the ill-de�ned microscopic pressure tensor [5, 7] is
accentuated in a heterogeneous system with interfaces between solids and �uids. In a homogeneous
�uid phase one may de�ne and calculate a pressure and a pressure gradient from the equation of
state. In a porous medium the presence of curved surfaces and �uid con�nements makes it di�cult
to apply accepted methods for calculation of the microscopic pressure tensor and, consequently,
the pressure gradient as driving force for �uid �ow. The scaleat which we choose to work will be
decisive for the answer. Moreover, the scale that the hydrodynamic equations of transport refer to,
remains to be given for nano-porous as well as micro-porous media.

A central element in the derivation of the equations of transport on the macro-scale is the
de�nition of a representative elementary volume (REV) (see e.g., [8, 9]). The size of the REV
should be large compared to the pore size and small compared to size of the porous medium. It
should contain a statistically representative collection of pores. We have recently discussed [10]
a new scheme to de�ne a basis set of additive variables: the internal energy, entropy, and masses
of all the components of the REV. These variables are additive in the sense that they are sums of
contributions of all phases, interfaces and contact lines within the REV. Using Euler homogeneity
of the �rst kind, we were able to derive the Gibbs equation forthe REV. This equation de�nes
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the temperature, pressure and chemical potentials of the REV as
partial derivatives of the internal energy of the REV [10].

As discussed in Kjelstrup et al. [11] the grand potential,7 ,
of the REV is given by minuskBT times the logarithm of the
grand partition function,Zg, wherekB is Boltzmann's constant
andT is the temperature. The grand potential is equal to minus
the contribution to the internal energy from the pressure-volume
term, kBT ln Zg D 7 D � pV, which we will from now on refer
to as the compressional energy. For a single �uidf in a porous
mediumr, the result was [10, 11]

pV D pf V f C prV r �  fr• fr , (1)

wherep and V are the pressure and the volume of the REV.
Furthermorepf and V f are the pressure and the volume of the
�uid in the REV, pr and V r are the pressure and the volume in
the grains in the REV, and fr and• fr are the surface tension and
the surface area between the �uid and the grain. The assumption
behind the expression was the additive nature of the grand
potential. This de�nition of the REV, and the expression for the
grand potential, opens up a possibility to de�ne the pressure on
the hydrodynamic scale. The aim of this work is to explore this
possibility. We shall �nd that it will work very well for �ow of
a single �uid in a porous medium. As a non-limiting illustrative
example, we use grains positioned in a fcc lattice. The work can
be seen as a continuation of our earlier works [10, 11].

The work so far considered transport processes in micro-
porous, not nano-porous media. In micro-porous media, the
pressure of any phase (the surface tension of any interface) is
independent of the volume of the phase (the area between the
phases). This was crucial for the validity of equation 1. For
nano-porous systems, we need to step away from Equation (1).
Following Hill's procedure for small systems' thermodynamics
[1], we generalize Equation (1) to provide an expression for the
thermodynamic pressure in a nano-porous medium. We shall see
that not only one, but two pressures are needed to handle the
additional complications that arise at the nano-scale; the impact
of con�nement and of radii of curvature of the interfaces. Inthe
thermodynamic limit, the approach presented for the nano-scale
must simplify to the one for the macro-scale. We shall see that
this is so. In order to work with controlled conditions, we will �rst
investigate the pressure of a �uid around a single solid nano-scale
grain and next around a lattice of solid nano-scale grains. The
new expression, which we propose as a de�nition of the pressure
in a nano-porous medium, will be investigated for viability and
validity for this case. The present work can be seen as a �rst step in
the direction toward a de�nition and use of pressure and pressure
gradients in real porous media.

The pressure is not uniquely de�ned at molecular scale. This
lack of uniqueness becomes apparent in molecular dynamics
(MD) simulations, for which the computational algorithm has to
be carefully designed [7]. The predominant method for pressure
calculations in particular systems is using the Irving-Kirkwood
contour for the force between two particles [12]. This algorithm
works for homogeneous systems, but special care must be taken
for heterogeneous systems [5, 6]. However, if the control volume
(REV) used for pressure calculation is large compared with the

heterogeneity length scale, one may argue that the algorithm for
homogeneous systems gives a good approximation to the true
result. We are interested in the isotropic pressure averaged over
the REV, on a scale where the porous medium can be considered
to be homogeneous.

The paper is organized as follows. In section 2 we derive
the pressure of a REV for one solid grain surrounded by �uid
particles (Case I) and for a three-dimensional face-centered
cubic (fcc) lattice of solid grains (Case II). Section 3 describes
the molecular dynamics simulation technique when the system
is in equilibrium and in a pressure gradient. In section 4 we
use the theory to interpret results of equilibrium molecular
dynamics simulations for one solid grain and for an array of
solid grains in a �uid. Finally we apply the results to describe
the system under a pressure gradient. We conclude in the last
section that the expressions and the procedure developed provide
a viable de�nition of the pressures and pressure gradients in
nano-porous media.

2. THE PRESSURE OF A NANO-POROUS
MEDIUM

Equation (1) applies to a micro-porous medium, a medium
where the pore-size is in the micrometer range or larger
[10, 11]. For a nano-porous medium we need to apply the
thermodynamics of small systems [1]. In nano-porous media,
this technique is therefore well suited for the investigation.
The thermodynamic properties like internal energy, entropy and
masses of components of a small system are not proportional to
the system's volume. As Hill explained, this leads to the de�nition
of two di�erent pressures, for which he introduced the names
integral and di�erential pressure,Op and p, respectively. For a
system with a volumeV, these pressures are related by

p(V) D
@

�
Op.V/ V

�

@V
D Op.V/ C V

@
�
Op.V/

�

@V
. (2)

The symbolp (the di�erential pressure) is given to the variable
that we normally understand as the pressure on the macroscopic
level. It is only whenOp depends onV, that the two pressures are
di�erent. For large systems,Op does not depend onV and the two
pressures are the same.

The integral and di�erential pressures connect to di�erent
types of mechanical work on an ensemble of small systems. The
di�erential pressure times the change of the small system volume
is the work done on the surroundings by this volume change. The
name di�erential derives from the use of a di�erential volume.
This work is the same, whether the system is large or small. The
integral pressure times the volume per replica, however, is the
work done by adding one small system of constant volume to the
remaining ones, keeping the temperature constant. This work is
special for small systems. It derives from an ensemble view, but
is equally well measurable. The word integral derives from the
addition of a small system.

From statistical mechanics of macro-scale systems, we know
that pV equalskBT times the natural logarithm of the grand-
canonical partition function. For a small (nano-sized) system,
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Hill ([ 1], Equations 1–17), showed that this logarithm gives
OpV. In nano-porous media this product is di�erent from
pV, cf. Equation (1). Energies are still additive and the total
compressional energy within the small system is similar to
Equation (1). We replace Equation (1) by:

OpV D Opf V f C OprV r � O fr• fr , (3)

whereOpf , Opr are integral pressures of the sub-volumesV f andV r ,
and O fr is the integral surface tension.

We consider here a nano-porous medium, so integral
pressures and integral surface tensions apply. The integral
pressure and integral surface tension normally depend on the
system size. In the porous medium there are two characteristic
sizes: the size of a grain and the distance between the surfaces
of two grains1. The quantitiesOp, Opf , Opr and O fr may depend on
both. We shall here examine a system (cf. section 3) of spherical,
monodisperse grains, for which the radiusR is a good measure
of the size. The volume of the grains may be a good alternative
measure, which we will also use. The dependence on the grain
size and on the distance between the surfaces of the grains will be
studied in an e�ort to establish Equation (3).

In the following, we consider a single spherical grain con�ned
by a single phase �uid (Case I) and a face-centered cubic (fcc)
lattice of spherical grains con�ned by a single phase �uid (Case
II). The size of the REV does not need to be large, and we will
show in section 4.2 that the smallest REV is a unit cell in the
direction of the pore in the fcc lattice.

2.1. Case I. Single Spherical Grain
Consider the inclusion of a spherical grainr in a box with �uid
phasef . This is system A inFigure 1. Phasef has volumeV f

and phaser has volumeV r . The total volume isV D V f C V r .
The surface area between phasef andr is • fr . The compressional
energy of system A has contributions, in principle, from all its
small parts

OpAV D Opf V f C OprV r � O fr• fr (4)

whereOpA is the unknown pressure in Equation (3). There is a hat
on the pressures and the surface tension, in the outset, because
the system is small. The pressure of the �uid in A is, however,
pf , meaning thatOpf D pf . When the surface tension depends
on the curvature, there is a dependence ofO fr on • fr [13, 14].
This interesting e�ect, which we will not consider here, becomes
relevant as the grain size decreases. OnlyOpr depends on the
volume of the phase,V r . This gives

OpAV D pf V f C OprV r �  fr• fr (5)

We now introduce a system B in contact with A. System B
has volume V, contains pure �uid, and is tuned so that it is in
thermodynamic equilibrium with A. The equilibrium condition
requires that their grand canonical partition functions areequal,

1Another valid characteristic size is the size of the pores betweenthe grains, but
this follows from the two we have chosen.

FIGURE 1 | A particle in a con�ned system(A) in equilibrium with a bulk �uid
phase (B).

which impliesOpAV D OpBV, and with equal volumes this means
OpA D OpB. Furthermore, system B is not a small system in Hill's
sense, which leads to:

OpA D OpB D pB D pf (6)

The �uid pressurepf is the same in phases A and B. We obtain

pf V D pf V f C OprV r �  fr• fr , (7)

and by rearranging the terms,

Opr D pf C
 fr• fr

V r D pf C
3 fr

R
. (8)

where we have used thatV r CV f D V and • fr

V r D 3
R for a spherical

phaser.
The pressure of the rock particle depends on the volume of the

particle. The relation of the two pressures is according to Hill

pr D
@(OprV r)

@V r (9)

When this is combined with the equation right above, we �nd the
relation we are after

pr � pf D
2
R

, (10)

which is the familiar Young-Laplace's law. By subtracting
Equation (10) from Equation (8), we obtain an interesting
new relation

Opr � pr D
 fr

R
(11)

The expression relates the integral and di�erential pressure
for a spherical phaser of radiusR. It is clear that this pressure
di�erence is almost equally sensitive to the radius of curvature as
is the pressure di�erence in Young-Laplace's law.

We see from this example how the integral pressure enters the
description of small systems. The integral pressure is not equal
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to our normal bulk pressure, called the di�erential pressure by
Hill, Opr 6Dpr . While two di�erential pressures satisfy Young-
Laplace's law in Equation (10), the integral pressures do not.The
integral pressure has the property that when averaged over system
A using Equation (4), it is the same as in system B, cf. Equation
(6). This analysis shows that system A is a possible, or as we shall
see proper, choice of a REV that contains the solid grain, while
system B is a possible choice of a REV that contains only �uid.

2.2. Case II. Lattice of Spherical Grains
The above explanation concerned a single spherical grain and was
a �rst step in the development of a procedure to determine the
pressure of a nano-porous medium. To create a more realistic
model, we introduce now a lattice of spherical grains. The integral
pressure of a REV containingn grains is given by an extension of
Equation (3)

OpAV D pf V f C
nX

iD1

Opr
i V

r
i �

nX

iD1

O fr
i • fr

i , (12)

For each grain one may follow the same derivation for the integral
and di�erential pressure as for the single grain. By using Equation
(8), we obtain

Opr
i D pf C  fr

i
• fr

i

V r
i

D pf C
3 fr

i

Ri
, (13)

where the last identity applies to spherical grains only. The
di�erential pressure of the grains is given by a generalizationof
Equation (10)

pr
i D

@(Opr
i V

r
i )

@V r
i

D
@(pf V r

i )
@V r

i
C  fr

i
@•fri
@V r

i

D pf C  fr
i

@•fri
@V r

i
D pf C

2 fr
i

Ri
, (14)

where the last identity is only for spherical grains. The di�erential
pressures again satisfy Young-Laplace's law at equilibrium.

When all grains are identical spheres and positioned
on a fcc lattice, a properly chosen layer covering
half the unit cell can be a proper choice of the
REV. We shall see how this can be understood
in more detail from the molecular dynamics
simulations below. The REV is larger if the material
is amorphous.

3. MOLECULAR DYNAMICS SIMULATIONS

Cases I and II were simulated at equilibrium, while
case II was simulated also away from equilibrium.
Figures 3–8 illustrate the equilibrium simulations of the
two cases.

3.1. Systems
The simulation box was three-dimensional with side lengths
Lx,Ly,Lz.The box was elongated in thex-direction, Lx >

Ly D Lz. Periodic boundary conditions were used in all
directions in the equilibrium simulations. In the non-equilibrium
simulation, re�ecting particle boundaries [15] were applied to
the x-direction, cf. section 3.5. Along thex-axis, the simulation
box was divided inton rectangular cuboids (called layers)
of size 1 x,Ly,Lz, where 1 x D Lx=n. The volume of each
layer is Vl D 1 xLyLz. There are two regions A and B in
the simulation box. Region A contains �uid (red particles)
and grains (blue particles) and region B contains only �uid,
see Figure 2. The regions, B D B1 C B2 and A do not
have the same size, but the layers have the same thickness,
1 x. The compressional energy of the �uid in one layer is,
Opf
l V

f
l D plV

f
l .

The simulation was carried out with LAMMPS [16] in the
canonical ensemble using the Nosé-Hoover thermostat [17], at
constant temperatureT� D 2.0 (in Lennard-Jones units). The
critical temperature for the Lennard-Jones/spline potential (LJ/s)
is approximatelyT�

c � 0.9. Fluid densities range from� � D 0.01
to � � D 0.7.

3.2. Case Studies
In case I the single spherical grain was placed in the center of
the box. A periodic image of the spherical grain is a distance
Lx, Ly and Lz away in thex, y and z-directions, seeFigure 4A.
The surface to surface distance of the spherical grains isd D
L� � 2R, whereR is the radius of the grain, and� D y,z.
In case I, each spherical grain has four nearest neighbors in
the periodic lattice that is built when we use periodic boundary
conditions. We considered two nearest neighbor distances;
d D 4� 0 and d D 11� 0, where � 0 is the diameter of the
�uid particles.

In case II, the spherical grains were placed in a fcc lattice
with lattice constanta. The two shortest distances between the
surfaces were characterized byd1 D 1

2(
p

2a � 4R) and d2 D
a � 2R, seeFigure 2, whered1 < d2. We usedd1 D 4.14� 0
and d1 D 11.21� 0, which is almost the same as the distances
considered in case I. The corresponding other distances were
d2 D 10� 0 andd2 D 20� 0. Each grain has 12 nearest neighbors
at a distanced1.

FIGURE 2 | A slice of the simulation box in case II. The box has side lengths
Lx, Ly, Lz, and properties are calculated along thex-axis in layersl of width
1 x. Blue particles are grainr and red particles are �uid f. The A is the lattice
constant of the fcc lattice,d1 and d2 are the two shortest surface-to-surface
distances.
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In all cases we computed the volume of the grainsV r
l , the

surface area• fr
l and the compressional energy of each layer,l,

in thex-direction.

3.3. Particle Interaction Potential
The particles interact with the Lennard-Jones/spline potential,

uij (r) D

8
>>>>><

>>>>>:

1 if r < Rij

4� ij

� �
� ij � Rij
r� Rij

� 12
�

�
� ij � Rij
r� Rij

� 6
�

if Rij < r < rs,ij

aij (r � rc,ij )2 C bij (r � rc,ij )3 if rs < r < rc,ij

0 if r > rc,ij

.

(15)
Each particle type has a hard-core diameterRii and a soft-core

diameter� ii . There were two types of particles, small particles
with � � D � 0, R� D 0 and large particles with� rr D 10� 0, Rrr D
9� 0. The small particles are the �uid (f ), and the large particles
are the grain (r). The hard-core and soft-core diameters for
�uid-grain pairs are given by the Lorentz mixing rule

Rfr D
1
2

�
R� C Rrr

�
and � fr D

1
2

�
� � C � rr

�
. (16)

We de�ne the radius of the grain particles asR � (� � C � rr )=2 D
5.5� 0, which is the distance from the grain center where the
potential energy is zero. Fluid particles can occupy a position
closer to the grain than this, this is illustrated inFigure 3.
The �gure shows the radial distribution function,g(r), of �uid
particles around a single spherical grain. The density of �uid
varied between� � D 0.1 and� � D 0.7. This shows that the
average distance from the grain particle and the closest �uid
particle is approximately 5.5� 0, but the �uid particles are able to
occupy positions closer to the grain particle.

The interaction strength� ij was set to� 0 for all particle-
particle pairs. The potential and its derivative are continuous in
r D rc,ij . The parametersaij , bij andrs,ij were determined so that

FIGURE 3 | The radial distribution function of �uid particles around a grain, as
shown in Figure 4 . Results are shown for densities that vary between
� � D 0.1 and � � D 0.7.

the potential and the derivative of the potential (the force) are
continuous atr D rs,ij .

3.4. Pressure Computations
The contribution of the �uid to the grand potential of layerl
is [12]

pf
l V

f
l D

1
3

*
X

i2l

mi(vi � vi)

+

�
1
6

*
X

i2l

NX

jD1

(r ij � f ij )

+

, (17)

wherepf
l is the �uid di�erential pressure,V f

l the �uid volume,mi
andvi are the mass and velocity of �uid particlei. The �rst two
sums are over all �uid particlesi in layerl, while the second sum is
over all other particlesj. Half of the virial contribution, the second
term in Equation (17), is assigned to particlei and the other half
to particlej. The virial contribution assigned to the solid particles
are not included.r ij � r i � r j is the vector connecting particlei
andj, andf ij D � @uij =@r ij is the force between them. The� means

an inner product of the vectors. The computation givesOpf
l , which

is the contribution to the integral pressure in layerl from the �uid
particles, accounting for their interaction with the grain particles.

3.5. The Porous Medium in a Pressure
Gradient
We used the re�ecting particle boundary method developed by Li
et al. [15] to generate a pressure di�erence across the system along
the x-axis. Particles moving from right to left pass the periodic
boundary atx D 0 andx D Lx with probability

�
1 � � p

�
and

re�ected with probability� p, whereas particles moving from left
to right pass freely through the boundary. A large� p gives a high
pressure di�erence and a low� p gives a low pressure di�erence.

4. RESULTS AND DISCUSSION

The results of the molecular dynamics simulations are shown
in Figures 4–8 (equilibrium) and Figures 9, 10 (away from
equilibrium). The porous medium structure was characterized
by its pair correlation function, cf.Figure 3. The compressional
energy was computed according to equation 4 in case I with a
single spherical grain and case II with a lattice of spherical grains.

We computed the compressional energy,plVl, in the bulk
liquid (region B) and in the nano-porous medium (region A).
In the bulk liquid we computed the pressure directly from the

compressional energy, becauseplVl D pf
l V

f
l (not shown).

Figures 4, 6 show the various contributions to the
compressional energy, cf. equation 4. The grain particles
were identical and the system was in equilibrium, so the
integral pressure in the grains was everywhere the same,
Opr
l D Opr . Similarly, the surface tension was everywhere the

same, fr
l D  fr .

The grain pressureOpr and surface tension fr were �tted such
that the pressure is everywhere the same and are plotted as a
function of the �uid pressurepf . The results for case II were next
used inFigures 9, 10 to determine the pressure gradient across
the sequence of REVs in the porous medium.
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FIGURE 4 | (A) Illustration of case I, a single spherical grain surrounded bya
�uid phase with d D 4� 0. (B) Volume of grain,Vr , (C) surface area• fr and (D)
compressional energypV as a function of thex-axis of the simulation box.

4.1. Case I. Single Spherical Grain.
Equilibrium
The single sphere case is illustrated inFigure 4A. Figures 4B,C
show the variation in the volume of the porous medium (rock),
V r

l , and the surface area between the rock and the �uid,• fr ,
along thex-axis of the simulation box. The two quantities were
determined for all layers,l, and these results were used in the plots
of Figures 4B,C. To be representative, the REV must include the
solid sphere with boundaries left and right of the sphere. In order
to obtain pREVVREV we summedplVl over all the layers in the
REV. At equilibrium,pREV D p, wherep is the pressure in the
�uid in region B. For the REV we then have

pVREV D
X

l2REV

pf
l V

f
l C Opr

X

l2REV

V r
l �  fr

X

l2REV

• fr
l , (18)

where we used thatOpr
l D Opr and fr

l D  fr . We know the values of
all the elements in this equation, exceptOpr and fr . The values of
Opr and  fr are �tted such that the pressure,p in Equation (18)
is everywhere the same. With these �tted values available, we
calculatedplVl of each layer from

plVl D pf
l V

f
l C OprV r

l �  fr• fr
l . (19)

The contributions to the compressional energy in this equation
for case I are shown in the bottomFigure 4D. We see the

contribution from (1) the bulk �uid pf
l V

f
l , (2) the bulk �uid

and grainpf
l V

f
l C OprV r

l and (3) the total compressional energy,

plVl D pf
l V

f
l C OprV r

l �  fr• fr , which gives the pressure of the
REV when summed and divided with the volume of the REV.

Figure 4D shows clearly that the bulk pressure energy gives
the largest contribution, as one would expect. It is also clear that
the surface energy is signi�cant. As the surface to volume ratio
increases, the bulk contributions may become smaller than the
surface contribution (not shown). In the present case, this will
happen when the radius of the sphere is 2.25� 0. For our grains
with R D 5.5� 0, this does not happen.

The plots ofOpr and fr as functions ofp in region B are shown
in Figure 5. The values ford D 4� 0 andd D 11� 0 are given in
the same plots. We see that the plots fall on top of each other.
This shows that the integral pressure and the surface tension
are independent of the distanced in the interval considered. If
con�nement e�ects were essential, we would expect thatOpr and
 fr were functions of the distanced between the surfaces of the
spheres. When the value ofd decreases below 4� 0, deviations
may arise, for instance due to contributions from the disjoining
pressure. Such a contribution is expected to vary with the surface
area, and increase as the distance between interfaces become
shorter. In plots likeFigure 5, we may see this as a decrease in
the surface tension.

4.2. Case II. Lattice of Spherical Grains.
Equilibrium
Consider next the lattice of spherical grains, illustrated in
Figure 6A. Figures 6B,Cgive the variation in the volume of the
porous mediumV r

l and surface area,• fr , along thex-axis.
When the REV in region A is properly chosen, we know that

pREV D p. In equilibrium, the pressure of the REV is constant in
the bulk liquid phases, in regionsB1 or B2, wherep is the pressure
of the �uid in region B. In order to obtainpVREV in region A, we
sumplVl over all the layers that make up the REV, and obtain

pVREV D
X

l2REV

pf
l V

f
l C Opr

X

l2REV

V r
l �  fr

X

l2REV

• fr
l , (20)

To proceed, we �nd �rst the values of all the elements in this
equation, exceptOpr and  fr . The values ofOpr and  fr are �tted
such that the pressure is everywhere the same. Using these �tted
values, we next calculatedOplVl of each layer using

plVl D pf
l V

f
l C OprV r

l �  fr• fr
l (21)

The contributions to the compressional energy in this equation
are shown in three stages inFigure 6D: (1) bulk �uid

contribution pf
l V

f
l , (2) bulk �uid and grain contribution

pf
l V

f
l C OprV r

l and (3) the total compressional energy,plVl D

pf
l V

f
l C OprV r

l �  fr• fr . Figure 6D shows clearly that the bulk
contribution is largest, as is expected. However, the surface
energy is signi�cant.

FromFigure 6Bit follows that a proper choice of the REV is a
unit cell, because all REVs are then identical, (except the REVsat
the boundaries). The integral overplVl in these REVs is the same
and equal topVREV. The layersl are smaller than the REV and as
a consequenceOplVl will vary, a variation that is seen inFigure 6D.
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FIGURE 5 | Fitted grain pressureOpr and surface tension fr as a function of pressurep for a sphere (characteristic lengthd D 4� 0 and d D 11� 0).

FIGURE 6 | (A) Illustration of case II, a lattice spherical grain surrounded by a
�uid phase with a D 20� 0. (B) Volume of grain,Vr , (C) surface area• fr and
(D) compressional energypV as a function of thex-axis of the simulation box.
The smallest REV is a unit cell.

The values forOpr and fr are shown as a function ofpf for case
II in Figure 7for d1 D 4.14� 0 andd1 D 11.21� 0. We see now a
systematic di�erence between the values ofOpr and fr in the two
cases. The integral pressure and the surface tension increases as
the distance between the grains decreases. The di�erence in one
set can be estimated from the other. Say, for a di�erence in surface
tension1 fr we obtain for the same �uid pressure from equation
11, a di�erence in integral pressure of1 Opr D 31 fr=R. This is
nearly what we �nd by comparing the lines inFigure 6, the lines
can be predicted from one another usingR D 6.5� 0 while the
value inFigure 3is R D 5.5� 0. The di�erence may be due to the
disjoining pressure. Its distribution is not spherically symmetric,
which may explain the di�erence between 6.5� 0 and 5.5� 0.

The results should be the same as for case I for the larger
distance, and indeed that is found, cf.Figure 8. As the distance

between the grain surfaces increases, we expect the dependence
on con�nement to disappear, and this is documented byFigure 8
where the two cases are shown with distancesd D 11� 0 and
d1 D 11.21� 0, respectively. The curves for the single grain and
lattice of grains overlap.

The knowledge gained above on the various pressures at
equilibrium is needed to construct the REV. The size of the REV
includes the complete range of potential interactions available in
the system, but not more. To �nd a REV-property, we need to
sample the whole space of possible interactions. The thickness of
the REV is larger than the layer thickness used in the simulations.

Our analysis therefore shows that the pressure inside grains
in a fcc lattice and the surface tension, depends in particular on
the distances between the surfaces of the spheres, includingon
their periodic replicas. A procedure has been developed to �nd
the pressure of a REV, from information of the (equilibrium)
values ofOpr and fr as a function ofpf . It has been documented
in particular for nano-porous medium, but is likely to hold for
other lattices, even amorphous materials when the REV can be
de�ned properly.

4.3. Case II. Lattice of Spherical Grains.
Non-equilibrium
Figure 9 illustrates the system in the pressure gradient, where
Figure 9B shows the compressional energy,pV, along thex-
axis. The dip in the pressure close tox D 0 is caused by the
re�ecting particle boundary, cf. section 3.5. The re�ectingparticle
boundary introduces a surface between the high pressure on the
left side and the low pressure on the right side.

To show �rst how a REV-property is determined from the
layer-property, consider again the compressional energies ofeach
layer. In the analysis we used the fcc lattice with lattice parameter
a D 20� 0. The volume of the grain,V r , and the surface area,• fr ,
varied of course in the exact same way as inFigures 6B,C. The
pressure gradient was generated as explained in section 3.5. The
pressure di�erence between the external reservoirs B1 and B2 was
large, giving a gradient with order of magnitude 1012 bar/m. The
�uid on the left side is liquid-like, while the �uid on the right
side is gas-like. The smallest REV as obtained in the analysis at
equilibrium is indicated in the �gure.

In order to compute a REV variable away from equilibrium,
we therefore follow the procedure described by Kjelstrup et al.
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FIGURE 7 | Fitted grain pressureOpr and surface tension fr as a function of pressurep for the lattice of spheres (characteristic lengthd1 D 4.14� 0 and d1 D 11.21� 0).

FIGURE 8 | Fitted grain pressureOpr and surface tension fr as a function of pressurep for the sphere (characteristic lengthd D 11� 0) and a lattice of spheres
(characteristic lengthd1 D 11.21� 0).

[10] and choose a layer as a reference point. We then compute
the average using �ve layers, two to the left, two to the right
and the central layer. Moving one layer down the gradient, we
repeat the procedure, and in this manner we obtain the property
variation on the REV scale. The results of the simulation gave, for
each individual layer,pl

lV
l
l , as plotted inFigure 9B. The pro�le

created by the REV-centers is shown inFigure 10. We see a
smooth linear pro�le (central curve) as one would expect from
the boundary conditions that are imposed on the system. Some
traces of oscillation are still left in the separate contributions to
the total compressional energy.

We have seen that a nano-porous medium is characterized
by pressures in the �uid and the solid phases, as well as the
surface tension between the �uid and the solid. When one
reduces the size of a thermodynamic system to the nano-meter
size, the pressures and the surface tensions become dependent
on the size of the system. An important observation is then
that there are two relevant pressures rather than one. Hill [1]
called them the integral and the di�erential pressure, respectively.
It is maybe surprising that the simple virial expression works
so well for all pressure calculations in a �uid, but we have
found that it can be used. We will next be able to study
transport processes, where the external pressure di�erence is a
driving force. The method, to compute the mechanical force
intrinsic to the porous medium, may open interesting new
possibilities to study the e�ects that are characteristic for
porous media.

FIGURE 9 | (A) Illustration of case II in a pressure gradient.(B) Compressional
energypV variation across the system.

In a macro-scale description, the so-called representative
elementary volume (REV) is essential. The REV makes it possible
to obtain thermodynamic variables on this scale. We have here
discussed how the fact that the macro-scale pressure is constant
in equilibrium makes it possible to obtain the integral pressure
in the solid, as well as the surface tension, of the liquid-
solid contacts in the REV. An observation which con�rms the
soundness of the procedure is that we recover Young-Laplace's
law for the di�erential pressures. The existence of a REV for
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FIGURE 10 | Compressional energypV variation across the system smoothed
over the representary elementary volume.

systems on the nano-scale supports the idea of a REV that can
be de�ned for pores also of micrometer dimension [10]. There is
no con�ict between the levels of description as they merge in the
thermodynamic limit. The REV, as de�ned in the present work,
may allow us to develop a non-equilibrium thermodynamic
theory for the nano-scale.

5. CONCLUSIONS

The following conclusions can be drawn from the above studies

� We have obtained the �rst support for a new way to compute
the pressure in a nano-porous medium. The integral pressure
of the medium is de�ned by the grand potential. The de�nition
applies to the thermodynamic limit, as well as to systems which
are small, according to the de�nition of Hill [1].

� It follows that nano-porous media need two pressures in their
description, the integral and the di�erential pressure. This is
new knowledge in the context of nano-porous media.

� For a spherical rock particle of radiusR, we derive a relation
between the integral and the di�erential pressure in terms
of the surface tension,Opr � pr D  =R. Their di�erence is
non-negligible in the cases where Young-Laplace's law applies.

� We have constructed two models of a porous medium, case I
with a single spherical grain and case II with a fcc lattice of
spherical grains. The new method to compute the pressure
in these nano-porous mediums is not speci�c to these two
cases, it is general. The method can be used on, e.g., a random
distribution of spherical grains, but the REV will need to be

larger in order to include all possible microstates. The REV
needs in general to be larger as the heterogeneity of the porous
medium increases.

� To illustrate the concepts, we have constructed a system with
a single �uid. The rock pressure and the surface tension are
constant throughout the porous medium at equilibrium. The
assumptions were con�rmed for a porosity change from� D
0.74 to 0.92, for a REV with minimum size of a unit cell.

� From the assumption of local equilibrium, we can �nd the
pressure internal to a REV of the porous medium, under
non-equilibrium conditions, and a continuous variation inthe
pressure on a macro-scale.

To obtain these conclusions, we have used molecular dynamics
simulations of a single spherical grain in a pore and then for
face-centered lattice of spherical grains in a pore. This toolis
irreplaceable in its ability to test assumptions made in the theory.
The simulations were used here to compute the integral rock
pressure and the surface tension, as well as the pressure of the
representative volume, and through this to develop a procedure
for porous media pressure calculations.

Only one �uid has been studied here. The situation is expected
to be more complicated with two-phase �ow and an amorphous
medium. Nevertheless, we believe that this �rst step has given
useful information for the work to follow. We shall continue
to use the grand potential for the more complicated cases, in
work toward a non-equilibrium thermodynamic theory for the
nano-scale.
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