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Pressures Inside a Nano-Porous
Medium. The Case of a Single Phase
Fluid

Olav Galteland *, Dick Bedeaux, Bjgrn Hafskjold and Signe Kjelstrup

PoreLab, Department of Chemistry, Norwegian University dcience and Technology, Trondheim, Norway

We de ne the pressure of a porous medium in terms of the grand ptential and

compute its value in a nano-con ned or nano-porous medium, neaning a medium

where thermodynamic equations need be adjusted for smallres. On the nano-scale,

the pressure depends in a crucial way on the size and shape ohe pores. According

to Hill [L], two pressures are needed to characterize this situatiorthe integral pressure
and the differential pressure. Using Hill's formalism for mano-porous medium, we derive
an expression for the difference between the integral and thdifferential pressures in a
spherical phase ofradiusR, ® p D =R. We recover the law of Young-Laplace
for the differential pressure difference across the same cued surface. We discuss the
de nition of a representative volume element for the nano-prous medium and show that
the smallest REV is a unit cell in the direction of the pore ih¢ fcc lattice. We also show,
for the rsttime, how the pressure pro le through a nano-pomous medium can be de ned

and computed away from equilibrium.

Keywords: nano-porous media, thermodynamics of small systems, r epresentative elementary volume, single

phase uid, molecular dynamics simulations

1. INTRODUCTION

The description of transport processes in porous media poses maalenges that are well
described in the literature (see e.@+§]). There is, for instance, no consensus, neither on the
de nition nor on the measurement or the calculation, of theggsure in a porous medium with
ow of immiscible uids. The problem with the ill-de ned micrscopic pressure tensob,[7] is
accentuated in a heterogeneous system with interface®batsolids and uids. In a homogeneous
uid phase one may de ne and calculate a pressure and a pressadéegt from the equation of
state. In a porous medium the presence of curved surfaces addan nements makes it di cult
to apply accepted methods for calculation of the microscopicquestensor and, consequently,
the pressure gradient as driving force for uid ow. The scalewhich we choose to work will be
decisive for the answer. Moreover, the scale that the hydrachc equations of transport refer to,
remains to be given for nano-porous as well as micro-porousiened

A central element in the derivation of the equations of trpod on the macro-scale is the
de nition of a representative elementary volume (REV) (sep,d8, 9]). The size of the REV
should be large compared to the pore size and small comparedéco$ithe porous medium. It
should contain a statistically representative collectibpares. We have recently discusséd] [
a new scheme to de ne a basis set of additive variables: teenal energy, entropy, and masses
of all the components of the REV. These variables are addititlee sense that they are sums of
contributions of all phases, interfaces and contact lingkiwithe REV. Using Euler homogeneity
of the rst kind, we were able to derive the Gibbs equation flole REV. This equation de nes
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the temperature, pressure and chemical potentials of the REV agterogeneity length scale, one may argue that the algorith

partial derivatives of the internal energy of the REN[ homogeneous systems gives a good approximation to the true
As discussed in Kjelstrup et all] the grand potential,7, result. We are interested in the isotropic pressure averaged o

of the REV is given by minukgT times the logarithm of the the REV, on a scale where the porous medium can be considered

grand partition function,Zg, wherekg is Boltzmann's constant to be homogeneous.

andT is the temperature. The grand potential is equal to minus The paper is organized as follows. In section 2 we derive

the contribution to the internal energy from the pressurewme  the pressure of a REV for one solid grain surrounded by uid

term,kgTInZg D 7 D pV, which we will from now on refer particles (Case 1) and for a three-dimensional face-centered

to as the compressional energy. For a single fioh a porous cubic (fcc) lattice of solid grains (Case Il). Section 3 déss

mediumr, the result was]0, 11] the molecular dynamics simulation technique when the syste
is in equilibrium and in a pressure gradient. In section 4 we
pvDp'vicpv' el (1) use the theory to interpret results of equilibrium molecular

dynamics simulations for one solid grain and for an array of
wherep and V are the pressure and the volume of the REVsolid grains in a uid. Finally we apply the results to describe
Furthermorep’ and V' are the pressure and the volume of thethe system under a pressure gradient. We conclude in the last
uid in the REV, p" and V" are the pressure and the volume in section that the expressions and the procedure developed grovid
the grains in the REV, and™ and« ™ are the surface tension and a viable de nition of the pressures and pressure gradients in
the surface area between the uid and the grain. The assumptionano-porous media.
behind the expression was the additive nature of the grand
potential. This de nition of the REV, and the expression for the2. THE PRESSURE OF A NANO-POROUS
grand potential, opens up a possibility to de ne the pressure OMEDIUM
the hydrodynamic scale. The aim of this work is to explore this

possibility. We shall nd that it will work very well for ow of Equation (1) applies to a micro-porous medium, a medium
a single uid in a porous medium. As a non-limiting illustrative \yhere the pore-size is in the micrometer range or larger
example, we use grains positioned in a fcc lattice. The work ¢3n0, 11]. For a nano-porous medium we need to apply the
be seen as a continuation of our earlier work§[L1]. ~ thermodynamics of small systems][In nano-porous media,
The work so far considered transport processes in micCrogjs technique is therefore well suited for the investigatio
porous, not nano-porous media. In micro-porous media, thethe thermodynamic properties like internal energy, entropd an
pressure of any phase (the surface tension of any interface) i$gsses of components of a small system are not proportional to
independent of the volume of the phase (the area between thge system's volume. As Hill explained, this leads to the déoni
phases). This was crucial for the validity of equation 1. FOpf two di erent pressures, for which he introduced the names
nano-porous systems, we need to step away from Equation (]i)ytegral and di erential pressurefand p, respectively. For a

Following Hill's procedure for small systems' thermodynasi - system with a volum¥ , these pressures are related by
[1], we generalize Equation (1) to provide an expression for the

thermodynamic pressure in a nano-porous medium. We shall see @pPV/V @pV/
that not only one, but two pressures are needed to handle the p(V) D —a DeV/iC VT' (2)
additional complications that arise at the nano-scale; thpact
of con nement and of radii of curvature of the interfaces.ttre The symbolp (the di erential pressure) is given to the variable
thermodynamic limit, the approach presented for the nano-scalthat we normally understand as the pressure on the macroscopic
must simplify to the one for the macro-scale. We shall see thdevel. It is only wher®depends orV, that the two pressures are
thisis so. In order to work with controlled conditions, wellvist di erent. For large systemgdoes not depend oK and the two
investigate the pressure of a uid around a single solid nacales pressures are the same.
grain and next around a lattice of solid nano-scale graifee T  The integral and di erential pressures connect to di erent
new expression, which we propose as a de nition of the pressurtgpes of mechanical work on an ensemble of small systems. The
in a nano-porous medium, will be investigated for viabilityda di erential pressure times the change of the small systemmelu
validity for this case. The present work can be seen as a egtist  is the work done on the surroundings by this volume changes Th
the direction toward a de nition and use of pressure and pressu name di erential derives from the use of a di erential volume.
gradients in real porous media. This work is the same, whether the system is large or smad. Th
The pressure is not uniquely de ned at molecular scale. Thigntegral pressure times the volume per replica, however, is the
lack of uniqueness becomes apparent in molecular dynamisgork done by adding one small system of constant volume to the
(MD) simulations, for which the computational algorithm has t remaining ones, keeping the temperature constant. This work is
be carefully designed]. The predominant method for pressure special for small systems. It derives from an ensemble vietv, b
calculations in particular systems is using the Irving-Kidod  is equally well measurable. The word integral derives frbm t
contour for the force between two particles]. This algorithm  addition of a small system.
works for homogeneous systems, but special care must be takenFrom statistical mechanics of macro-scale systems, we know
for heterogeneous systenis f]. However, if the control volume that pV equalskgT times the natural logarithm of the grand-
(REV) used for pressure calculation is large compared with theanonical partition function. For a small (nano-sized) syste
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Hill ([ 1], Equations 1-17), showed that this logarithm gives
©/. In nano-porous media this product is dierent from
pV, cf. Equation (1). Energies are still additive and the tota
compressional energy within the small system is similar t
Equation (1). We replace Equation (1) by:

CS—=

m/ D pﬁvf C @Vr Ofr. fr' (3)

wheref, @ are integral pressures of the sub-volurivésandV",
and @ is the integral surface tension.

We consider here a nano-porous medium, so integra
pressures and integral surface tensions apply. The integ
pressure and integral surface tension normally depend on th
system size. In the porous medium there are two characteristi FIGURE 1 | A particle in a con ned system (A) in equilibrium with a bulk uid
sizes: the size of a grain and the distance between the sarfac phase (B).
of two grains. The quantities® @, ® and & may depend on
both. We shall here examine a system (cf. section 3) of sgigric

monodisperse grains, for which the radiRss a good measure which implies@V D 6%V, and with equal volumes this means

of the size. The volume of the grains may be a good alternativ, D (%, Furthermore, system B is not a small system in Hill's
measure, which we will also use. The dependence on the gr Rnse. which leads t0',

size and on the distance between the surfaces of the grdirzewi
studied in an e ort to establish Equation (3). 6 DD pED [ (6)
In the following, we consider a single spherical grain cordne

by a single phase uid (Case I) and a face-centered cubic (fcg)he ig pressurep' is the same in phases A and B. We obtain
lattice of spherical grains con ned by a single phase uid (Case

D™ ™

I1). The size of the REV does not need to be large, and we will p'v D pViCc eV’ frg fr @)
show in section 4.2 that the smallest REV is a unit cell in the '
2.1. Case I. Single Spherical Grain fro fr g
Consider the inclusion of a spherical grairn a box with uid ©®D pf C v D pf C R (8)

phasef. This is system A irFigure 1 Phasef has volumeV'
and phase has volumeV'". The total volume i/ D Vf C V",
The surface area between phasadr is+ . The compressional
energy of system A has contributions, in principle, from adl it

where we have used thdf CV' D V and V—frr D F% for a spherical
phase.
The pressure of the rock particle depends on the volume of the

small parts particle. The relation of the two pressures is according td Hil
@vD v i cpv’ off 4) o D @V’ ©)
@r

where@@ is the unknown pressure in Equation (3). There is a hat

on the pressures and the surface tension, in the outset, kecalVhen this is combined with the equation right above, we nath
the system is small. The pressure of the uid in A is, howeverelation we are after

p, meaning that®® D p'. When the surface tension depends Cop 2

on the curvature, there is a dependence@fon « " [13 14 P PD—, (10)
This interesting e ect, which we will not consider here, betws
relevant as the grain size decreases. Q@lylepends on the
volume of the phasa/". This gives

which is the familiar Young-Laplace's law. By subtracting
Equation (10) from Equation (8), we obtain an interesting
new relation
fy/f r fry fr fr
@V D p'Vi Cc PV (5) o oo 1)
R
The expression relates the integral and di erential pressure
for a spherical phaseof radiusR. It is clear that this pressure
di erence is almost equally sensitive to the radius of curvatas
is the pressure di erence in Young-Laplace's law.
Another valid characteristic size is the size of the pores betufgegrains, but We see from this example how the integral pressure enters the
this follows from the two we have chosen. description of small systems. The integral pressure is notlequa

We now introduce a system B in contact with A. System B
has volume V, contains pure uid, and is tuned so that it is in
thermodynamic equilibrium with A. The equilibrium conditio
requires that their grand canonical partition functions agual,
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to our normal bulk pressure, called the di erential pressure byly D L. Periodic boundary conditions were used in all
Hill, © 6Dp". While two di erential pressures satisfy Young- directions in the equilibrium simulations. In the non-eqikitium
Laplace's law in Equation (10), the integral pressures doTitat.  simulation, re ecting particle boundariesLf] were applied to
integral pressure has the property that when averaged overayst the x-direction, cf. section 3.5. Along theaxis, the simulation
A using Equation (4), it is the same as in system B, cf. Egnatiobox was divided inton rectangular cuboids (called layers)
(6). This analysis shows that system A is a possible, or as We staf size1 x,Ly,L,, wherelx D Ly=n. The volume of each
see proper, choice of a REV that contains the solid grain, whillayer isV, D 1xLyL,. There are two regions A and B in
system B is a possible choice of a REV that contains only uid. the simulation box. Region A contains uid (red particles)
) . ) and grains (blue particles) and region B contains only uid,
The above explanation concerned a single spherical grain asd Whaye the same size, but the layers have the same thickness,
a rst step in the development of a procedure to determine they x. The compressional energy of the uid in one layer is,
pressure of a nano-porous medium. To create a more realist'ﬁvf DoV
model, we introduce now a lattice of spherical grains. Thegnal L 0P . ' :
’ L R ’ The simulation was carried out with LAMMPSL] in the
pressure of a REV containinggrains is given by an extension of canonical ensemble using the Nosé-Hoover thermostay, fat

Equation (3) constant temperaturd D 2.0 (in Lennard-Jones units). The
e e critical temperature for the Lennard-Jones/spline potentidl¢).
@vbpvic @v d. i", (12) isapproximatelyr,  0.9.Fluid densities range from D 0.01

iD1 iD1 to D 0.7.

For each grain one may follow the same derivation for thegraé .
and di erential pressure as for the single grain. By using Eiqua  3.2. Case Studies

(8), we obtain In case | the single spherical grain was placed in the center of
the box. A periodic image of the spherical grain is a distance
‘ fre fr ] fr Lx, Ly and L, away in thex, y and z-directions, sed-igure 4A.
®HDp C ; Vilr DpC Rl. , (13)  The surface to surface distance of the spherical graims
I

L 2R, whereR is the radius of the grain, and D v,z

where the last identity applies to spherical grains only. Thé? case |, each spherical grain has four nearest neighbors in
di erential pressure of the grains is given by a generalizatbn the periodic lattice that is built when we use periodic boundary
Equation (10) conditions. We considered two nearest neighbor distances;

d D 4pgandd D 11 o, where ¢ is the diameter of the
c@T uid particles.
' In case Il, the spherical grains were placed in a fcc lattice
with lattice constant&. The two shorte% distances between the
¢ 2 surfaces were characterized ty D %( 2a 4R)andd; D
i T bpC R (14  a 2R, seeFigure 2, whered; < dp. We usedd; D 4.14 ¢
' andd; D 11.21(, which is almost the same as the distances
where the last identity is only for spherical grains. The deatial ~ considered in case |. The corresponding other distances were
pressures again satisfy Young-Laplace's law at equilibrium. ~ d2 D 10 g anddz D 20 o. Each grain has 12 nearest neighbors
When all grains are identical spheres and positioneddt a distancel;.
on a fcc lattice, a properly chosen layer covering
half the wunit cell can be a proper choice of the
REV. We shall see how this can be understood
in  more detail from the molecular dynamics Yy Solid, =
simulations below. The REV is larger if the material B, 4 hd, f_l —l B,
is amorphous.

agVv!) @pfvir)
g/ir D @/ir C i @ir
; @ .fr fr

p D

Dpr

3. MOLECULAR DYNAMICS SIMULATIONS

Cases | and Il were simulated at equilibrium, while
case Il was simulated also away from equilibrium 0 Tner T of width, A L,
Figures 3-8 illustrate the equilibrium simulations of the

two cases. FIGURE 2 | A slice of the simulation box in case Il. The box has side lengths
Lx, Ly, Lz, and properties are calculated along thex-axis in layersl of width
3_ l Syste ms 1 x. Blue particles are grairr and red particles are uidf. The A is the lattice

The simulation box was three-dimensional with side Iength.; constant of the fcc lattice,d, and d, are the two shortest surface-to-surface
. . . distances.
Lx,Ly,L;.The box was elongated in the-direction, Ly >
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In all cases we computed the volume of the graffs the the potential and the derivative of the potential (the forceg a

f . - )
surface area | and the compressional energy of each layer, continuous ar D rsij.

in the x-direction. 3.4. Pressure Computations

3.3. Particle Interaction Potential The contribution of the uid to the grand potential of laydr
The patrticles interact with the Lennard-Jones/spline potential is[17

* + * +
8 . ff 1 X 1 X X
%1 . . ifr < Rj pV, D 3 mi(vi vi) = (ri fi) . (@7
) i R i Ri i 0o ; i21 i2 jb1
uj(r) D TR TR TR <r<tsi
aj(r rei)?Chj(r rgi)®  ifrs<r<rg wherep{ is the uid di erential pressure,\/,f the uid volume, m;
"0 ifr> rgjj andv; are the mass and velocity of uid particleThe rst two

(15) sumsare overall uid particleisn layerl, while the second sum is
Each particle type has a hard-core diaméd®gand a soft-core  over all other particleg Half of the virial contribution, the second
diameter ji. There were two types of particles, small particleserm in Equation (17), is assigned to particland the other half
with D o, R D 0andlarge particleswith; D 10 o, Ry D  to particlej. The virial contribution assigned to the solid particles
9 . The small particles are the uidf), and the large particles are not includedrjj rj rjis the vector connecting particle
are the grain ). The hard-core and soft-core diameters forandj, andfj D @i =@); is the force between them. Theeans

uid-grain pairs are given by the Lorentz mixing rule an inner product of the vectors. The computation giﬁswhich
is the contribution to the integral pressure in laydérom the uid
1 1 . . e . . S
RrD- R CR; and #D:= C . (16) particles, accounting for their interaction with the grainrfieles.
2 2

_ _ _ 3.5. The Porous Medium in a Pressure
We de ne the radius of the grain particlesBs ( C )=2D Gradient

5:5 ¢, which is the distance from the grain center where theMVe used the re ecting particle boundary method developed by Li

potential energy is zero. Fluid particles can occupy a positio .

closer to the grain than this, this is illustrated iRigure 3 etal.[15_|_to gen(_arateapre_ssure di erence acrossthesystem alpng

The gure shows the radial distribution functiorg(r), of uid the x-axis. Particles moving from. right to Ie.ft. pass the periodic

particles around a single spherical grain. The density of uidboundary ‘jitx DO a_n_dx D Ly with prob_ablhty L P and

varied between D 0.1 and D 0.7. This shows that the '€ ected with probability ,, whereas particles moving from left
éo right pass freely through the boundary. A largegives a high

average distance from the grain particle and the closest ui ressure di erence and a lo ives a low pressure di erence
particle is approximately 5.%, but the uid particles are able to P b 9 P '

occupy positions closer to the grain particle.
The interaction strength j was set to o for all particle- 4. RESULTS AND DISCUSSION
particle pairs. The potential and its derivative are continsiéu

r D rej. The parameters;, bj andrg; were determined so that The results of the molecular dynamics simulations are shown

in Figures 4-8 (equilibrium) and Figures 9 10 (away from
equilibrium). The porous medium structure was characterized
by its pair correlation function, cfirigure 3. The compressional
energy was computed according to equation 4 in case | with a
single spherical grain and case Il with a lattice of sphericahgr

We computed the compressional energyy,, in the bulk
liquid (region B) and in the nano-porous medium (region A).
In the bulk liquid we computed the pressure directly from the
compressional energy, becappé, D plfvlf (not shown).

Figures4 6 show the various contributions to the
compressional energy, cf. equation 4. The grain particles
were identical and the system was in equilibrium, so the
integral pressure in the grains was everywhere the same,
D @. Similarly, the surface tension was everywhere the

2.50 7

2.25 1

2.00 1

1.754

1.50

1.25 4

Radial distribution function, g(r)

0.75 A

fr f
0.50 T T T T T T T \ r
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 same, | D '
Distance from particle, r The grain pressur@® and surface tension™ were tted such
that the pressure is everywhere the same and are plotted as a
FIGURE 3 | The radial distribution function of uid particles around a gain, as functlon Of the u|d pressurq)f i The results for case |l were next

shown in Figure 4. Results are shown for densities that vary between

boland D07 used inFigures 9 10 to determine the pressure gradient across

the sequence of REVs in the porous medium.
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pV, D plfvlf c @V, "™ which gives the pressure of the
REV when summed and divided with the volume of the REV.

Figure 4D shows clearly that the bulk pressure energy gives
the largest contribution, as one would expect. It is also cleat th
the surface energy is signi cant. As the surface to voluni®ra
increases, the bulk contributions may become smaller ttnn t
surface contribution (not shown). In the present case, thib w
happen when the radius of the sphere is 2@53or our grains
with RD 5.5 g, this does not happen.

The plots of® and " as functions opin region B are shown
in Figure 5 The values fod D 4 gandd D 11 g are given in
the same plots. We see that the plots fall on top of each other.
This shows that the integral pressure and the surface tension
are independent of the distanckin the interval considered. If
con nement e ects were essential, we would expect {a@nd

" were functions of the distanagbetween the surfaces of the

spheres. When the value dfdecreases below ¢ deviations
may arise, for instance due to contributions from the disjog
pressure. Such a contribution is expected to vary with theeserf
area, and increase as the distance between interfaces become
shorter. In plots likeFigure 5 we may see this as a decrease in

) , , ) the surface tension.
FIGURE 4 | (A) lllustration of case I, a single spherical grain surrounded by

uid phase with d D 4 q. (B) Volume of grain,V', (C) surface areas fr and (D) H H i
compressional energypV as a function of thex-axis of the simulation box. 4.2, _c_:a_se II. Lattice of Sphencal Grains.
Equilibrium

Consider next the lattice of spherical grains, illustrated i

) ) . Figure 6A Figures 6B,Cgive the variation in the volume of the
4.1. Case |. Single Spherical Grain. porous mediunV| and surface area,", along thex-axis.
Equilibrium When the REV in region A is properly chosen, we know that
The single sphere case is illustratecFigure 4A Figures 4B,C  p~EY D p. In equilibrium, the pressure of the REV is constant in
show the variation in the volume of the porous medium (rock),the bulk liquid phases, in regior or By, wherepis the pressure
V[, and the surface area between the rock and the widf, ~ of the uid in region B. In order to obtairpVR="in region A, we
along thex-axis of the simulation box. The two quantities weresump,V, over all the layers that make up the REV, and obtain
determined for all layers, and these results were used in the plots X X X
of Figures 4B,C To be representative, the REV mustinclude the  pvREV D PV CE vioo - (20)
solid sphere with boundaries left and right of the sphere. Ider 12REV 12REV I2REV
to obtain pREWREY we summedpV, over all the layers in the
REV. At equilibrium,pREY D p, wherep is the pressure in the To proceed, we nd rst the values of all the elements in this
uid in region B. For the REV we then have equation, excep® and . The values ofp and ' are tted
such that the pressure is everywhere the same. Using these tt
values, we next calculat@p/, of each layer using

X X X
pvR'EVD T pvice T vy T LT s

| i)
I2REV I2REV I2REV fr

pviDpV/ cev e (21)

fr f
where we used th® D @and |" D . We know the values of 1he contributions to the compressional energy in this equrati
all the elements in this equation, excgtand . The values of are shown in three stages ifrigure 6D: (1) bulk uid

@ and T are tted such that. the pressure,in Equation. (18)  contribution pfvlf, (2) bulk wuid and grain contribution
is everywhere the same. With these tted values availabde, w; ) ;
calculatedyV, of each layer from pV, C ®V| and (3) the total compressional energyV, D
p}cvlf c eV fre ' Figure 6D shows clearly that the bulk
VD) plfvlf c OV fry Ifr_ (19) contanﬂop is largest, as is expected. However, the sarfac
energy is signi cant.
From Figure 6Bit follows that a proper choice of the REV is a
unit cell, because all REVs are then identical, (except the REVs
T R ) the boundaries). The integral ovpiV, in these REVs is the same
contribution from (1) the bulk uid pVy, (2) the bulk uid 514 equal tpVREY. The layers are smaller than the REV and as

and grainp{Vlf C PV| and (3) the total compressional energy, a consequend®V, will vary, a variation thatis seen Figure 6D.

The contributions to the compressional energy in this eqoiti
for case | are shown in the bottorfrigure 4D. We see the
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FIGURE 5 | Fitted grain pressure@ and surface tension I as a function of pressurep for a sphere (characteristic lengtid D 4 g andd D 11 g).

between the grain surfaces increases, we expect the dependenc
on con nement to disappear, and this is documentedtigure 8
where the two cases are shown with distande® 11 ¢ and

di1 D 11.21, respectively. The curves for the single grain and
lattice of grains overlap.

The knowledge gained above on the various pressures at
equilibrium is needed to construct the REV. The size of the REV
includes the complete range of potential interactions avélab
the system, but not more. To nd a REV-property, we need to
sample the whole space of possible interactions. The thickness of
the REV is larger than the layer thickness used in the simuiatio

Our analysis therefore shows that the pressure inside grains
in a fcc lattice and the surface tension, depends in particutar o
the distances between the surfaces of the spheres, incloding
their periodic replicas. A procedure has been developed to nd
the pressure of a REV, from information of the (equilibrium)
values of® and ™ as a function of’. It has been documented
in particular for nano-porous medium, but is likely to hold for
other lattices, even amorphous materials when the REV can be
de ned properly.

4.3. Case Il. Lattice of Spherical Grains.

FI.GURE 6| (A) lllustration of case Il, a Iattlc_e sprherlcal grain surrour;rdedyka Non_equi”brium

uid phase with aD 20 g. (B) Volume of grain,V', (C) surface areas " and . k . X

(D) compressional energypV as a function of thex-axis of the simulation box. F!gure 9illustrates the SYStem '_n the pressure gradlem: where
The smallest REV is a unit cell. Figure 9B shows the compressional energy, along thex-

axis. The dip in the pressure closexoD 0 is caused by the
re ecting particle boundary, cf. section 3.5. The re ectjpayticle
The values fo@ and ™ are shown as a function of for case  boundary introduces a surface between the high pressureen th
Il'in Figure 7ford; D 4.14 g andd; D 11.21 4. We see now a left side and the low pressure on the right side.
systematic di erence between the valuegband  in the two To show rst how a REV-property is determined from the
cases. The integral pressure and the surface tension ieseas layer-property, consider again the compressional energieadf
the distance between the grains decreases. The di erenceen olayer. In the analysis we used the fcc lattice with lattice patar
set can be estimated from the other. Say, for adi erenceifeser a D 20 (. The volume of the grainy", and the surface area,",
tensionl " we obtain for the same uid pressure from equation varied of course in the exact same way a§igures 6B,C The
11, a di erence in integral pressure &ffd D 31 =R Thisis pressure gradient was generated as explained in sectiontg5. T
nearly what we nd by comparing the lines figure 6, the lines  pressure di erence between the external reservojrarigl B was
can be predicted from one another usiRyD 6.5 o while the large, giving a gradient with order of magnitude'#®ar/m. The
value inFigure 3isR D 5.5 (. The di erence may be due to the uid on the left side is liquid-like, while the uid on the righ
disjoining pressure. Its distribution is not spherically aywetric,  side is gas-like. The smallest REV as obtained in the analysis a
which may explain the di erence between 6g&and 5.5 ¢. equilibrium is indicated in the gure.
The results should be the same as for case | for the larger In order to compute a REV variable away from equilibrium,
distance, and indeed that is found, Eigure 8 As the distance we therefore follow the procedure described by Kjelstrup et al
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FIGURE 7 | Fitted grain pressure and surface tension fr as a function of pressurep for the lattice of spheres (characteristic lengtld; D 4.14 g anddq D 11.21 o).

FIGURE 8 | Fitted grain pressure@ and surface tension ' as a function of pressurep for the sphere (characteristic lengttd D 11 ) and a lattice of spheres
(characteristic lengthd; D 11.21 o).

[10 and choose a layer as a reference point. We then compute
the average using ve layers, two to the left, two to the righ
and the central layer. Moving one layer down the gradient, w
repeat the procedure, and in this manner we obtain the propert
variation on the REV scale. The results of the simulation giave
each individual layepV/, as plotted inFigure 9B The pro le
created by the REV-centers is shown Figure 10 We see a
smooth linear pro le (central curve) as one would expect from
the boundary conditions that are imposed on the system. Some
traces of oscillation are still left in the separate conttitns to
the total compressional energy.

We have seen that a nano-porous medium is characterized
by pressures in the uid and the solid phases, as well as th
surface tension between the uid and the solid. When one
reduces the size of a thermodynamic system to the nano-metekiGuRE 9 | (A) lllustration of case Il in a pressure gradien{B) Compressional
size, the pressures and the surface tensions become dependesmiergypV variation across the system.
on the size of the system. An important observation is then
that there are two relevant pressures rather than one. HJll [
called them the integral and the di erential pressure, respety. In a macro-scale description, the so-called representative
It is maybe surprising that the simple virial expression workslementary volume (REV) is essential. The REV makes it possible
so well for all pressure calculations in a uid, but we haveto obtain thermodynamic variables on this scale. We have her
found that it can be used. We will next be able to studydiscussed how the fact that the macro-scale pressure is cinsta
transport processes, where the external pressure di erence isimequilibrium makes it possible to obtain the integral pressur
driving force. The method, to compute the mechanical forceén the solid, as well as the surface tension, of the liquid-
intrinsic to the porous medium, may open interesting newsolid contacts in the REV. An observation which con rms the
possibilities to study the eects that are characteristic forsoundness of the procedure is that we recover Young-Laplace's
porous media. law for the di erential pressures. The existence of a REV for

1%}

<

(0]

Frontiers in Physics | www.frontiersin.org 8 April 2019 | Volume 7 | Article 60



Galteland et al.

Pressures Inside a Nano-Porous Medium

FIGURE 10 | Compressional energypV variation across the system smoothed
over the representary elementary volume.

larger in order to include all possible microstates. The REV
needs in general to be larger as the heterogeneity of the gorou
medium increases.

To illustrate the concepts, we have constructed a system with
a single uid. The rock pressure and the surface tension are
constant throughout the porous medium at equilibrium. The
assumptions were con rmed for a porosity change fronD
0.74 t0 0.92, for a REV with minimum size of a unit cell.

From the assumption of local equilibrium, we can nd the
pressure internal to a REV of the porous medium, under
non-equilibrium conditions, and a continuous variationthe
pressure on a macro-scale.

systems on the nano-scale supports the idea of a REV that can

be de ned for pores also of micrometer dimensiat(]. There is
no con ict between the levels of description as they mergénin t

thermodynamic limit. The REV, as de ned in the present work,

To obtain these conclusions, we have used molecular dynamics
simulations of a single spherical grain in a pore and then for
face-centered lattice of spherical grains in a pore. This i®ol

may allow us to develop a non-equilibrium thermodynamicirreplaceable in its ability to test assumptions made in thetjie

theory for the nano-scale.

5. CONCLUSIONS

The following conclusions can be drawn from the above steidie

The simulations were used here to compute the integral rock
pressure and the surface tension, as well as the pressure of the
representative volume, and through this to develop a procedur
for porous media pressure calculations.

Only one uid has been studied here. The situation is expected
to be more complicated with two-phase ow and an amorphous

We have obtained the rst support for a new way to computemedium. Nevertheless, we believe that this rst step hasrgiv
the pressure in a nano-porous medium. The integral pressurgsefy| information for the work to follow. We shall continue

of the medium is de ned by the grand potential. The de nition

to use the grand potential for the more complicated cases, in

applies to the thermodynamic limit, as well as to systems whic{york toward a non-equilibrium thermodynamic theory for the

are small, according to the de nition of Hill1]].

It follows that nano-porous media need two pressures in their

description, the integral and the di erential pressure. Tr8s i
new knowledge in the context of nano-porous media.
For a spherical rock particle of radid® we derive a relation

nano-scale.
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