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School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States

Liquid state machine (LSM), a bio-inspired computing modelconsisting of the input
sparsely connected to a randomly interlinked reservoir (orliquid) of spiking neurons
followed by a readout layer, �nds utility in a range of applications varying from robot
control and sequence generation to action, speech, and image recognition. LSMs
stand out among other Recurrent Neural Network (RNN) architectures due to their
simplistic structure and lower training complexity. Plethora of recent efforts have been
focused toward mimicking certain characteristics of biological systems to enhance the
performance of modern arti�cial neural networks. It has been shown that biological
neurons are more likely to be connected to other neurons in the close proximity, and
tend to be disconnected as the neurons are spatially far apart. Inspired by this, we
propose a group of locally connected neuron reservoirs, or an ensemble of liquids
approach, for LSMs. We analyze how the segmentation of a single large liquid to
create an ensemble of multiple smaller liquids affects the latency and accuracy of an
LSM. In our analysis, we quantify the ability of the proposedensemble approach to
provide an improved representation of the input using the Separation Property (SP) and
Approximation Property (AP). Our results illustrate that the ensemble approach enhances
class discrimination (quanti�ed as the ratio between the SPand AP), leading to better
accuracy in speech and image recognition tasks, when compared to a single large liquid.
Furthermore, we obtain performance bene�ts in terms of improved inference time and
reduced memory requirements, due to lowered number of connections and the freedom
to parallelize the liquid evaluation process.

Keywords: liquid state machines, ensembles, spiking neural n etworks, separation property, approximation
property, discriminant ratio

1. INTRODUCTION

Over the past few decades, arti�cial neural algorithms have developed to an extent that they can
perform more human-like functions. Recurrent Neural Networks (RNNs) and their variants such
as Long Short Term Memory (LSTM) networks have become the state-of-the-art for processing
spatio-temporal data. The massive RNNs of today, can describe images in natural language (Xie,
2017), produce handwriting (Graves, 2013), and even make phone calls to book appointments
(Yaniv and Yossi, 2018). Such fascinating, human-like capabilities are obtained at the cost of
increased structural and training complexity, and thus signi�cant power consumption, storage
requirements, and delay.
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In this work we focus on a particular type of spiking RNN;
the Liquid State Machine (LSM) (Maass et al., 2002). An LSM
consists of a set of inputs sparsely connected to a randomly
and recurrently interlinked pool of spiking neurons called the
“liquid”. The liquid is connected to an output classi�er, which
can be trained using standard methods such as Spike Timing
Dependent Plasticity (STDP), backpropagation, delta ruleetc.
(Kötter, 2012) and using enhanced learning rules (Roy et al.,
2013). LSMs have been used for a variety of applications
including robot control (Urbain et al., 2017), sequence generation
(Panda and Roy, 2017), decoding actual brain activity (Nikoli ć
et al., 2009), action recognition (Panda and Srinivasa, 2018),
speech recognition (Maass et al., 2002; Verstraeten et al., 2005;
Goodman and Ventura, 2006; Zhang et al., 2015; Wu et al., 2018;
Zhang and Li, 2019), and image recognition (Grzyb et al., 2009;
Wang and Li, 2016; Srinivasan et al., 2018; Zhang and Li, 2019).

LSMs gained their popularity due to two main reasons. First,
the LSM architecture is neuro-inspired. By conserving energy
via spike-based operation, the brain has evolved to achieve
its prodigious signal-processing capabilities using orders of
magnitude less energy than the state-of-the-art supercomputers
(Anastassiou et al., 2011; Cruz-Albrecht et al., 2012). Therefore,
with the intention to pave pathways to low power neuromorphic
computing, much consideration is given to realistic arti�cial
brain modeling (Waldrop, 2012; Neftci et al., 2016; Wijesinghe
et al., 2018). Furthermore, the gene regulation network (GRN)
of the Bacterium “Escherichia Coli” (E-Coli) was experimentally
assessed and shown to behave similar to an LSM (Jones et al.,
2007). The E. Coli has the capacity for perceptual categorization,
especially for discrimination between complex temporal patterns
of chemical inputs. Second, LSMs have simple structure and
lower training complexity among other RNNs. The claim is
that, su�ciently large and complex liquids inherently possess
large computational power for real-time computing. Therefore,
it is not necessary to “construct” circuits to achieve substantial
computational power. However, such simple structure of LSMs
comes with an accuracy trade-o�. A plethora of work in the
literature suggests mechanisms for improving the accuracy of
LSMs including training the liquid connections (Wang and Li,
2016) and involving multiple layers of liquids to form deep
LSMs (Xue et al., 2016). Despite the accuracy improvement, these
mechanisms found in literature tend to alter the standard simple
structure of LSMs. Choosing an LSM for a particular application
and improving its accuracy at the cost of added complexity,
nonetheless questions the motivation behind choosing an LSM
in the �rst place.

Without deviating from the inherent simplicity of the LSM
structure, several basic approaches can be used to improve its
accuracy. One such fundamental approach is to increase the
number of neurons within the liquid. However, the number of
connections within the liquid also increases following a quadratic
relationship with the number of neurons. Furthermore, the
sensitivity of accuracy to the liquid neuron count decreases
with the number of neurons beyond a certain point. In other
words, enlarging the liquid introduces scalability challenges,
and the accompanied cost tends to veil the accuracy bene�ts.
The percentage connectivity also plays a role in improving

the accuracy. Either high or low percentage connectivity
results in accuracy degradation, signaling the existence ofan
optimum connectivity.

Note, there are two key properties that measure the capacity
of an LSM:separationand approximation(Maass et al., 2002).
Aforementioned basic approaches; changing the number of
neurons and connectivity in the liquid, indeed has an impact
on the above measures. Based on separation and approximation,
we propose an “ensemble of liquids approach” that can improve
the classi�cation accuracy (compared to a single large LSM) with
reduced connectivity. The approach is scalable and preserves the
simplicity of the network structure. In our ensemble of liquids
approach, we split a large liquid into multiple smaller liquids.
These resultant liquids can be evaluated in parallel since they are
independent of each other, which leads to performance bene�ts.
Furthermore, for a given percentage connectivity, the number
of connections available in the ensemble approach is less than
that of a single liquid with the same number of neurons. This
reduces the storage requirement of the LSM as well. We used
a variant of the Fisher's linear discriminant ratio (Fisher, 1936;
Fukunaga and Mantock, 1983) (the ratio between the separation
and approximation) to quantify how well the ensemble of liquids
represents the spatio-temporal input data. We observed that
increasing the liquid count beyond a certain point reduces
the accuracy of the LSM. This signals the existence of an
optimum number of liquids, which is highly dependent upon the
application and the number of neurons in the liquid. We show
that dividing the liquid provides both accuracy and performance
bene�ts for spatial and temporal pattern recognition tasks, on
standard speech and image data sets.

The “ensemble” concept has been previously used (Yao
et al., 2013) for echo state networks or ESNs (Jaeger, 2007),
which are similar in architecture to LSMs but use arti�cial
rate-based neurons. Rather than using a single ESN predictor,
multiple predictors (component predictors) were used and
their predictions were combined together to obtain the �nal
outcome. This approach was proposed to avoid the instability
of the output of each individual predictor, since the input and
internal connection weights are assigned randomly. The �nal
ensemble outcome was obtained by averaging the predictions
of the component predictors. The approach inYao et al. (2013)
is di�erent from our work since we design the ensemble of
liquids by removing certain connections from a bigger reservoir.
Furthermore, only a single classi�er is used at the output in
our work in contrast toYao et al. (2013). The authors inMaass
et al. (2002)conducted a small experiment with two time-varying
signals, which shows that using four liquids is better than using
a single liquid in terms of enhancing the separation property.
However, in their experiments, the four liquids in total havefour
times the number of neurons as the single liquid case. Therefore,
it is not obvious whether the improvement in separation is solely
due to having four “separate” liquids. The increased number
of neurons itself might have played a role in enhancing the
separation. In contrast, we analyze the e�ects of dividing a large
liquid into multiple smaller units, while leaving the total number
of neurons the same. Research (Srinivasan et al., 2018) also shows
that multiple liquids perform better than a single liquid, at higher
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number of neurons. The input to liquid connections inSrinivasan
et al. (2018)were trained in an unsupervised manner. Also note
that each liquid was fed with distinct parts of an input, and hence
is di�erent from this work.

2. MATERIALS AND METHODS

2.1. Liquid State Machine (baseline)
In this section, we explain the structure and training of the LSM
used in this work. The conventional structure of an LSM consists
of an input layer sparsely connected to a randomly interlinked
pool of spiking neurons called the liquid. The liquid is then
connected to a classi�er which has synaptic weights that could
be learnt using supervised training algorithms for inference.

2.1.1. Liquid Neurons
The neurons within the liquid are leaky integrate-and-�re
neurons (Abbott, 1999) of two types; excitatory and inhibitory
neurons. The number of excitatory (E) neurons and inhibitory
(I ) neurons were selected according to a 4: 1 ratio, as
observed in the auditory cortex (Wehr and Zador, 2003). The
membrane potential (V) of a neuron increases/decreases as a
pre excitatory/inhibitory neuron connected to it spikes thatis
described by

�
dV
dt

D (Erest � V) C ge(Eexc� V) C gi(Einh � V) (1)

whereErest is the resting membrane potential,� is the membrane
potential decay time constant,EexcandEinh are the equilibrium
potentials of excitatory and inhibitory synapses, andge and
gi are the conductance values of the excitatory and inhibitory
synapses, respectively. As the membrane potential reaches a
certain threshold, the neuron generates a spike. The membrane
potential drops to its reset potential upon generating a spike as
shown inFigure 1A, and then enters its refractory periodtrefrac
during which it produces no further spikes. The formulations
elaborated inDiehl and Cook (2015)were used for modeling the
dynamics of the spiking neurons.

2.1.2. Liquid Connections
The input is sparsely connected to the liquid (In! E
connections). The percentage input to liquid connectivity
(PIN! E) plays an important role in achieving good accuracy
as will be explained in section 3.4.2. The liquid is composed
of connections from excitatory to excitatory neurons (E! E),
excitatory to inhibitory neurons (E! I), inhibitory to excitatory
neurons (I ! E), and inhibitory to inhibitory neurons (I ! I ).
In our notation, the �rst letter indicates the pre-neuron type
(PRE) and the second letter denotes the post-neuron type
(POST). The selected percentage connectivity (PIN! E , PE! E ,
PE! I , PI ! E, PI ! I ) within the liquid are shown inTable 1.
These percentage connectivity values worked the best in
terms of accuracy, for the neuron parameter selections in this
work shown in Table 2. The strengths of all the connections
(W 2 [0, 1]NPRE� NPOST) were selected randomly (Maass et al.,
2002) from a uniform distributionU(0, 1) (Toledo-Suárez et al.,
2014; Srinivasan et al., 2018). A randomly generated mask

�
M 2 f 0, 1gNPRE� NPOST,mij 2 M

�
decides which connections

exist to obtain the desired sparsity=percentage connectivity�
PPRE! POST D

P
(8i,8j) mij

(NPRE� NPOST)
� 100%

�
. HereNPRE and NPOST

are the number ofPREand POSTneurons, respectively. The
dynamic conductance change model was used for synapses.
i.e., when a pre-synaptic neuron �res, the synaptic conductance
instantaneously changes according to their strengths and then
decays exponentially with a time constant (Diehl and Cook,
2015). Following equation shows the dynamics of a synapse
(ge) with an excitatory pre-neuron.� ge is the decay time
constant. This is similar to the post-synaptic current model in
Maass et al. (2003).

� ge

dge

dt
D � ge (2)

2.1.3. Output Classi�er
The liquid is connected to a classi�er which is trained in a
supervised manner. As suggested inMaass et al. (2002), a
memory-less readout (the readout is not required to retain any
memory of previous states) can be used to classify the states
of the liquid. The liquid state in this work is the normalized
spike count of the excitatory neurons (Kaiser et al., 2017)
within a duration of T, when the input is applied. There is
a liquid state vector (si 2 [0, 1]NE, NE is the number of
excitatory neurons) per applied input (i). The collection of all
the state vectors were then used to train the classi�er using
gradient descent error backpropagation algorithm (Rumelhart
et al., 1986), similar to Srinivasan et al. (2018). By doing this,
we do discard some temporal information. However, since we do
not use “anytime-speech-recognition” (a liquid with a classi�er
which is capable of recognizing a speech input, before the entire
temporal signal is applied to the liquid) proposed inMaass et al.
(2004), the above classi�cation method is su�cient to achieve
reasonable accuracy (as per the accuracy values reported in
other LSM works) for the applications we are considering in
this work.

2.2. Ensemble Approach for LSMs
In this section, we explain our proposed ensemble of liquids
approach, which improves the scalability of LSMs. The proposed
approach is di�erent from the ensemble works available
in literature on a variety of network types (feed-forward
fully connected spiking and analog neural networks), where
multiple classi�ed outputs of independently trained networks
are combined together to increase the probability of correct
classi�cation (Jacobs et al., 1991; Shim et al., 2016). In this work,
we analyze the impact of dividing a reservoir, such that all the
resultant small reservoirs can potentially be evaluated in parallel,
for an applied input. As explained in the previous section, the
typical structure of an LSM has an input, a liquid where neurons
are sparsely interlinked, and a readout trained using supervised
learning methods (Figure 1B). In our ensemble approach, the
same number of liquid neurons (Ntot) is divided to create an
Nens number of smaller liquids, as shown inFigure 2. While
dividing the liquid, the number of excitatory neurons (Ni

E) to
inhibitory neurons (Ni

I ) ratio in theith (i D 0, 1, ...,Nens) liquid is
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FIGURE 1 | (A) The dynamics of the membrane potential (V) of a spiking neuron. Each spike shown below the graph will increase the membrane potential. WhenV
reaches the thresholdVthresh, the neuron will generate a spike andV will drop to the rest potentialVrest for a trefrac duration of time. This duration is called the
refractory period, and the neuron stays idle within this period. Reprinted with the permission fromLiyanagedera et al. (2017). (B) The structure of the liquid state
machine. The input is connected to a reservoir with two typesof neurons; inhibitory and excitatory. The reservoir is then connected to a classi�er which is typically
trained using supervised learning methods. The percentageconnectivity between different types ofpre and post neurons (Ppre! post) are as indicated in the �gure.

maintained at 4: 1. The percentage connectivity is also adjusted
to suit the new reduced number of neurons (Ntot

Nens
) in a liquid.

This is done by �rst creating a standard LSM explained in the
previous section withNtot

Nens
number of neurons and adjusting

all the percentage connectivity values till we get a reasonable
accuracy. Then the input to liquid percentage connectivity
(PIN! E) was exhaustively changed until the accuracy peaks for

a given application, which is then used for all the experiments
reported in this work.

Each small liquid has its own liquid state vector, which is
the normalized spike count of all the excitatory neurons in
the respective liquid within a duration ofT, as explained in
the previous section. All the state vectors produced by each
individual liquid in the ensemble are concatenated to form
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TABLE 1 | Percentage connectivity within the liquid.

Type of connectivity Percentage
connectivity (Speech

recognition)

Percentage
connectivity (Image

recognition)

TI-alpha(%) TI � 10(%) MNIST(%) E-MNIST(%)

Input–Excitatory 34 23 10 10

Input–Inhibitory 0 0 0 0

Excitatory–Excitatory 40 40 40 40

Excitatory–Inhibitory 40 40 40 40

Inhibitory–Excitatory 50 50 50 50

Inhibitory–Inhibitory 0 0 0 0

TABLE 2 | Spiking neuron parameters of the liquid state machine.

Parameter name Parameter value

Excitatory weight decay time constant,tge 1 ms

Inhibitory weight decay time constant,tgi 2 ms

Threshold inhibitory,threshi � 40 mV

Threshold excitatory,threshe � 52 mV

Inhibitory rest potential,vrest,i � 60 mV

Excitatory rest potential,vrest,e � 65 mV

one large state vector per input. Note that the length of the
concatenated state vectors are the same for both the single
liquid case (baseline) and for the ensemble of liquids, since
the total number of neurons are held constant for a fair
comparison. The concatenated state vector is used to train a
single readout using gradient descent backpropagation. This
division of one large liquid to form an ensemble of liquids
enhances class discrimination associated with LSMs as elaborated
in the next section.

2.3. Properties of LSMs
Two macroscopic properties of an LSM, namely, Separation
Property (SP) and Approximation Property (AP), can be used to
quantify a liquid's ability to provide an improved projection of the
input data. With respect to classi�cation applications, SP gives
a measure of the liquid's ability to separate input instances that
belong to di�erent classes. AP, on the other hand, gives a measure
of the closeness of the liquid's representation of two inputs that
belong to the same class.

Several methods of quantifying the SP and AP as a measure
of the computational power (kernel quality) of an LSM are
suggested inMaass et al. (2002, 2005). Two methods of measuring
the SP arepairwise separation propertyand linear separation
property. The pairwise separation property is the distance
between two continuous time states of the liquid (xu(t) andxv(t)),
resulting from two di�erent input spike trains (u(t) and v(t)).
Here the continuous time statesx(t) are de�ned as the vector
of output values of linear �lters with exponential decay (with
time constant 30ms Maass et al., 2002) at time t. The distance
can be calculated by the Euclidean norm betweenxu(tn) and
xv(tn) at sample pointtn. The �nal pairwise separation property

can be evaluated by obtaining the average across all the sampled
instances (attn), as explained in the following equation

SPpw D
1

Nsamples

NsamplesX

nD1(0< tn< T)

jj xu(tn) � xv(tn)jj (3)

where Nsamplesis the number of sample points. The pairwise
separation property (SPpw) can be used as a measure of the kernel
quality for two given inputs. However, most real life applications
deal with more than two input spike trains. To address this, linear
separation property is proposed as a more suitable quantitative
measure to evaluate the computational power of a liquid in an
LSM. The linear separation property (SPlin) is the rank of the
N � m matrix Ms, which contains the continuous time states
(xu1(t0), ...,xum(t0)) of the liquid as its columns. The continuous
time statexui (t0) is the liquid response to the inputui (these
inputs are from the training set), sampled att D t0. If the rank
of the matrix ism, it guarantees that any given assignment of
target outputsyi 2 R at time t0 can be attained by means of a
linear readout (Maass et al., 2005). The rank ofMs is the degree
of freedom the linear readout has, when mappingxui to yi . Even
though the rank is< m, it can still be used as a measure of kernel
quality of the LSM (Maass et al., 2005).

Ms D
�
xu1(t0), ...,xui (t0), ...,xum(t0)

�
(4)

SPlin D rank
�
Ms

�

The AP of the LSM can also be measured by the aforementioned
rank concept as shown inMaass et al. (2005); Roy and Basu
(2016). Instead of using signi�cantly di�erent examples in the
training set, now the continuous time statesx

uj
i
(t0) of the liquid

are measured by feeding jittered versions ofui (uj
i) to the

liquid. The rank of the matrixMa that hasm such continuous
time statesx

uj
1
(t0), ...,x

uj
m

(t0) sampled att0 as its columns, is

evaluated as a measure of the generalization capability of the
liquid for unseen inputs. UnlikeSPlin , lower rank ofMa suggests
better generalization.

Both AP and SP are important in measuring the
computational quality of a liquid. For example, very high
quantitative measure for SP and very low measure for AP is
ideal. If one liquid has very high SP and a mediocre AP, it is hard
to decide whether the particular liquid is better than another
liquid with mediocre SP and a very small AP. Therefore, in
order to compare the quality of di�erent liquid con�gurations,
a combined measure that involves both SP and AP is required.
To address this, we use some insights from Fisher's Linear
Discriminant Analysis (LDA) (Fisher, 1936; Fukunaga and
Mantock, 1983; Hourdakis and Trahanias, 2013). LDA is
utilized to �nd a linear combination (f (.)) of d features that
characterizes or separates two or more classes (! i) of objects.
The linear combination as shown in the equation below can
be used as a classi�er, or as a dimensionality reduction method
before classi�cation.

yi D f (xi) D Wxi (5)
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FIGURE 2 | The structure of the ensemble approach. The liquid in the standard LSM is split up to create an ensemble of smaller liquids. The input is sparsely
connected to all the liquids. The output of all the liquids are concatenated to form one large liquid state vector, and connected to a single readout that is trained using
supervised learning methods.

whereyi is the output vector (Y D [y1, ...,yn] 2 RL� n), that
corresponds to the set of input features,xi (X D [x1, ...,xn] 2
Rd� n, each featurexi is a column vector),W 2 RL� d is the
weight matrix that describes the linear relationship,L is the
number of classes, andn is the number of data samples. The
projection from LDA maximizes the separation of instances
from di�erent classes, and minimizes the dispersion of data
from the same class, simultaneously, to achieve maximum class
discrimination. The approximation capability is quanti�ed by
the matrix Sw called the “within class scatter matrix” that is
speci�ed by

Sw D
LX

iD1

P(! i) O6 i (6)

where P(! i) is the probability of class! i , O6 i is the sample
covariance matrix (Park and Park, 2018) for class ! i . The
separation capability is given by the “between class scatter

matrix” (Sb) that is described by

Sb D
LX

iD1

P(! i)(� i � � g)(� i � � g)T (7)

where � i is the sample mean vector (centroid) of class! i ,
and � g is the global sample mean vector. In classical LDA,
the optimum weight matrix can be found by maximizing the
objective function called Fisher's Discriminant Ratio (FDR)
(Fukunaga and Mantock, 1983) that is computed as

FDRD tr(S� 1
w Sb) (8)

wheretr(.) is the trace operation. For this work, the capability of
the liquid to produce a good representation of the input data is
quanti�ed by a variant of the above ratio. The FDR is applied on
the states of the liquid. However, when the data dimensionality
(number of liquid neurons) is large in comparison to the sample
size (n), the aforementioned scatter matrices tend to become
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singular (Ji and Ye, 2008) and the classical LDA cannot be
applied. Hence, we use a modi�ed discriminant ratio (DR) given
by the following function:

DR D tr(Sb)tr(Sw)� 1 (9)

Note that the trace ofSw measures the closeness of each
liquid state to its corresponding class mean as illustrated
in Figure 3A, and the trace ofSb measures the distance
between each class centroid and the global centroid in
multidimensional space as depicted inFigure 3B. High
tr(Sb) suggests high SP (hence better) and smallertr(Sw)
suggests better AP.

2.4. Experimental Setup
The performance of the ensemble of liquids approach is
compared against a single liquid baseline detailed in section
2.1, with the aid of two spatial image recognition applications
and two spatio-temporal speech recognition applications. The
liquid was modeled in BRIAN (Goodman and Brette, 2008), a
Python-based spiking neural network simulator, and the spiking
activities of the neurons were recorded to calculate the liquid
state vectors. The state vectors corresponding to the training
input instances of each data set were then used to train a single
fully-connected classi�cation layer using the stochasticgradient
descent algorithm (Robbins and Monro, 1985; Mei et al., 2018).
The accuracy of the trained network was calculated on the testing
data sets.

2.4.1. Data Sets Used for Illustration
The two spatio-temporal (speech) data sets used in this
work are:

1. Digit sub-vocabulary of the TI46 speech corpus (Liberman
et al., 1993) (TI-10)

2. TI 26-word “alphabet set”; a sub-vocabulary in the TI46 speech
corpus (Liberman et al., 1993) (TI-alpha)

TI-10 consists of utterances of the words “zero” through “nine”
(10 classes) by 16 speakers. There are 1, 594 instances in the
training data set and 2, 542 instances in the testing data set.
TI-alpha, on the other hand, has utterances of the words “A”
through “Z” (26 classes). There are 4, 142 and 6, 628 instances
in the training and testing data sets, respectively. For the spatial
data sets (images), we used the handwritten digits from the
MNIST (Deng, 2012) data set containing 60, 000 images of digits
0 through 9 in the training set and 10, 000 images in the testing
set. In addition, we also created an extended MNIST data set
that contains all the images from the original MNIST data set,
and the same set of images transformed by rotation, shifting, and
noise injection. It has 240, 000 images in the training data set and
40, 000 images in the testing data set.

2.4.2. Input Spike Generation
The �rst step is converting the images or the analog speech signals
to spike trains to be applied as inputs to the liquid. For spatial
data (images), there arep number of input spike trains fed in
to the liquid, with p being the number of pixels in an image.

FIGURE 3 | The graphical representation of the components of the discriminant ratio (DR) for a set of two dimensional data points that belongs to three classes.(A)
tr(Sw) gives a measure of the addition of all the squared distancesfrom the class means to each data point. This must be lower to have better approximation property.
Here li,j denotes the squared distance between theith data point in classj to the class centroid, � j (B) trfSbggives a measure of the addition of the squared distances
between the global mean and each class mean. High value fortrfSbgsignals higher separation property. Hereli denotes the squared distance from the global mean
� g to the centroid of classi.
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FIGURE 4 | The effect of dividing a large liquid onSPpw , at different distancesdin
u,v between inputs. Two input spike trainsu and v are illustrated at(A) din

u,v D 0.2 and
(B) din

u,v D 0.4. (C) The variation of pairwise separation with the distances between inputs, at different number of liquids(D) The variation of pairwise separation with
the number of liquids, at different input distancesdin

u,v.

FIGURE 5 | The average rank of state matrixMs that indicates the inter-class
separability (in red) and the average rank of the matrixMa which is an
indication of the intra-class generalization capability (in blue).

The mean �ring rate of each spike train is modulated depending
upon the corresponding pixel intensity. Each input image pixel
(ith pixel) is mapped to a Poisson distributed spike train with the
mean �ring rate (ri for the ith image pixel) proportional to the
corresponding pixel intensity (I i) that is speci�ed by

ri D
Scount,i

T
/

�
I i

255

�
(10)

whereScount,i is the number of spikes generated by theith input
neuron within a time period ofT. For example, mean �ring rate
in this work for a white pixel (pixel intensityI i D 255) is selected
as 63.75 Hz. For a black pixel (pixel intensityI i D 0), the mean
�ring rate is 0Hz. Each image is presented to the liquid for a
duration of 300 ms (D T).

For the speech data, the audio samples available in wave
format were preprocessed based on Lyon's Passive Ear model
(Lyon, 1982) of the human cochlea, using Slaney's MATLAB
auditory toolbox (Slaney, 1998). The model was used to convert
each audio sample to temporal variation in the intensity of 39
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FIGURE 6 | The average (over �ve trials) discriminant ratio (DR) trends with different number of liquids in an ensemble for two speech recognition tasks;(A) TI-alpha
dataset, (B) TI-10 dataset, and two image recognition tasks;(C) standard MNIST dataset,(D) extended MNIST dataset. The total number of neurons in each ensemble
of liquids were kept the same. Note that all theDR trends increase with the number of liquids, and saturates after a certain point, that depends on the application.

frequency channels. These intensity values at each time step j
(I i,j) were then normalized and used as the instantaneous �ring
probability of an input neuroni (i D f 1, 2, ..., 39g). The time step
in this work is 0.5ms.

3. RESULTS

3.1. The Kernel Quality Improvement Due
to the Ensemble Approach
In this section, we will explore the e�ects of dividing a large
liquid, by means of standard measures for SP and AP explained in
section 2.3. We involve the same general tasks suggested inMaass
et al. (2005); Roy and Basu (2016), to compare the SP and AP. In
order to measure the pointwise separation property, we generated
100 input spike trainsu(t) and v(t) with di�erent distancesdin

u,v
between them. The distance between two input spike trains is
evaluated according to the methodology explained inMaass et al.
(2005). The two spike trains were �rst �ltered with a Gaussian
kernele� (t=� in)2

, and then the Euclidean distance between them
were measured.� in was selected as 5ms(Maass et al., 2002).

din
u,v D

jju(t) � e� (t=� in)2
� v(t) � e� (t=� in)2

jj
T

(11)

The same 100u(t) and v(t) signals were fed in to LSMs
with di�erent number of liquids (Nens D 1, 2, 4, 8, 10), and

the pairwise separation property was calculated according to
Equation 3. The averageSPpw was evaluated over 10 di�erent
weight initialization trials and the results are shown inFigure 4.
As the �gure illustrates, theSPpw improves with the distance
din

u,v between two inputs, and also with the number of liquids in
the LSM.

For the linear separation property, we applied 400 randomly
generated input signalsui(t) to LSMs with di�erent number
of liquids (Nens D 1, 2, 4, 8, 10). The resultant states (xui (t0))
were used to create the matrixMs explained in Equation
4. The averageSPlin (D rank(Ms) D rs) was evaluated
among �ve di�erent sets of inputs and �ve di�erent weight
initializations (i.e., 25 trials altogether) and the results are
�nalized in Figure 5. As the �gure illustrates, theSPlin
increases with the number of liquids. However, the rate
of increment of SPlin reduces with the increasing number
of liquids.

For the generalization property, we conducted same above
experiment with a di�erent state matrixMa. To create this
matrix, we involved 400 jittered versions of the input signalui(t),
(uj

i(t)) as explained in 2.3. In order to create a jittered version of
ui(t), we shifted the spike times by a small delay1 t taken from
a Gaussian distribution as explained inMaass et al. (2002). The
average rank of the matrixMa is shown inFigure 4. A lower
rank ofMa (ra) suggests better approximation of intra-class input
examples. According to the �gure,ra increases with the number
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FIGURE 7 | The average (over �ve trials) accuracy (percentage) trends with different number of liquids in an ensemble, for two speech recognition tasks;(A) TI-alpha
test dataset, (B) TI-10 test dataset, and two image recognition tasks;(C) standard MNIST test dataset,(D) extended MNIST test dataset. The total number of
neurons in each ensemble of liquids were kept the same. Note that all the accuracy trends peak at a certain point, that depends on the application.

of liquids. This signals the liquid losing its ability to generalize
intra-class inputs.

We observed that theSPpw improves by 3.06 in the 10-
liquid ensemble approach, when comparing with the single
liquid baseline. TheSPlin improvement is 1.26� . For a similar
set of experiments (forNtot D 135), the authors inRoy
and Basu (2016)explored the kernel quality of an LSM of
which the reservoir connections were trained using a structural
plasticity rule (Roy and Basu, 2017). The reported improvement
in SPpw is 1.36� , whereas the improvement inSPlin is 2.05�
when compared with a randomly generated traditional LSM.
It is noteworthy that when training using structural plasticity,
the inter-class separation capability can be improved, with
respect to a traditional liquid with random connections. Without
involving such complex learning techniques, one can obtain
improved separation by simply dividing a liquid as shown in
our work. However, note that such reservoir connection learning
methods can simultaneously preserve the ability of the LSM
to approximate intra-class examples, which is not attainable
by the ensemble approach, at higher number of liquids. As
explained in section 2.3, the ability of a liquid to produce a better
representation of an input is a measure of both SP and AP. In the
next section, we will explore this combined measure of SP and AP
de�ned asDRin section 2.3, on real world spatio-temporal data
classi�cation tasks.

3.2. Impact of the Ensemble Approach on
Accuracy of Different Applications
Using the experimental setup explained in the previous section
2.4, we initially simulated our baseline single liquid LSM (section
2.1) for the four data sets. We used 500, 2, 000, 1, 000, and
1, 000 neurons in total within the liquid for the TI-10, TI-alpha,
standard MNIST, and extended MNIST pattern recognition
tasks, respectively. We re�ned the percentage connectivity for
each task as shown inTable 1. The classi�er was trained using
the liquid states corresponding to the training examples, and the
classi�cation accuracy of the trained network was obtainedfor
unseen instances from the test data set. For each application, we
then created an ensemble of liquids withNtot

Nens
number of neurons

in each small liquid. For all the four applications, we evaluated
the SP and AP for di�erent number of liquids in the ensemble
(Nens D 1, 2, 4, 5, 8, 10) and quanti�ed how good is the input
representation of the ensemble of liquids usingDR (explained
in section 2.3).Figure 6 shows that theDR increases up to a
certain number of liquids in the ensemble and then saturates
for the four di�erent applications we have considered. This
signals that the ensemble of liquids, in principle, gives a better
representation of the input with increasing number of liquids
until a certain point. In order to verify whether this improvement
in the DR actually implies an improvement in classi�cation
accuracy, we evaluated the LSM accuracy for di�erent number of
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FIGURE 8 | The trends of different measures associated with LSMs, withthe increasing number of liquids.(A) Accuracy, (B) Approximation property (AP),(C)
Separation property (SP) and(D) Discriminant ratio (DR). The LSM is trained for TI-alpha speech recognition application. Both AP and SP continuously increases with
the number of liquids. Note that the increment in AP is more signi�cant than that of SP for larger number of liquids.

liquids (NensD 1, 2, 4, 5, 8, 10) for the four di�erent classi�cation
applications.Figure 7 shows that the accuracy indeed improves
with the number of liquids until a certain point. Let us denote
this point as the “peak accuracy point” and the corresponding
number of liquids for that point as the “optimum number of
liquids” (Nens,opt). We noticed that theNens,opt is a function of
the application, and that increasingNensbeyondNens,opt actually
results in accuracy loss. When comparingFigures 4, 7, it is
evident that the point at which theDR saturates is the same as
Nens,opt. This explains that dividing a large liquid into multiple
smaller liquids enhances the class discrimination capability of
the liquid, leading to improved classi�cation accuracy. However,
note that after theNens,opt point, the DR saturates whereas the
accuracy degrades. TheDR does not o�er a direct mapping
of the accuracy of an LSM. However, it could still be utilized
as a measure of identifying the point at which the accuracy
starts to drop (Nens,opt). This is the same point at which theDR
stops improving.

Figure 8plots the variation of the individualDRcomponents;
separation

�
SPDtr(Sb)

�
and approximation

�
APDtr(Sw)

�
with

the number of liquids for the TI-alpha speech recognition task.
Figure 8shows that SP improves continuously with the number
of liquids. Improved separation suggests larger dispersion among
the centroids of the liquid states corresponding to instances
from di�erent classes, which renders the input representations
provided by the liquid easier to classify. This is illustratedin

the cartoon in Figure 9A for a set of two-dimensional data
points from two classes, wherein higher SP while maintaining
the same AP results in enhanced class discrimination capability.
At the same time,Figure 8 indicates that AP also increases
with the number of liquids, implying that larger number of
liquids leads to higher dispersion between projected inputs from
the same class. Higher AP for a given SP is not desirable
since it could potentially lead to overlap among instances
belonging to di�erent classes as depicted inFigure 9B, thereby
degrading the class discrimination capability. Since both SP
and AP increases, the ratioDR gives a better measure about
the overall e�ect of the proposed ensemble approach on the
classi�cation accuracy of the LSM rather than the individual
componentsper se. As shown inFigure 8, the DR increases
until a certain number of liquids, signaling the dominance
of the improvement in SP over the degradation in AP as
graphically illustrated inFigure 9C. In contrast, as the number
of liquids is increased beyondNens,opt, DR saturates since the
increment in SP is no longer su�cient to compensate for the
degradation in AP as shown inFigure 8. When the dispersion
between classes (due to increment in SP) is not su�cient to
compensate for the dispersion occurring for instances within
the same class (due to AP degradation), there can be overlaps
among class boundaries as depicted inFigure 9D, leading to
accuracy loss as experimentally validated inFigure 7 across
di�erent applications.
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FIGURE 9 | A cartoon that shows the distribution of two dimensional data
points that belong to two classes under different conditions. (A) A case with
increased SP while maintaining the same AP.(B) A case where the AP is
increased while maintaining the same SP. Note that the classboundaries can
get overlapped leading to classi�cation errors. Hence, increased AP is not
desirable.(C,D) shows two scenarios where both SP and AP increased from
the baseline distribution of data points (�gure in the middle). (C) The
improvement in SP is larger than the degradation in AP.(D) The improvement
in SP is not suf�cient to compensate for the AP degradation, leading to
overlapped class boundaries.

In order to graphically view the variation in SP and AP
with the number of liquids for the applications considered in
this work, we used Principal Component Analysis (PCA) to
plot the high-dimensional liquid states in a low-dimensional
space. Generally, the �rst few principal components preserves
the most variance in a given high-dimensional data set.
Hence, the same object in multi-dimensional space can be
visualized in low-dimensional space with insigni�cant changes.
To create such a low-dimensional projection of the liquid
state vectors for di�erent input patterns, we reduced their
dimension using PCA and plotted the two most signi�cant
Principal Components (PCs) corresponding to the two largest
eigenvalues.Figure 10 plots the 800-dimensional liquid state
vectors, projected to the two-dimensional space using the
�rst two PCs, for 1, 000 randomly picked input patterns
from three classes in the MNIST data set.Figure 10 clearly
illustrates why the accuracy improves till theNens,opt point
and degrades beyond that as explained below. The single
liquid case shows concentrated (low AP), but overlapped data
(low SP). This is where the AP is the lowest due to the
concentrated data points. As the number of liquids increases,
the classes become clearly separated. Note that the points
belonging to the same class also moves away from their
respective centroids due to the increased AP. This ultimately
results in the aforementioned overlapping between the classes
for number of liquids larger thanNens,opt, which gives rise to
more misclassi�cations.

3.3. Bene�ts of the Ensemble Approach
The ensemble of liquids approach creates smaller liquids where
the dynamics of one network does not a�ect another. When
evaluating the spike propagation within the liquids, these smaller
liquids can be run independently and in parallel. Since the
evaluation time is a higher order polynomial function of the
number of neurons, computing few smaller liquids in parallel
instead of computing one large liquid is bene�cial in terms
of reducing the inference time. Note that the evaluation of a
large liquid can also be parallelized. The liquid dynamics vary
temporally, and for digital simulations, it can be divided in to
multiple time steps. Each evaluated neuron state in the liquid
at one time step is temporally correlated to that of the next
time step. Therefore, the liquid evaluation process cannot be
temporally divided for parallelizing the operation. Furthermore,
since all the neurons are connected to each other (with a given
sparsity), the dynamics of one neuron is dependent upon that
of other neurons connected to it. Therefore, “fully independent”
simulations are also not possible at the neuron level. However,
the matrix-vector manipulations involved in each time stepcan
be parallelized. Simply put, in �nding the pre-synaptic currents
of the neurons, the matrix-vector multiplication between the
spiking activity and the weight matrix must be evaluated as
shown below (with respect to excitatory neurons for example).

1 ge(ti) D WS(ti) (12)

where 1 ge(ti) is the instantaneous jump of conductance at
time ti (refer to Equation 2),S(ti) is the spiking activity
vector of N number of neurons in the liquid at timeti ,
and W 2 RN� N is the connection matrix that de�nes the
liquid. Consider dividing the above process in to multiple
processing cores. The division of the operation in to two
cores using row-wise striped matrix decomposition requires the
matrix W to be divided in to two parts (Figure 11A). During
each simulation time step (ti), each core evaluates membrane
potentialsS1(tiC1) D

�
s1(tiC1), ...,sN=2(tiC1)

�
and S2(tiC1) D�

sN=2C1(tiC1), ...,sN(tiC1)
�
. For the next time step, theseS1 and

S2 must be concatenated and requires communication between
cores. In contrast, a concatenation is not required until the
end of the total simulation duration (T) in our ensemble
approach (Figure 11B). Due to the lack of communication
overhead between processors, the ensemble approach is faster
than a parallelized version of the single liquid baseline among
Nens number of processors. In fact, due to the aforementioned
communication overheads, e�cient parallel processing can be
hindered even in Graphical processing units (GPUs)(Kasap and
van Opstal, 2018). However, in any method of evaluating the
liquid dynamics, note that the ensemble approach has less
number of connections than a single liquid baseline. Therefore,
the ensemble approach has reduced amount of computation
leading to lower evaluation time. Di�erent studies have shown
designing hardware accelerators for spiking neural network
platforms (Wang et al., 2014, 2017; Du et al., 2017). In the
context of reducing the design complexity, above methods could
potentially bene�t from the low connection complexity, and
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FIGURE 10 | The distribution of the liquid state vectors, as a projection to the �rst two principal components PC1 and PC2, for different number of liquids. The liquid
state vectors (represented as dots) correspond to three classes in the MNIST image data set. Each class has randomly picked 1, 000 liquid state vectors. Distributions

related to point 3 and 4 show less overlapping between classes, and the data points are more concentrated at the class mean points in contrast to 6 ,

which has signi�cant overlapping that caused the accuracy degradation.

“embarrassingly parallel” nature (Herlihy and Nir, 2011) of our
ensemble approach.

The inference time is the addition of the liquid evaluation time
and the classi�er evaluation time. The liquid evaluation time was
calculated by giving 100 input instances to the LSM model solver
and estimating the average liquid computation time per input.
The classi�er evaluation time is signi�cantly lower than the liquid
computation time (� � 10). Note that the classi�er training time
is similar in the baseline (single liquid LSM) and the ensemble
approach, since there are equal number of neurons in the liquid
and the number of trained weights are the same.

Once an LSM is trained, the connections within the liquid
and the classi�er weights must be stored. LSMs with large liquids
require more space. In the ensemble approach, the number of
connections within the liquid are signi�cantly lower than the
single liquid baseline. For example, assume dividing a liquid with
Ntot number of neurons in toNens number of smaller liquids

with Ntot
Nens

amount of neurons in each of them. The number
of connections available within the liquid for the single liquid
baseline is� N2

tot whereas the number of connections in the

multi-liquid case is� ( Ntot
Nens

)2Nens D N2
tot

Nens
. This shows that the

number of connections reduces by a factor ofNenswhen dividing
a large liquid intoNenssmaller liquids, given that the percentage
connectivity stays the same.Figures 12A,Billustrate how the
memory requirement varies for di�erent number of liquids for
the MNIST image recognition and TI-alpha speech recognition
applications, respectively. When the optimum accuracy point
for the ensemble approach is considered, we witnessed 87%
reduction in the amount of memory, 55% reduction in inference
time, and a 7.3% improvement in accuracy simultaneously, for
the TI-alpha speech recognition application. For the MNIST
handwritten digit recognition application, we witnessed 78%
reduction in the amount of memory, 72% reduction in the
inference time, and 3.9% improvement in classi�cation accuracy.
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FIGURE 11 | (A) The division of matrix-vector multiplication using row-wise striped matrix decomposition, for the single liquid baseline LSM. Note that during each
time step, the generatedS1 and S2 vectors need to be concatenated to form theS vector (represents the spiking activity of the liquid), which requires communication
between cores. (B) The “embarrassingly parallel” nature, and the reduced amount of operations in the ensemble approach allows two small liquids to run in parallel as
two independent tasks, until the end of the last simulation time step tn.

FIGURE 12 | The total memory reduction (%), inference time reduction (%) with respect to the baseline, and accuracy for different number of liquids in the ensemble.
Two applications were considered;(A) temporal data classi�cation problem (TI-alpha)(B) spatial data classi�cation problem (MNIST).
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FIGURE 13 | (A) The accuracy of an LSM with a single liquid, measured at different number of neurons, for a speech recognition application (TI-alpha).(B) The
average liquid evaluation time of an LSM measured at different number of neurons.

3.4. Conventional Methods of Improving
the Accuracy vs. the Ensemble Approach
The simple structure and training of LSMs, come with an
accuracy trade-o�, when compared with other non-reservoir
computing techniques such as LSTM networks (Bellec et al.,
2018). Di�erent mechanisms have been studied in the literature
such as training the connections in the reservoir (Xue
et al., 2016), using expensive learning rules (for example,
backpropagation through timeBellec et al., 2018), and selecting
complex architectures (Wang and Li, 2016), in order to
improve the accuracy of liquid state machines. However, these
methods will increase the complexity of the LSM resulting in
poor performance with respect to latency, despite the higher
accuracy. Furthermore, a liquid can be considered as a universal
computational medium. A single liquid with multiple trained
readouts can be used for multiple applications(Wang et al., 2015).
Above methods such as training the connections within the
liquid will make the LSM restricted to one application. In this
section, we will explain two basic methods of improving accuracy,
while leaving the structural and training simplicity of LSMs
intact, and compare the results with the ensemble approach.

3.4.1. Increasing the Number of Neurons in the Liquid
As explained inMaass et al. (2003), su�ciently large and complex
liquids possess large computational power. Increased number
of neurons in the liquid will result in increased number of
variables for the classi�er. Based on “multiple linear regression”
methods of predicting a function, increased number of predictor
variables (in this case the number of neurons), will result in
better prediction (Krzywinski and Altman, 2015; Wijesinghe
et al., 2017). Therefore, increasing the number of neurons will
improve the prediction accuracy of the LSM. Note however
that using enormous number of predictor variables/neurons will
make the network su�er from over�tting.Figure 13Ashows how
the accuracy of an LSM varies with the number of neurons
in the reservoir for the TI-alpha speech recognition task. As
Figure 13A illustrates, the accuracy initially increases with the

number of neurons and then saturates after a certain point.
Increased number of neurons implies increased connections
within the liquid, given that the percentage connectivity stays
the same. The number of connections within the liquid shows
a square relationship� � N2

tot with the number of neurons
Ntot, where � is the global percentage connectivity. Due to
this, evaluation time of the liquid increases exponentially
as shown in Figure 13B. Therefore, when the number of
neurons are already high, the accuracy improvement we obtain
by further increasing the number of neurons is not worth
the resultant performance and storage requirement penalty.
Furthermore, the accuracy saturates around� 79.2% for the
TI-alpha application (forNtot � 800). Note that we have
also adjusted the percentage connectivity at each point in
the graph, to get the best accuracy for a given number of
neurons. However, the ensemble approach forNtot D 1000
and Nens D 4 gives� 83% accuracy, which is larger than the
accuracy achievable by increasing the number of neurons in a
single liquid.

3.4.2. Percentage Connectivity Within the Liquid
The percentage connectivity within the LSM is an important
measure of the spiking activity of a liquid. The spiking
activity of the liquid could show two negative behaviors
which could drastically reduce the accuracy of the network,
viz. pathological synchrony and over-strati�cation (Norton
and Ventura, 2006). Pathological synchrony occurs when
the neurons get caught in in�nite positive feedback loops
resulting in heavy continuous spiking activity. Over-
strati�cation can be de�ned as the opposite extreme of
the above. Here, the neurons do not propagate an input
signal properly, resulting in reduced spiking activity. Both
the above behaviors result in similar outcomes for input
instances of di�erent classes (hence poor separation between
classes), making classi�cation tasks hard. We noticed that
lower connectivity (PIn! E) results in over-strati�cation
(Figure 14A) whereas higher connectivity results in pathological
synchrony (Figure 14B).
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FIGURE 14 | Illustration of two negative behaviors of an LSM at differentinput to liquid percentage connectivity values. Each raster plot shows the spiking activity of
the liquid neurons over time. The application is a speech recognition task (TI-alpha).(A) Over-strati�cation at low percentage connectivity.(B) Pathological synchrony
at higher percentage connectivity.(C) An instance that shows clear differences between spiking activity of the liquid neurons in contrast to(A,B).

FIGURE 15 | (A) The accuracy trend with varying input–liquid percentage connectivity, for different number of liquid neurons. The experiment is done on a single liquid
LSM conducting a speech classi�cation task (TI-alpha).(B) The percentage connectivity that gives the best accuracy atdifferent number of neurons.

We changed the percentage connectivity between di�erent
combinations of pre- and post-neuron types (E� E, I � E,E� I )
till we obtain good accuracy avoiding pathological synchrony
and over-strati�cation (Figure 14C). After that, we re�ned the
input-liquid connectivity for further accuracy improvement.
Figure 15Ashows how the accuracy changes with the percentage
connectivity of the input to liquid connections. Liquids
with di�erent number of neurons have di�erent optimum
connectivity values as shown inFigure 15B. The application
is recognizing spoken letters in TI-alpha speech corpus. The
maximum accuracy achievable by changing the percentage
connectivity (PIN! E) for Ntot D 1, 000 is� 79% (refer to the
green colored trend inFigure 15A). This is smaller than that
achievable (� 83%) by our ensemble approach withNtot D 1, 000
andNensD 4.

Furthermore, we simultaneously changed thePE! E and
PIN! E percentage connectivity values of LSMs with di�erent
number of liquids, and evaluated the accuracy. FourPIN! E
values (0.1, 0.2, 0.4, 0.6) and threePE! E values (0.2, 0.4, 0.6)
were selected for the experiment. The summarized results are

illustrated in the 3D plot in Figure 16. The color code of
the �gure gives the accuracy of a particular combination of
connectivity values. Across all LSM con�gurations with di�erent
number of liquids, we witnessed that higherPIN! E and higher
PE! E results in accuracy degradation. Sparser connectivity gives
better results. As the �gure illustrates, at sparser connectivity
values, a single liquid LSM o�ers lower accuracy than an LSM
with Nens liquids (refer to the upper left corner of the 3D
plots). The “maximum capacity” of each LSM con�guration
(for a given number of liquids) is plotted inFigure 17A. The
“maximum capacity” is the best accuracy attainable from a
particular liquid con�guration, after optimizing the percentage
connectivity values (in the selected range). AsFigure 17A
illustrates, maximum accuracy obtained from the single liquid
con�guration is smaller than that of other con�gurations. We
also plotted the average accuracy of a given LSM con�guration
across all percentage connectivity values (Figure 17B). The
average accuracy to some extent could be thought of as the
outcome one would witness in a given LSM con�guration for an
arbitrarily selected connectivity value (within the speci�ed sparse
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FIGURE 16 | The accuracy of LSMs withNens D 1, 2, 4, 5, 8, 10 at different percentage connectivity (PE! E and PIN! E) values, for the TI46-alpha classi�cation task.

connectivity region of the experiment). The average accuracy
of the single liquid LSM con�guration is lower than that of
multiple liquids.

In section 3.3, we explored the bene�ts of the ensemble
approach due to reduced number of connections in the liquid.
A single liquid LSM con�guration hasNens times more number
of connections as the LSM withNens number of liquids as
explained in section 3.3. In order to view if a single liquid
with sparser connectivity o�ers better accuracy than an LSM
with Nensnumber of liquids and higher percentage connectivity,
we conducted an experiment. In other words, the goal of the
experiment is to view the accuracy of two LSM con�gurations
with same number of connections. The dominant component of
the number of connections in an LSM is the connections between
the excitatory neurons. Therefore, we varied thePE! E for two
LSM con�gurations (Nens D 1 andNens D 4) and observed the
accuracy for the TI46-alpha application.Figure 18illustrates that
for PE! E < 0.57, the multiple liquid con�guration (Nens D 4)
provides better accuracy, suggesting that the ensemble approach
gives better results even under same number of connections
in comparison to the single liquid baseline. For example, the
ensemble approach gives� 83% accuracy atPE! E D 0.4 and
for the same number of connections, (i.e., atPE! E D 0.1), the
single liquid LSM con�guration gives lower accuracy (� 76%).

However, forPE! E > 0.57, single liquid LSM seems to perform
better. Hence we conclude that at higher degrees of sparsity,the
ensemble approach performs better than a single liquid baseline
with the same number of connections.

Apart from the percentage connectivity, di�erent connectivity
patterns within the liquid were also considered in literature.
For example, a probabilistic local connectivity within the liquid,
inspired by the connectivity in biological neurons is suggested in
Maass et al. (2003). We conducted an experiment with di�erent
sets of parameters (refer to theSupplementary Material) for the
probabilistic local connectivity model. Our results indicate that,
the highest accuracy achieved (for the ranges of parameters we
have considered) with the probabilistic local connectivitymodel
(an LSM with 1, 008 neurons arranged in a liquid column 6�
6 � 28, gave a maximum accuracy of� 78%, for the TI-alpha
speech recognition application) is lower than that attainablefrom
our proposed ensemble approach (4 ensembles with 250 neurons
in each, resulted in an accuracy of 83%, for the same TI-alpha
application). More information on our analysis is included in the
Supplementary Material.

3.5. Limitations of the Ensemble Approach
In this section, we analyze whether dividing a liquid with any
number of neurons (Ntot) would result in similar accuracy
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FIGURE 17 | (A) The maximum accuracy among all the LSM con�gurations with different PIN! E and PE! E (B) The average accuracy across all the LSM
con�gurations with different PIN! E and PE! E.

FIGURE 18 | The accuracy variation of the single liquid LSM baseline and
ensemble approach (Nens D 4) at different percentage connectivity values
(PE! E). The accuracy of the ensemble approach atPE! E D 0.4 is higher
than the accuracy of the single liquid LSM atPE! E D 0.1. Note that the
number of connections in both the cases considered are the same. The
accuracy was evaluated on the TI46-alpha classi�cation task.

improvements. To this e�ect, we created ensembles of liquids
with di�erent total number of neurons (Ntot). As Figure 19
illustrates, liquids with large number of neurons show clear sign
of accuracy improvement when divided into smaller liquids.
However, when the number of neurons is smaller, dividing
the liquid may result in decreased accuracy. For example, note
that the accuracy reduces continuously when a liquid with 250
neurons is divided. This result is similar to the observation in
Srinivasan et al. (2018), where the authors have shown that the
input and liquid subdivision is bene�cial for LSMs with large
number of neurons. Similarly, here the ensemble approach makes
sense only for LSMs with large number of neurons in them. In
conclusion, we state the following with respect to the applicability

FIGURE 19 | The accuracy varying with the number of liquids in the ensemble
approach, for different total number of neurons (Ntot ). The LSM classi�es
speech data in the TI-alpha dataset.

of the ensemble approach for LSMs. In order to improve the
accuracy of an LSM, the number of neurons can be increased.
However, beyond a certain point, accuracy does not improve
further. In such a case, the ensemble approach can be utilized to
further increase the accuracy. Such accuracy improvements are
not attainable by means of other simple methods that preserve
the structural and training simplicity of the standard LSM, such
as changing the connectivity.

3.6. Multiple Liquid-Multiple Readouts
(MLMR) Approach
When moving from the single liquid approach to the ensemble of
liquids approach, any bene�t in terms of classi�er training time
was not observed. This is due to the fact that the number of total
liquid neurons is the same, and we are using a single classi�er.
In this section, we analyze, if including a readout at the end of
each small liquid is bene�cial than having a single readout for all
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FIGURE 20 | The structure of the multiple liquid-multiple readout (MLMR) approach. There are multiple small liquids, and individual classi�ers at the end of each liquid.
These are de�ned as small LSMs or s-LSMs. Final outcome (global output) is calculated by considering the maximum vote among all the local classi�ed outputs from
the s-LSMs (local outputs).

the liquids. The basic structure of this multiple liquid-multiple
readouts (MLMR) approach is shown inFigure 20.

In contrast to our previous approach, this structure could
be viewed as a collection of small LSMs (s-LSMs). Each s-LSM
is trained individually, and the �nal classi�cation is doneby
considering either the maximum outcome, or the majority vote
among all the local classi�ers. During training, we do not use all
the training data points for each local s-LSM classi�er. Instead, we
divide the training space among the ensemble of s-LSMs based on
the following two criteria:

1. Random training space division (RD)
2. Clustered training space division (CD)

In random training space division (RD) method, we randomly
divide the training data space among the ensemble of s-LSMs,
and feed them to obtain the corresponding liquid state vectors at
the output of each liquid. These state vectors were then used to
train the local classi�ers attached to each s-LSM in the ensemble
using gradient descent error backpropagation. For example, if
there areNensnumber of s-LSMs andNtrain number of examples
in the training set, each s-LSM will be trained withNtrain

Nens
number

of randomly picked training examples. On the other hand, in
the clustered input space division (CD) method, we divide the
training instances into certain clusters depending upon their
features, (for instance, we have selected “original,” “rotated,”
“shifted,” and “noisy” images from the extended MNIST dataset
as clusters) and used them to train each readout. Here, an s-LSM
has speci�c knowledge about the cluster of examples that it is

trained with, and zero knowledge about other clusters. Therefore,
an s-LSM may not correctly identify an input that belongs to a
di�erent cluster, apart from what it was trained with, leadingto
large accuracy degradation at the global classi�er. For example,
if a rotated image of digit “1” is given as the input, the s-LSM
that was trained with rotated images will correctly recognize the
given image. i.e., the output neuron� 1 gives the highest outcome
(there are 10 output neurons and they are indexed as neuron� 0
through neuron� 9 as shown inFigure 21). Other s-LSMs
may not recognize this input correctly, potentially leading to
another neuron apart from neuron� 1 to give a high value at
the outputs of their corresponding classi�ers. When getting the
�nal outcome using “maximum output” method, the neuron that
gives the highest value over all the s-LSMs may not be neuron� 1.
Instead, it could be some di�erent neuron from an s-LSM that
was not trained with rotated images. To address this issue, we
use an “inhibition” criterion to suppress the s-LSMs from giving
high outputs for cluster types that they are not trained with.
Initially we divide the training space into clusters along with their
standard target vectors (vectors of which the length is equal to the
number of classesL. If the input belongs to theith class, then the
ith element in the vector will be “1” and the other elements will
be “0.” Refer toFigure 21). Then, we randomly select 10% of the
training instances from each cluster (foreign instances), and add
them to the training space of all other clusters. The target vectors
of the foreign instances are forced to have all their elements equal
to 1=L (L is the number of classes) and we name this target vector
as “inhibitory label vector”. This will force each s-LSM outcome
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FIGURE 21 | (A) Target vectors that correspond to images in the extended - MNIST data set.(B) Examples from the clustered training data space of the extended
MNIST dataset.(C) The clustered training space division method. Each s-LSM istrained with a particular cluster of images, and an additional 10% of the images in
the other clusters (foreign data). The target vectors of theforeign data are modi�ed to have each value equal to 0.1.

TABLE 3 | Accuracy of different ensemble approaches.

Approach (total number of neurons= 1, 000) Accuracy (%)

Single liquid, single readout (baseline) 86.9

4 ensembles, single readout (MLSR) 89.0

4 ensembles, 4 readouts, (MLMR) random training space
division (RD)

82.5

4 ensembles, 4 readouts, (MLMR) clustered training
space division (CD)

83.1

to be low, when the presented input does not belong to the cluster
with which the s-LSM was trained. This method is explained
graphically inFigure 21, by means of an example.

We used the handwritten digit recognition application
with the extended MNIST data set, to check the accuracy,
performance, and training time of the aforementioned methods.
The training data set was divided into 4 clusters; original MNIST
images, noisy images, rotated images and shifted images. Total
number of neurons were 1, 000 and each s-LSM has 250 neurons.
The connectivity is set as indicated inTable 1. Table 3 reports
the accuracy of the above explained two training space division
methods (RD and CD) along with the accuracy of the baseline
(single liquid with 1, 000 neurons). The accuracy of the two
methods (RD! 82.5% and CD! 83.1%) are inferior to that
of the baseline (86.9%).

When comparing with RD method, CD gives better accuracy
for the same number of neurons. The reason for this can
be explained as follows. The clusters in the training dataset
can have di�erent overlapping/non-overlapping distributions.
For instance, three clusters (“noisy,” “shifted,” and “rotated”)

in the considered example in this work follow three di�erent
distributions as shown inFigure 22A. The �gure elaborates the
t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten
and Hinton, 2008) of the high dimensional images that belong to
the aforementioned three clusters, for better visualization in the
lower dimensional space (2D). Due to this separate distributions,
examples that belong to the same class but in di�erent clusters
may not spatially stay together in the higher dimensional space.
For example,Figure 22Bshows the data points that correspond
to digit “0” and digit “1” in di�erent clusters, and neither the
data points of digit “0” nor “1” stay together. Let us consider
the RD method, and how it tries to classify the aforementioned
digit “0” and digit “1.” If there areNtot amount of training
examples andL classes, the number of examples that belongs to
classi each classi�er sees isNex,i D Ntot

L� Nens
. The Nex,i number

of examples a classi�er in RD method sees belongs toNens
number of clusters and they are distributed all over as shown
in Figure 22B. According to the �gure, the two classes are
not linearly separable. Therefore, the RD method leads to more
misclassi�cations as elaborated inFigure 22A. In contrast, a
classi�er trained for “shifted” data cluster in CD method �tsto
a decision boundary that classi�es digit “0” and digit “1” that
onlybelongsto “shifted” data cluster. Owing to the proposed
inhibition criterion, the classi�er trained for “shifted”examples
in CD tries to put the data points that belong to other clusters into
a single category. As theFigure 22B illustrates, the classes: “digit
0,” “digit 1,” and “foreign” are more linearly separable by CD
method than the RD method, and this leads to higher accuracy
in RD method.

Selecting more foreign examples would result in the classi�er
to concentrate more on �tting the foreign data into “nhibitory
label vectors,” instead of classifying data in the corresponding
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FIGURE 22 | (A) The t-Distributed Stochastic Neighbor Embedding (t-SNE) of the high dimensional input data points, in 2D space for better visualization. The
distribution of data points that belong to three clusters (“Noisy,” “Shifted,” and “Rotated”) stay spatially separated. (B) The distribution of data points of digit “1” and
digit “0” that belongs to three clusters.

FIGURE 23 | (A) The graphical representation of the RD method trying to classify digit “0” and digit “1” that belong to three clusters using a linear classi�er. Note that
the digit “0” that belong to the shifted cluster is misclassi�ed as digit “1”. (B) The graphical representation of the CD method trying to classify digit “0” and digit “1”.
The particular classi�er shown has learned to correctly classify digit “0” and digit “1” that belong to “shifted” cluster. Furthermore, it recognizes the data points that
belong to foreign clusters due to the proposed inhibition criterion. The dashed lines show the classi�er decision boundaries.

cluster. Consider adding anxf % of foreign instances per cluster.

This would result in adding
(Nens� 1)xf %

(Nens� 1)xf %C1 overall percentage of

extra data that does not belong to the cluster to which the
classi�er must be trained. The training space of the classi�er that
must be trained for “shifted” images consists of the following
“sets”: (1) shifted digit “0,” (2) shifted digit “1,”..., 10)shifted digit
“9,” randomly selected images from (11) “noisy” cluster, (12)
“original” cluster, (13) “rotated” cluster. We selected a percentage,
that will pick approximately equal number of data points from
each of the aforementioned 13 sets. In our particular example,to
make� 7.7%(D 100=13) of the training space to be attached to
each of the above “sets”,xf % needs to be selected as 10%. The total

percentage of the foreign instances are 23%
�

D
(Nens� 1)xf %

(Nens� 1)xf %C1

�

per cluster.
In order to see if there is any bene�t in the MLMR approach

when achieving a “given” accuracy, we reducedNtot in the
baseline to match the accuracy of both the RD and CD methods.

The memory requirement, inference time, and training time
were calculated for two scenarios. First,Ntot in the baseline was
selected such that both the baseline and the RD method have the
same accuracy (82.5%). Second,Ntot in the baseline was selected
such that it matches the accuracy of the CD method (83.1%). In
each of the above scenarios, the obtained memory requirement,
inference time, and training time values were normalized with
respect to the baseline. These normalized values for the two cases
are shown in a single graph inFigure 24. The CD method is
better in terms of memory requirement and inference time, in
comparison to the single liquid baseline and RD method. We
calculated the total number of MAC (multiply and accumulate)
operations during training to estimate the training time (itis a
function of the number of neurons in a liquid, number of output
neurons, and number of training examples). Lowest training time
was achieved in the RD method. The CD method o�ers 56%
reduction in memory and 45% reduction in inference time, with
respect to the baseline. For a 1, 000 total number of neurons, the
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FIGURE 24 | Normalized total memory requirement, inference time, and
training time of the clustered training space division method (CD), random
training space division method (RD), and the single liquid baseline. The results
are under iso-accuracy conditions.

4 ensemble case with a single classi�er (studied in section 3.2.
Let us denote this method as multiple liquids, single readout or
MLSR approach) resulted in 78% reduction in memory usage
and 72% reduction in inference time along with 2.1% accuracy
improvement (hence better than both CD and RD methods under
the memory usage and inference time metrics). However, in
terms of training time, the MLSR approach did not show any
improvement, whereas the MLMR showed 88% reduction with
respect to the baseline.

4. CONCLUSION

We have presented an ensemble approach for Liquid State
Machines (LSMs) that enhances separation and approximation
properties, leading to accuracy improvements. The separation
property in LSMs measures the dispersion between projected
liquid states from di�erent classes, whereas the approximation
property indicates the concentration of the liquid states that
belong to the same class. The ratio between SP and AP (DR)
is a measure of the class discrimination. We witnessed that the
DRincreases when a large liquid is divided into multiple smaller
independent liquids across four speech and image recognition
tasks. We observed the existence of an optimal number of
liquids (Nens,opt) until which the DR increases and saturates
thereafter. Owing to the improvement in theDRin our proposed
ensemble approach, we noticed an LSM accuracy enhancement
with increasing number of liquids. The accuracy peaked at the
sameNens,opt point at which eachDR saturated, for di�erent
recognition tasks. This validated the existence of an optimal
number of liquids which gives the best accuracy for the LSM, and
this point is highly dependent upon the application and the total
number of liquid neurons.

There is plethora of complex approaches that concentrate
on improving the accuracy of LSMs, including learning the
liquid connections (Wang and Li, 2016; Xue et al., 2016).
In contrast to such works, our proposed approach does not
change the simple structure and training methods of LSMs.
Furthermore, the ensemble approach gives better accuracy when

compared with other simple mechanisms of improving the LSM
accuracy such as increasing the number of neurons, changing
the percentage connectivity, and utilizing the probabilistic local
connectivity models. Apart from providing improved accuracy,
the proposed ensemble approach comes with other bene�ts
including lower memory requirement and lower inference time.
We have shown that creating an ensemble of liquids leads to
lower inter-connections in comparison to a single liquid withthe
same number of neurons. Furthermore, the liquid evaluationcan
potentially be parallelized in the ensemble approach due to the
existence of small independent liquids. This results in reduced
LSM inference time. The accuracy improvement with increasing
number of liquids in the ensemble becomes less evident when the
total number of neurons is small. In fact, creating an ensemble
of liquids with a small number of neurons will rather reduce the
accuracy. Hence the ensemble approach makes sense for LSMs
with large number of neurons (Srinivasan et al., 2018).

Since there is no bene�t in terms of training time between a
single-liquid LSM and the proposed ensemble approach (MLSR),
we investigated the MLMR approach where a classi�er is added
to each small liquid in the ensemble. By dividing the training
example space to train each small LSM, we were able to attain
signi�cant bene�ts in terms of training time, when compared
with MLSR approach. There are multiple classi�ers that were
trained independently in the MLMR approach, and the �nal
output is the maximum vote of all the local classi�ers. The
set of multiple liquid-classi�er units are in fact a collection of
small LSMs (noted as s-LSMs). Despite the performance bene�ts
during training, we noticed an accuracy degradation in the
MLMR approach, when compared with both the MLSR approach
and the single-liquid baseline LSM with equal number of liquid
neurons. The reason for this can be explained as follows. The
classi�ers in each s-LSM are smaller than that of the baseline and
the MLSR approaches. A large classi�er (as in the baseline and
MLSR approach) has more number of parameters and is capable
of �tting in to an unknown function better than a small classi�er
(Krzywinski and Altman, 2015), leading to improved accuracy.
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