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Analysis of Liquid Ensembles for
Enhancing the Performance and
Accuracy of Liquid State Machines

Parami Wijesinghe *, Gopalakrishnan Srinivasan, Priyadarshini Panda and Kaus hik Roy

School of Electrical and Computer Engineering, Purdue Urevsity, West Lafayette, IN, United States

Liquid state machine (LSM), a bio-inspired computing modetonsisting of the input
sparsely connected to a randomly interlinked reservoir (diquid) of spiking neurons
followed by a readout layer, nds utility in a range of appliations varying from robot
control and sequence generation to action, speech, and imag recognition. LSMs
stand out among other Recurrent Neural Network (RNN) arclgttures due to their
simplistic structure and lower training complexity. Pletbra of recent efforts have been
focused toward mimicking certain characteristics of biolgical systems to enhance the
performance of modern arti cial neural networks. It has bea shown that biological
neurons are more likely to be connected to other neurons in # close proximity, and
tend to be disconnected as the neurons are spatially far apar Inspired by this, we
propose a group of locally connected neuron reservoirs, or @ ensemble of liquids
approach, for LSMs. We analyze how the segmentation of a sing large liquid to
create an ensemble of multiple smaller liquids affects thetency and accuracy of an
LSM. In our analysis, we quantify the ability of the propose@&nsemble approach to
provide an improved representation of the input using the Sgaration Property (SP) and
Approximation Property (AP). Our results illustrate thalté ensemble approach enhances
class discrimination (quanti ed as the ratio between the SRand AP), leading to better
accuracy in speech and image recognition tasks, when compaad to a single large liquid.
Furthermore, we obtain performance bene ts in terms of impoved inference time and
reduced memory requirements, due to lowered number of connetions and the freedom
to parallelize the liquid evaluation process.

Keywords: liquid state machines, ensembles, spiking neural n
property, discriminant ratio

etworks, separation property, approximation

1. INTRODUCTION

Over the past few decades, arti cial neural algorithms haseetbped to an extent that they can
perform more human-like functions. Recurrent Neural NetwsifRNNs) and their variants such
as Long Short Term Memory (LSTM) networks have become the-sfatiee-art for processing
spatio-temporal data. The massive RNNs of today, can deserigds in natural languag&ie,
2017, produce handwriting Graves, 2013 and even make phone calls to book appointments
(Yaniv and Yossi, 20)8Such fascinating, human-like capabilities are obtainetha cost of
increased structural and training complexity, and thus siggnit power consumption, storage
requirements, and delay.
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In this work we focus on a particular type of spiking RNN; the accuracy. Either high or low percentage connectivity
the Liquid State Machine (LSM)Maass et al., 2002An LSM  results in accuracy degradation, signaling the existencanof
consists of a set of inputs sparsely connected to a randombptimum connectivity.
and recurrently interlinked pool of spiking neurons calleceth Note, there are two key properties that measure the capacity
“liquid”. The liquid is connected to an output classi er, witi ~ of an LSM:separationand approximation(Maass et al., 2002
can be trained using standard methods such as Spike Timingforementioned basic approaches; changing the number of
Dependent Plasticity (STDP), backpropagation, delta etle neurons and connectivity in the liquid, indeed has an impact
(Kotter, 2012 and using enhanced learning ruleBdy et al., on the above measures. Based on separation and approximation,
2013. LSMs have been used for a variety of applicationsve propose an “ensemble of liquids approach” that can improve
including robot control (Urbain et al., 201)] sequence generation the classi cation accuracy (compared to a single large LS wi
(Panda and Roy, 20),7decoding actual brain activity\(kolic ~ reduced connectivity. The approach is scalable and presdrees t
et al., 200Q action recognition Panda and Srinivasa, 2018 simplicity of the network structure. In our ensemble of ligsi
speech recognition(aass et al., 2002; Verstraeten et al., 200&pproach, we split a large liquid into multiple smaller liquids.
Goodman and Ventura, 2006; Zhang et al., 2015; Wu et al.,;20IBhese resultant liquids can be evaluated in parallel sineg #ne
Zhang and Li, 2019 and image recognitionGrzyb et al., 2009; independent of each other, which leads to performance bene ts.
Wang and Li, 2016; Srinivasan et al., 2018; Zhang and Li)2019Furthermore, for a given percentage connectivity, the numbe

LSMs gained their popularity due to two main reasons. Firstpf connections available in the ensemble approach is less than
the LSM architecture is neuro-inspired. By conserving eyergthat of a single liquid with the same number of neurons. This
via spike-based operation, the brain has evolved to achieveduces the storage requirement of the LSM as well. We used
its prodigious signal-processing capabilities using ordefs @ variant of the Fisher's linear discriminant ratigig¢her, 1936;
magnitude less energy than the state-of-the-art supercoerput Fukunaga and Mantock, 19B@&he ratio between the separation
(Anastassiou et al., 2011; Cruz-Albrecht et al., 20Therefore, and approximation) to quantify how well the ensemble of liquids
with the intention to pave pathways to low power neuromorphicrepresents the spatio-temporal input data. We observed that
computing, much consideration is given to realistic artati increasing the liquid count beyond a certain point reduces
brain modeling {Valdrop, 2012; Neftci et al., 2016; Wijesinghethe accuracy of the LSM. This signals the existence of an
et al., 201R Furthermore, the gene regulation network (GRN) optimum number of liquids, which is highly dependent upon the
of the Bacterium “Escherichia Coli” (E-Coli) was experimalyt  application and the number of neurons in the liquid. We show
assessed and shown to behave similar to an LSM€gs et al., that dividing the liquid provides both accuracy and perforncan
2007. The E. Coli has the capacity for perceptual categorizatiorhene ts for spatial and temporal pattern recognition tasks, on
especially for discrimination between complex temporal paternstandard speech and image data sets.
of chemical inputs. Second, LSMs have simple structure and The “ensemble” concept has been previously use&do (
lower training complexity among other RNNs. The claim iset al., 201p for echo state networks or ESNsSagger, 200,/
that, su ciently large and complex liquids inherently possesswhich are similar in architecture to LSMs but use arti cial
large computational power for real-time computing. Therefore rate-based neurons. Rather than using a single ESN predictor,
it is not necessary to “construct” circuits to achieve sahsal  multiple predictors (component predictors) were used and
computational power. However, such simple structure of LSM¢heir predictions were combined together to obtain the nal
comes with an accuracy trade-o. A plethora of work in the outcome. This approach was proposed to avoid the instability
literature suggests mechanisms for improving the accurdcy of the output of each individual predictor, since the input and
LSMs including training the liquid connectionsg\(ang and Li, internal connection weights are assigned randomly. Thel na
2019 and involving multiple layers of liquids to form deep ensemble outcome was obtained by averaging the predictions
LSMs Kue et al., 2006 Despite the accuracy improvement, theseof the component predictors. The approachYao et al. (2013)
mechanisms found in literature tend to alter the standardgle  is dierent from our work since we design the ensemble of
structure of LSMs. Choosing an LSM for a particular applicatioriquids by removing certain connections from a bigger resar.
and improving its accuracy at the cost of added complexitylFurthermore, only a single classier is used at the output in
nonetheless questions the motivation behind choosing & LS our work in contrast toYao et al. (2013)The authors inMaass
in the rst place. etal. (2002tronducted a small experiment with two time-varying

Without deviating from the inherent simplicity of the LSM signals, which shows that using four liquids is better thamgsi
structure, several basic approaches can be used to improve dssingle liquid in terms of enhancing the separation property.
accuracy. One such fundamental approach is to increase tt#owever, in their experiments, the four liquids in total haeer
number of neurons within the liquid. However, the number of times the number of neurons as the single liquid case. Thezef
connections within the liquid also increases following adpadic it is not obvious whether the improvement in separation is kole
relationship with the number of neurons. Furthermore, thedue to having four “separate” liquids. The increased number
sensitivity of accuracy to the liquid neuron count decreaseof neurons itself might have played a role in enhancing the
with the number of neurons beyond a certain point. In other separation. In contrast, we analyze the e ects of dividingrgda
words, enlarging the liquid introduces scalability chagles, liquid into multiple smaller units, while leaving the total nurer
and the accompanied cost tends to veil the accuracy bene tef neurons the same. Researéhifiivasan et al., 20).8lso shows
The percentage connectivity also plays a role in improvinghat multiple liquids perform better than a single liquid, agher
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number of neurons. The input to liquid connections@inivasan M 2 0, IgVPrRe NeosT, mj 2 M decides which connections
et al. (2018)ywere trained in an unsupervised manner. Also noteexist to obtain th desired sparsiyercentage connectivity
that each liquid was fed with distinct parts of an input, and ben

is di erent from this work Pere POSTD (e Npogg  100% - HereNereand Npost

(Npre Npos
are the number ofPREand POSTneurons, respectively. The

2. MATERIALS AND METHODS dynamic conductance change model was used for synapses.
o ) ) i.e., when a pre-synaptic neuron res, the synaptic conduatanc
2.1. Liquid State Machine (baseline) instantaneously changes according to their strengths #ie t

In this section, we explain the structure and training of t8\l  decays exponentially with a time constariti¢hl and Cook,
used in this work. The conventional structure of an LSM cetssi  2015. Following equation shows the dynamics of a synapse
of an input layer sparsely connected to a randomly interlinkedg,) with an excitatory pre-neuron. e is the decay time
pool of spiking neurons called the liquid. The liquid is then constant. This is similar to the post-synaptic current model in
connected to a classi er which has synaptic weights thateoulnaass et al. (2003)
be learnt using supervised training algorithms for inferenc

dg
2.1.1. Liquid Neurons e D % @
The neurons within the liquid are leaky integrate-and- re
neurons Abbott, 1999 of two types; excitatory and inhibitory
neurons. The number of excitatornf) neurons and inhibitory
(1) neurons were selected according to al4ratio, as
observed in the auditory cortex\(ehr and Zador, 2003 The
membrane potential\() of a neuron increases/decreases as
pre excitatory/inhibitory neuron connected to it spikes that
described by

2.1.3. Output Classi er
The liquid is connected to a classi er which is trained in a
supervised manner. As suggested Nfaass et al. (2002)a
memory-less readout (the readout is not required to retaiy a

emory of previous states) can be used to classify the states
of the liquid. The liquid state in this work is the normalized
spike count of the excitatory neurons{diser et al., 20)7
within a duration of T, when the input is applied. There is
dv a liquid state vectord 2 [0,1]N8, Ng is the number of
o D (EBest V)C(Bexce V)Cd(Bnn V) (1) excitatory neurons) per applied input)( The collection of all

the state vectors were then used to train the classier using

whereEegtis the resting membrane potentialjs the membrane gradient descent error backpropagation algorithRu(melhart
potential decay time constarfeycand Ey,, are the equilibrium et al., 198§ similar to Srinivasan et al. (2018By doing this,
potentials of excitatory and inhibitory synapses, agdand Wwe do discard some temporal information. However, since we do
g are the conductance values of the excitatory and inhibitoryot use “anytime-speech-recognition” (a liquid with a classi
synapses, respectively. As the membrane potential reachesvhich is capable of recognizing a speech input, before theeentir
certain threshold, the neuron generates a spike. The menebratiemporal signal is applied to the liquid) proposediitaass et al.
potential drops to its reset potential upon generating a spike a2004) the above classi cation method is su cient to achieve
shown inFigure 1A, and then enters its refractory peridg,. reasonable accuracy (as per the accuracy values reported in
during which it produces no further spikes. The formulationsother LSM works) for the applications we are considering in
elaborated iDiehl and Cook (2015vere used for modeling the this work.
dynamics of the spiking neurons.

2.2. Ensemble Approach for LSMs

2.1.2. Liquid Connections In this section, we explain our proposed ensemble of liquids
The input is sparsely connected to the liquidn E approach, which improves the scalability of LSMs. The proposed
connections). The percentage input to liquid connectivityapproach is dierent from the ensemble works available
(PNt E) plays an important role in achieving good accuracyin literature on a variety of network types (feed-forward
as will be explained in section 3.4.2. The liquid is composetllly connected spiking and analog neural networks), where
of connections from excitatory to excitatory neuron&! (E), multiple classi ed outputs of independently trained networks
excitatory to inhibitory neuronsi! 1), inhibitory to excitatory are combined together to increase the probability of correct
neurons (! E), and inhibitory to inhibitory neurons ! I).  classication (Jacobs et al., 1991; Shim et al., 0lr6this work,

In our notation, the rst letter indicates the pre-neuron type we analyze the impact of dividing a reservoir, such that all the
(PRB and the second letter denotes the post-neuron type&esultant small reservoirs can potentially be evaluated ialfer
(POST). The selected percentage connectivw( e, P £, for an applied input. As explained in the previous section, the
Pe 1, P g Pnoy) within the liquid are shown inTable 1  typical structure of an LSM has an input, a liquid where neurons
These percentage connectivity values worked the best #re sparsely interlinked, and a readout trained using supedvis
terms of accuracy, for the neuron parameter selections ia thilearning methods Kigure 1B). In our ensemble approach, the
work shown inTable 2 The strengths of all the connections same number of liquid neuronsN\{) is divided to create an
(W 2 [0, 1]Nere NeosT) were selected randomiyiaass et al., Nens Number of smaller liquids, as shown iRigure 2 While
20032 from a uniform distributionU(0, 1) (Toledo-Suérez et al., dividing the liquid, the number of excitatory neuronN&) to
2014; Srinivasan et al., 2018A randomly generated mask inhibitory neurons (\lli)ratioin theith (i D 0,1, ...Neng liquid is
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FIGURE 1 | (A) The dynamics of the membrane potential\() of a spiking neuron. Each spike shown below the graph will anease the membrane potential. WherV
reaches the thresholdViyesh, the neuron will generate a spike and/ will drop to the rest potentialVyest for a tefrac duration of time. This duration is called the
refractory period, and the neuron stays idle within this pésd. Reprinted with the permission fromLiyanagedera et al. (2017)(B) The structure of the liquid state
machine. The input is connected to a reservoir with two type®f neurons; inhibitory and excitatory. The reservoir is tlreconnected to a classi er which is typically
trained using supervised learning methods. The percentageonnectivity between different types ofre and post neurons Pprer post) are as indicated in the gure.

maintained at 4 1. The percentage connectivity is also adjusteé given application, which is then used for all the experiments
to suit the new reduced number of neurong® ) in a liquid.  reported in this work.

This is done by rst creatlng a standard LSM explalned in the Each small liquid has its own liquid state vector, which is
previous section W|th L number of neurons and adjusting the normalized spike count of all the excitatory neurons in
all the percentage connectmty values till we get a readenalkthe respective liquid within a duration of, as explained in
accuracy. Then the input to liquid percentage connectivitythe previous section. All the state vectors produced by each
(PNt E) was exhaustively changed until the accuracy peaks fandividual liquid in the ensemble are concatenated to form
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TABLE 1 | Percentage connectivity within the liquid. can be evaluated by obtaining the average across all the sdmpl
- instances (at,), as explained in the following equation

Type of connectivity Percentage Percentage

connectlvny‘ ('Speech connecthlty .(Image samples

recognition) recognition) 1 .. ..
SRwD —— fixu(tn)  xv(tn)ij ®)

Tl-alpha(%) TI 10(%) MNIST(%) E-MNIST(%) samples, 1 (o< 1< T)
Input-Excitatory 34 23 10 10 where NsamplesiS the number of sample points. The pairwise
Input-Inhibitory 0 0 0 0 separation property§Ry) can be used as a measure of the kernel
Excitatory—Excitatory 40 40 40 40 quality for two given inputs. However, most real life applications
Excitatory—Inhibitory 40 40 40 40 deal with more than two input spike trains. To address this,dine
Inhibitory—Excitatory 50 50 50 50 separation property is proposed as a more suitable quantitative
Inhibitory—Inhibitory 0 0 0 0 measure to evaluate the computational power of a liquid in an

LSM. The linear separation propert$R,) is the rank of the
N m matrix Mg, which contains the continuous time states

TABLE 2 | Spiking neuron parameters of the liquid state machine. Lo . .
| Spiking P a (Xuy (to), ... Xuy, (to)) of the liquid as its columns. The continuous

Parameter name Parameter value time statexy, (to) is the liquid response to the input; (these

inputs are from the training set), sampledtaD to. If the rank
Excitatory weight decay time constant{ge 1ms of the matrix ism, it guarantees that any given assignment of
Inhibitory weight decay time constanttg; 2ms target outputsy; 2 R at timetg can be attained by means of a
Threshold inhibitory,thresy 40mv linear readout /laass et al., 2005The rank ofMs is the degree
Threshold excitatory,threshe 52mv of freedom the linear readout has, when mappiqgto yi. Even
Inhibitory rest potential Vrest,i 60 mv though the rank is< m, it can still be used as a measure of kernel
Excitatory rest potential,vrest,e 65 mV quality of the LSM laass et al., 2005

MS D Xul(to)r ""XUi (to)v "'IXUm (to) (4)

one large state vector per input. Note that the length of the
concatenated state vectors are the same for both the single

liquid case (baseline) and for the ensemble of liquids, esincThe AP of the LSM can also be measured by the aforementioned
the total number of neurons are held constant for a fair gnk concept as shown iiviaass et al. (2005); Roy and Basu
comparison. The concatenated state vector is used to train @016) Instead of using signi cantly di erent examples in the

single readout using gradient descent backpropagation. Thigaining set, now the continuous time stateg(to) of the liquid
division of one large liquid to form an ensemble of liquids

enhances class discrimination associated with LSMs agatalo are measured by feeding jittered versions Lﬁ)f(U) to the

SR, D rank Mg

in the next section. liquid. The rank of the matrixM that hasm such continuous
time statesx j (to), ....x ; (to) sampled atto as its columns, is
. 1 m
2.3. Properties of LSMs evaluated as a measure of the generalization capabilityeof th

Two macroscopic properties of an LSM, namely, Separatiofyuid for unseen inputs. Unliké&R,,, lower rank ofM, suggests
Property (SP) and Approximation Property (AP), can be used tetter generalization.
quantify a liquid's ability to provide an improved projectiofthe Both AP and SP are important in measuring the
input data. With respect to classi cation applications, SP SiVecomputationaI quality of a liquid. For example, very high
a measure of the liquid's ability to separate input instan¢es t quantitative measure for SP and very low measure for AP is
belong to di erent classes. AP, on the other hand, gives a oveas deal. If one liquid has very high SP and a mediocre AP, it islha
of the closeness of the liquid's representation of two inpbtt to decide whether the particular liquid is better than anathe
belong to the same class. liquid with mediocre SP and a very small AP. Therefore, in
Several methods of quantifying the SP and AP as a measufder to compare the quality of di erent liquid con gurations,
of the computational power (kernel quality) of an LSM areg combined measure that involves both SP and AP is required.
suggested iMiaass etal. (2002, 2005wo methods of measuring To address this, we use some insights from Fishers Linear
the SP arepairwise separation propergnd linear separation pjscriminant Analysis (LDA) Fisher, 1936; Fukunaga and
property The pairwise separation property is the distanceantock, 1983; Hourdakis and Trahanias, 2D1RDA is
between two continuous time states of the liquig(¢) andxv(t)),  utilized to nd a linear combination {(.)) of d features that
resulting from two di erent input spike trains (t) and v(t)).  characterizes or separates two or more classgsof objects.
Here the continuous time stategt) are de ned as the vector The linear combination as shown in the equation below can

of output values of linear lters with exponential decay (with he used as a classi er, or as a dimensionality reduction oukth
time constant 3ths Maass et al., 20)at time t. The distance pefore classi cation.

can be calculated by the Euclidean norm betweg(t,) and
xv(tn) at sample point,. The nal pairwise separation property yi D f(x) D Wx; (5)
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FIGURE 2 | The structure of the ensemble approach. The liquid in the stedard LSM is split up to create an ensemble of smaller liquidsThe input is sparsely
connected to all the liquids. The output of all the liquids & concatenated to form one large liquid state vector, and conected to a single readout that is trained using
supervised learning methods.

wherey; is the output vectorY D [yi,...yn] 2 R- "), that matrix” (S) that is described by

corresponds to the set of input features,(X D [X1,...Xn] 2

RY N each feature is a column vector)W 2 R- 9 s the

weight matrix that describes the linear relationshlp,s the $D PUi (i 9T (7)
number of classes, aml is the number of data samples. The iD1

projection from LDA maximizes the separation of instances

from dierent classes, and minimizes the dispersion of dataWhere i is the sample mean vector (centroid) of class

and g is the global sample mean vector. In classical LDA,

from the same class, simultaneously, to achieve maximugss clat . . . L
discrimination. The approximation capability is quanti ed by he optimum weight matrix can be found by maximizing the
' objective function called Fisher's Discriminant Ratio (RpP

tSk:)eeCrrs(tjng(ySN called the “within class scatter matrix” that is (Fukunaga and Mantock, 19Bhat is computed as

FDRD tr(S,'S) 8

Sv D P( )& (6) wheretr(.) is the trace operation. For this work, the capability of
ib1 the liquid to produce a good representation of the input data is
guanti ed by a variant of the above ratio. The FDR is applied on

where P(! ) is the probability of class i, 6 is the sample the states of the liquid. However, when the data dimensional
covariance matrix Rark and Park, 20)8for class!i. The (number of liquid neurons) is large in comparison to the sample
separation capability is given by the “between class scattsize ), the aforementioned scatter matrices tend to become
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singular i and Ye, 2008and the classical LDA cannot be 2.4.1. Data Sets Used for Illustration
applied. Hence, we use a modi ed discriminant rat@R) given The two spatio-temporal (speech) data sets used in this
by the following function: work are:

1. Digit sub-vocabulary of the TI46 speech corpugérman
etal., 199B(TI-10)

TI26-word “alphabet set”; a sub-vocabulary in the TI146 speec
corpus (iberman et al., 199%Tl-alpha)

DRD tr()tr(Sw) * (9)

Note that the trace ofSy measures the closeness of eachz'
liquid state to its corresponding class mean as illustrated
in Figure 3A, and the trace ofS, measures the distance TI-10 consists of utterances of the words “zero” throughntfi
between each class centroid and the global centroid il0 classes) by 16 speakers. There are 1,594 instances in the
multidimensional space as depicted ifrigure 3B High training data set and 2,542 instances in the testing data set
tr(S) suggests high SP (hence better) and smaltés,) Tl-alpha, on the other hand, has utterances of the words “A’

suggests better AP. through “Z” (26 classes). There are 4,142 and 6,628 instance
. in the training and testing data sets, respectively. For tiagial
2.4. Experimental Setup data sets (images), we used the handwritten digits from the

The performance of the ensemble of liquids approach i$INIST (Deng, 201pdata set containing 60, 000 images of digits
compared against a single liquid baseline detailed in sectiog through 9 in the training set and 10, 000 images in the testin
2.1, with the aid of two spatial image recognition applicationsset. In addition, we also created an extended MNIST data set
and two spatio-temporal speech recognition applications. Theéhat contains all the images from the original MNIST data set,
liquid was modeled in BRIANGoodman and Brette, 20)8a  and the same set of images transformed by rotation, shifeng
Python-based spiking neural network simulator, and the sygki noise injection. It has 240, 000 images in the training datasd
activities of the neurons were recorded to calculate theidiq 40,000 images in the testing data set.

state vectors. The state vectors corresponding to the trgini

input instances of each data set were then used to train a sing?e4.2. Input Spike Generation

fully-connected classi cation layer using the stochagtiadient The rststep is converting the images or the analog speectatsg
descent algorithmRobbins and Monro, 1985; Mei et al., 2018 to spike trains to be applied as inputs to the liquid. For spatial
The accuracy of the trained network was calculated on thntgs data (images), there agg number of input spike trains fed in
data sets. to the liquid, with p being the number of pixels in an image.

FIGURE 3 | The graphical representation of the components of the diséminant ratio DR) for a set of two dimensional data points that belongs to thre classes. (A)
tr(Sw) gives a measure of the addition of all the squared distancesom the class means to each data point. This must be lower to &ve better approximation property.
Herel;j denotes the squared distance between theith data point in classj to the class centroid, ; (B) trfSpggives a measure of the addition of the squared distances
between the global mean and each class mean. High value fdrfSpgsignals higher separation property. Herd, denotes the squared distance from the global mean

g to the centroid of classi.
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the number of liquids, at different input distancesﬂfv.

FIGURE 4 | The effect of dividing a large liquid orSPpw, at different distancesdﬂfv between inputs. Two input spike trainsu and v are illustrated at(A) dL”N D 0.2 and
(B) d'urjv D 0.4. (C) The variation of pairwise separation with the distances bateen inputs, at different number of liquidgD) The variation of pairwise separation with

FIGURE 5 | The average rank of state matriMs that indicates the inter-class
separability (in red) and the average rank of the matriMa which is an
indication of the intra-class generalization capabilityn( blue).

The mean ring rate of each spike train is modulated depending
upon the corresponding pixel intensity. Each input image pixel
(ith pixel) is mapped to a Poisson distributed spike train with the
mean ring rate (; for the ith image pixel) proportional to the
corresponding pixel intensityl{) that is speci ed by

) S(:ounti Ii
ri D T / 255 (20)

whereS;ounii is the number of spikes generated by fitteinput
neuron within a time period off . For example, mean ring rate
in this work for a white pixel (pixel intensity D 255) is selected
as 63.75 Hz. For a black pixel (pixel intendityD 0), the mean
ring rate is OHz. Each image is presented to the liquid for a
duration of 300 msD T).

For the speech data, the audio samples available in wave
format were preprocessed based on Lyon's Passive Ear model
(Lyon, 1982 of the human cochlea, using Slaney's MATLAB
auditory toolbox Glaney, 1998 The model was used to convert
each audio sample to temporal variation in the intensity of 39
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FIGURE 6 | The average (over ve trials) discriminant rati®dR) trends with different number of liquids in an ensemble fomto speech recognition tasks;(A) Tl-alpha
dataset, (B) TI-10 dataset, and two image recognition tasks{C) standard MNIST dataset,(D) extended MNIST dataset. The total number of neurons in each esemble
of liquids were kept the same. Note that all theDR trends increase with the number of liquids, and saturates &r a certain point, that depends on the application.

frequency channels. These intensity values at each tinmej stethe pairwise separation property was calculated according to
(Iij) were then normalized and used as the instantaneous rindequation 3. The averageéh, was evaluated over 10 di erent
probability of an input neurori (i D f1, 2, ...,3§. The time step weight initialization trials and the results are shownHRigure 4.

in this work is 0.5ms. As the gure illustrates, theSR,, improves with the distance
d{j’,v between two inputs, and also with the number of liquids in
3. RESULTS the LSM. _ .
For the linear separation property, we applied 400 randomly
3.1. The Kernel Quality Improvement Due generated input signalsi(t) to LSMs with di erent number
to the Ensemble Approach of liquids (Nens D 1,2,4,8,10). The resultant stateg, (to))

In this section, we will explore the e ects of dividing a largeWere used to create the matrids explained in Equation
liquid, by means of standard measures for SP and AP explained# The averageSR, (D rank(Ms) D rs) was evaluated
section 2.3. We involve the same general tasks suggestedhizs among ve dierent sets of inputs and ve dierent weight
etal. (2005); Roy and Basu (20,t8)compare the SP and AP. In initializations (i.e., 25 trials altogether) and the resubre
order to measure the pointwise separation property, we gergtratehalized in Figure 5. As the gure illustrates, theSHi,
100 input spike trainsi(t) and v(t) with di erent distancesd{j‘v increases with the number of liquids. However, the rate
between them. The distance between two input spike trains @f increment of SR, reduces with the increasing number
evaluated according to the methodology explained/iaass etal. Of liquids.
(2005) The two spike trains were rst Itered with a Gaussian ~ For the generalization property, we conducted same above
kernele (=) and then the Euclidean distance between thenfXperiment with a dierent state matrixMa. To create this
were measured;, was selected asBs(Maass et al., 2002 matrix, we involved 400 jittered versions of the input signit),
(u’i (t)) as explained in 2.3. In order to create a jittered version of
jut) e = in)? vt) e = in)zjj u;(t), we shifted the spike times by a small delatytaken from
T (11)  a Gaussian distribution as explainedlifaass et al. (2002The
average rank of the matrii, is shown inFigure 4. A lower

The same 100u(t) and v(t) signals were fed in to LSMs fank ofMa (ra) suggests better approximation of intra-class input
with di erent number of liquids Nens D 1,2,4,8,10), and €xamples. According to the gures increases with the number

djy D
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FIGURE 7 | The average (over ve trials) accuracy (percentage) trendsith different number of liquids in an ensemble, for two spedtrecognition tasks;(A) Tl-alpha
test dataset, (B) TI-10 test dataset, and two image recognition tasks(C) standard MNIST test dataset,(D) extended MNIST test dataset. The total number of
neurons in each ensemble of liquids were kept the same. Notenat all the accuracy trends peak at a certain point, that depeds on the application.

of liquids. This signals the liquid losing its ability to gamalize 3.2. Impact of the Ensemble Approach on

intra-class inputs. Accuracy of Different Applications

We observed that theSRy improves by 3.06 in the 10- ysing the experimental setup explained in the previous section
liquid ensemble approach, when comparing with the single 4, we initially simulated our baseline single liquid LSdtion
liquid baseline. The&SR, improvement is 1.26. For a similar  2.1) for the four data sets. We used 500, 2,000, 1,000, and
set of experiments (foNw: D 135), the authors inRoy 1,000 neurons in total within the liquid for the TI-10, Tl4atha,
and Basu (2016gxplored the kernel quality of an LSM of standard MNIST, and extended MNIST pattern recognition
which the reservoir connections were trained using a stiadt  tasks, respectively. We re ned the percentage connectivity fo
plasticity rule Roy and Basu, 20).7The reported improvement each task as shown ifable 1 The classi er was trained using
in SRw is 1.36 , whereas the improvement i8R, is 2.05 the liquid states corresponding to the training examples, dmed t
when compared with a randomly generated traditional LSMclassi cation accuracy of the trained network was obtairfied
It is noteworthy that when training using structural plastic ~ unseen instances from the test data set. For each applicat®n, w
the inter-class separation capability can be improved, withhen created an ensemble Of|IQUIdSW%hL number of neurons
respect to a traditional liquid with random connections. Witut  in each small liquid. For all the four appTlcatlons we evaldate
involving such complex learning techniques, one can obtaitthe SP and AP for di erent number of liquids in the ensemble
improved separation by simply dividing a liquid as shown in(Ngns D 1,2,4,5,8,10) and quanti ed how good is the input
our work. However, note that such reservoir connectionih#ag  representation of the ensemble of liquids usiD& (explained
methods can simultaneously preserve the ability of the LSNh section 2.3)Figure 6 shows that theDR increases up to a
to approximate intra-class examples, which is not attainableertain number of liquids in the ensemble and then saturates
by the ensemble approach, at higher number of liquids. Afor the four dierent applications we have considered. This
explained in section 2.3, the ability of a liquid to produce #idre  signals that the ensemble of liquids, in principle, gives aebet
representation of an input is a measure of both SP and AP. In theepresentation of the input with increasing number of liquids
next section, we will explore this combined measure of SP @d Auntil a certain point. In order to verify whether this improvesnt
de ned asDRin section 2.3, on real world spatio-temporal datain the DR actually implies an improvement in classi cation
classi cation tasks. accuracy, we evaluated the LSM accuracy for di erent numiber o

Frontiers in Neuroscience | www.frontiersin.org 10 May 2019 | Volume 13 | Article 504



Wijesinghe et al. Ensemble of Liquids

FIGURE 8 | The trends of different measures associated with LSMs, witthe increasing number of liquids(A) Accuracy, (B) Approximation property (AP)(C)
Separation property (SP) andD) Discriminant ratio DR). The LSM is trained for Tl-alpha speech recognition appliti@n. Both AP and SP continuously increases with
the number of liquids. Note that the increment in AP is more ghi cant than that of SP for larger number of liquids.

liquids (NensD 1,2, 4,5, 8, 10) for the four di erent classi cation the cartoon in Figure 9A for a set of two-dimensional data
applications Figure 7 shows that the accuracy indeed improvespoints from two classes, wherein higher SP while maintaining
with the number of liquids until a certain point. Let us denote the same AP results in enhanced class discrimination capabili
this point as the “peak accuracy point” and the correspondingit the same time,Figure 8 indicates that AP also increases
number of liquids for that point as the “optimum number of with the number of liquids, implying that larger number of
liquids” (Nensopt). We noticed that theNengopt is a function of  liquids leads to higher dispersion between projected inpugmfr
the application, and that increasiidensbeyondNensopt actually  the same class. Higher AP for a given SP is not desirable
results in accuracy loss. When comparifigures4 7, it is  since it could potentially lead to overlap among instances
evident that the point at which th®R saturates is the same as belonging to di erent classes as depictedRigure 9B thereby
Nensopt. This explains that dividing a large liquid into multiple degrading the class discrimination capability. Since bokh S
smaller liquids enhances the class discrimination cagghbifi and AP increases, the ratiDR gives a better measure about
the liquid, leading to improved classi cation accuracy. Hoxer, the overall e ect of the proposed ensemble approach on the
note that after theNengopt point, the DR saturates whereas the classi cation accuracy of the LSM rather than the indivitlua
accuracy degrades. THeR does not o er a direct mapping componentsper se As shown inFigure 8 the DR increases
of the accuracy of an LSM. However, it could still be utilizeduntil a certain number of liquids, signaling the dominance
as a measure of identifying the point at which the accuracef the improvement in SP over the degradation in AP as
starts to drop Nensopt). This is the same point at which tHeR  graphically illustrated irFigure 9C In contrast, as the number
stops improving. of liquids is increased beyonNensopt, DR saturates since the
Figure 8plots the variation of the individueDR components; increment in SP is no longer su cient to compensate for the
separation SPtr(S,) and approximation APDtr(Sy) with  degradation in AP as shown iRigure 8 When the dispersion
the number of liquids for the Tl-alpha speech recognition taskbetween classes (due to increment in SP) is not su cient to
Figure 8 shows that SP improves continuously with the numbercompensate for the dispersion occurring for instances within
of liquids. Improved separation suggests larger dispersioorgm the same class (due to AP degradation), there can be overlaps
the centroids of the liquid states corresponding to instanceamong class boundaries as depictedFigure 9D, leading to
from di erent classes, which renders the input representagion accuracy loss as experimentally validatedFigure 7 across
provided by the liquid easier to classify. This is illustraiad di erent applications.
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3.3. Bene ts of the Ensemble Approach

The ensemble of liquids approach creates smaller liquids evher
the dynamics of one network does not aect another. When
evaluating the spike propagation within the liquids, theseltana
liquids can be run independently and in parallel. Since the
evaluation time is a higher order polynomial function of the
number of neurons, computing few smaller liquids in parallel
instead of computing one large liquid is bene cial in terms
of reducing the inference time. Note that the evaluation of a
large liquid can also be parallelized. The liquid dynamicy va
temporally, and for digital simulations, it can be divided io t
multiple time steps. Each evaluated neuron state in the liquid
at one time step is temporally correlated to that of the next
time step. Therefore, the liquid evaluation process cannot be
temporally divided for parallelizing the operation. Furtherrap
since all the neurons are connected to each other (with angive
sparsity), the dynamics of one neuron is dependent upon that
of other neurons connected to it. Therefore, “fully indepentf
simulations are also not possible at the neuron level. Howeve
FIGURE 9 | A cartoon that shows the distribution of two dimensional ded the matrix-vector manipulations involved in each time Smn
points that belong to mo cl_agses under different conditios. (A)Acase.with be parallelized. Simply put, in nding the pre-synaptic currents
increased SP while maintaining the same ARB) A case where the AP is . L .

increased while maintaining the same SP. Note that the classoundaries can of the neurons, the matrix-vector multlpllcatlon between the
get overlapped leading to classi cation errors. Hence, in@ased AP is not spiking activity and the weight matrix must be evaluated as

desirable. (C,D) shows two scenarios where both SP and AP increased from shown below (with respectto excitatory neurons for example)_
the baseline distribution of data points ( gure in the middlg (C) The

improvement in SP is larger than the degradation in ARD) The improvement
in SP is not suf cient to compensate for the AP degradation, lading to 1 ge(ti) D WSti) (12)
overlapped class boundaries.

where 1 g«(t;) is the instantaneous jump of conductance at
time tj (refer to Equation 2),t;) is the spiking activity
In order to graphically view the variation in SP and APvector of N number of neurons in the liquid at timet,

with the number of liquids for the applications considered inand W 2 RN N is the connection matrix that de nes the
this work, we used Principal Component Analysis (PCA) toliquid. Consider dividing the above process in to multiple
plot the high-dimensional liquid states in a low-dimensibna processing cores. The division of the operation in to two
space. Generally, the rst few principal components preservesores using row-wise striped matrix decomposition requitess t
the most variance in a given high-dimensional data setmatrix W to be divided in to two partsKigure 11A). During
Hence, the same object in multi-dimensional space can beach simulation time steptjf, each core evaluates membrane
visualized in low-dimensional space with insigni cant clgms. potentialsSi(tic1) D si(tic1), ...sn=(tic1) and S(tic1) D
To create such a low-dimensional projection of the liquid sy=ci(tic1), .- (tic1) . For the next time step, thesg and
state vectors for dierent input patterns, we reduced theirS must be concatenated and requires communication between
dimension using PCA and plotted the two most signi cant cores. In contrast, a concatenation is not required untié th
Principal Components (PCs) corresponding to the two largesend of the total simulation duration ) in our ensemble
eigenvaluesFigure 10 plots the 800-dimensional liquid state approach Figure 11B. Due to the lack of communication
vectors, projected to the two-dimensional space using theverhead between processors, the ensemble approach is faster
rst two PCs, for 1,000 randomly picked input patterns than a parallelized version of the single liquid baseline agno
from three classes in the MNIST data s€igure 10 clearly Nensnumber of processors. In fact, due to the aforementioned
illustrates why the accuracy improves till tHéengpt point  communication overheads, e cient parallel processing can be
and degrades beyond that as explained below. The singindered even in Graphical processing units (GPWs)Kap and
liquid case shows concentrated (low AP), but overlapped dataan Opstal, 2013 However, in any method of evaluating the
(low SP). This is where the AP is the lowest due to thdiquid dynamics, note that the ensemble approach has less
concentrated data points. As the number of liquids increasesiumber of connections than a single liquid baseline. Thenesf
the classes become clearly separated. Note that the poirtkle ensemble approach has reduced amount of computation
belonging to the same class also moves away from thdeading to lower evaluation time. Di erent studies have smow
respective centroids due to the increased AP. This ultirgateldesigning hardware accelerators for spiking neural network
results in the aforementioned overlapping between the ctassplatforms (Vang et al., 2014, 2017; Du et al., 201In the
for number of liquids larger tharNensopt, Which gives rise to context of reducing the design complexity, above methodsccou
more misclassi cations. potentially benet from the low connection complexity, and
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FIGURE 10 | The distribution of the liquid state vectors, as a projectio to the rst two principal components PC1 and PC2, for different number of liquids. The liquid
state vectors (represented as dots) correspond to three clses in the MNIST image data set. Each class has randomly pickiel, 000 liquid state vectors. Distributions

related to point and E show less overlapping between classes, and the data pointsr@ more concentrated at the class mean points in contrast t
which has signi cant overlapping that caused the accuracy dgradation.

“embarrassingly parallel” naturéigrliny and Nir, 201) of our  with N;‘: amount of neurons in each of them. The number

ensemble approach. of connections available within the liquid for the singlguid
The inference time is the addition of the liquid evaluatiome ~ baseline is N2, whereas the number of connections in the

and the classi er evaluation time. The liquid evaluatiomé was — mylti-liquid case is (Ntot )?Nens D Nt This shows that the

calculated by giving 100 input instances to the LSM modeksolv nymber of connections reduces by afactor\QEswhen dividing
and estimating the average liquid computation time per inputa Jarge liquid intoNgnssmaller liquids, given that the percentage
The classi er evaluation time is signi cantly lower tharettiquid  connectivity stays the sam€igures 12ABillustrate how the
computation time ( 10). Note that the classi er training time memory requirement varies for di erent number of liquids for
is similar in the baseline (single liquid LSM) and the enseamblthe MNIST image recognition and Tl-alpha speech recognition
approach, since there are equal number of neurons in the liquidpplications, respectively. When the optimum accuracy point
and the number of trained weights are the same. for the ensemble approach is considered, we witnessed 87%
Once an LSM is trained, the connections within the liquidreduction in the amount of memory, 55% reduction in inferenc
and the classi er weights must be stored. LSMs with largddisiju  time, and a 7.3% improvement in accuracy simultaneously, for
require more space. In the ensemble approach, the number tfie Tl-alpha speech recognition application. For the MNIST
connections within the liquid are signi cantly lower tharhé  handwritten digit recognition application, we witnessed 78%
single liquid baseline. For example, assume dividing adigtiih ~ reduction in the amount of memory, 72% reduction in the
Niot number of neurons in toNens NumMber of smaller liquids inference time, and 3.9% improvement in classi cation accyra

Frontiers in Neuroscience | www.frontiersin.org 13 May 2019 | Volume 13 | Article 504



Wijesinghe et al. Ensemble of Liquids

FIGURE 11 | (A) The division of matrix-vector multiplication using row-y8e striped matrix decomposition, for the single liquid basiéne LSM. Note that during each
time step, the generatedS; and S, vectors need to be concatenated to form theS vector (represents the spiking activity of the liquid), wblh requires communication
between cores. (B) The “embarrassingly parallel” nature, and the reduced amau of operations in the ensemble approach allows two smallduids to run in parallel as

two independent tasks, until the end of the last simulationite step tp.

FIGURE 12 | The total memory reduction (%), inference time reduction (Pwith respect to the baseline, and accuracy for different maber of liquids in the ensemble.
Two applications were considered;(A) temporal data classi cation problem (Tl-alpha)B) spatial data classi cation problem (MNIST).
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FIGURE 13 | (A) The accuracy of an LSM with a single liquid, measured at diffent number of neurons, for a speech recognition applicatio (TI-alpha).(B) The
average liquid evaluation time of an LSM measured at diffene number of neurons.

3.4. Conventional Methods of Improving number of neurons and then saturates after a certain point.

the Accuracy vs. the Ensemble Approach Increased number of neurons implies increased connections
The simple structure and training of LSMs, come with anWithin the liquid, given that the percentage connectivityyst
accuracy trade-o, when compared with other non-reservoirtheé same. The number of connections within the liquid shows
computing techniques such as LSTM networlgelec et al., @ square relationship ~ NZ; with the number of neurons
2019. Di erent mechanisms have been studied in the literatureNtot, Where is the global percentage connectivity. Due to
such as training the connections in the reservoiXug this, evaluation time of the liquid increases exponentially
et al., 201f using expensive learning rules (for example@s shown inFigure 13B Therefore, when the number of
backpropagation through timellec et al., 20)8and selecting neurons are already high, the accuracy improvement we obtain
complex architectures \/fang and Li, 201§ in order to by further increasing the number of neurons is not worth
improve the accuracy of liquid state machines. However,gheghe resultant performance and storage requirement penalty.
methods will increase the complexity of the LSM resulting inFurthermore, the accuracy saturates around79.2% for the
poor performance with respect to latency, despite the highef!-alpha application (for Nt 800). Note that we have
accuracy. Furthermore, a liquid can be considered as a tsave &S0 adjusted the percentage connectivity at each point in
computational medium. A single liquid with multiple trained the graph, to get the best accuracy for a given number of
readouts can be used for multiple applications(ng etal., 2075  neurons. However, the ensemble approach s D 1000
Above methods such as training the connections within théndNens D 4 gives  83% accuracy, which is larger than the
liquid will make the LSM restricted to one application. In this @ccuracy achievable by increasing the number of neurons in a
section, we will explain two basic methods of improving accyra Single liquid.

while leaving the structural and training simplicity of LSMs

intact, and compare the results with the ensemble approach. . o .
3.4.2. Percentage Connectivity Within the Liquid

The percentage connectivity within the LSM is an important

measure of the spiking activity of a liquid. The spiking
3.4.1. Increasing the Number of Neurons in the Liquid activity of the liquid could show two negative behaviors
As explained inviaass et al. (20033u ciently large and complex which could drastically reduce the accuracy of the network,
liquids possess large computational power. Increased numbeiz. pathological synchrony and over-strati cationNOrton
of neurons in the liquid will result in increased number of and Ventura, 2006 Pathological synchrony occurs when
variables for the classi er. Based on “multiple linear resgien” the neurons get caught in in nite positive feedback loops
methods of predicting a function, increased number of prealict resulting in heavy continuous spiking activity. Over-
variables (in this case the number of neurons), will result irstrati cation can be dened as the opposite extreme of
better prediction Krzywinski and Altman, 2015; Wijesinghe the above. Here, the neurons do not propagate an input
et al., 201y, Therefore, increasing the number of neurons willsignal properly, resulting in reduced spiking activity. Both
improve the prediction accuracy of the LSM. Note howevethe above behaviors result in similar outcomes for input
that using enormous number of predictor variables/neurorilé w instances of di erent classes (hence poor separation between
make the network su er from over ttingFigure 13Ashows how classes), making classi cation tasks hard. We noticed that
the accuracy of an LSM varies with the number of neuronsower connectivity B g) results in over-strati cation
in the reservoir for the Tl-alpha speech recognition task. AgFigure 14A) whereas higher connectivity results in pathological
Figure 13Aillustrates, the accuracy initially increases with thesynchrony Figure 14B).
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FIGURE 14 | lllustration of two negative behaviors of an LSM at differenput to liquid percentage connectivity values. Each rasteplot shows the spiking activity of
the liquid neurons over time. The application is a speech regnition task (Tl-alpha)(A) Over-strati cation at low percentage connectivity.(B) Pathological synchrony
at higher percentage connectivity(C) An instance that shows clear differences between spiking atvity of the liquid neurons in contrast to/A,B).

FIGURE 15 | (A) The accuracy trend with varying input-liquid percentage amectivity, for different number of liquid neurons. The exgriment is done on a single liquid
LSM conducting a speech classi cation task (TI-alpha)(B) The percentage connectivity that gives the best accuracy adlifferent number of neurons.

We changed the percentage connectivity between di erenilustrated in the 3D plot inFigure 16 The color code of
combinations of pre- and post-neurontypegs ( E,I EE 1) the gure gives the accuracy of a particular combination of
till we obtain good accuracy avoiding pathological synclyron connectivity values. Across all LSM con gurations with dient
and over-strati cation Figure 14Q. After that, we re ned the number of liquids, we witnessed that highg: g and higher
input-liquid connectivity for further accuracy improvement Pg g results in accuracy degradation. Sparser connectivitysgive
Figure 15Ashows how the accuracy changes with the percentadeetter results. As the gure illustrates, at sparser coninéyt
connectivity of the input to liquid connections. Liquids values, a single liquid LSM o ers lower accuracy than an LSM
with dierent number of neurons have dierent optimum with Neps liquids (refer to the upper left corner of the 3D
connectivity values as shown iRigure 15B The application plots). The “maximum capacity” of each LSM con guration
is recognizing spoken letters in Tl-alpha speech corpus. Th@or a given number of liquids) is plotted ifrigure 17A The
maximum accuracy achievable by changing the percentagmaximum capacity” is the best accuracy attainable from a
connectivity Pn1 g) for Niot D 1,000 is  79% (refer to the particular liquid con guration, after optimizing the perceage
green colored trend irFigure 15A). This is smaller than that connectivity values (in the selected range). Bgure 17A
achievable ( 83%) by our ensemble approach witky; D 1,000 illustrates, maximum accuracy obtained from the single itiqu
andNegnsD 4. con guration is smaller than that of other con gurations. &/

Furthermore, we simultaneously changed tRe, g and also plotted the average accuracy of a given LSM con guration
Pint £ percentage connectivity values of LSMs with di erentacross all percentage connectivity valuésgyre 178. The
number of liquids, and evaluated the accuracy. F&Ww: g average accuracy to some extent could be thought of as the
values (0.1,0.2,0.4,0.6) and thrBg g values (0.2,0.4,0.6) outcome one would witness in a given LSM con guration for an
were selected for the experiment. The summarized results aagbitrarily selected connectivity value (within the spexd sparse
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FIGURE 16 | The accuracy of LSMs withNens D 1, 2,4, 5, 8, 10 at different percentage connectivity®Rg; g and Py g) values, for the Tl46-alpha classi cation task.

connectivity region of the experiment). The average acguraddowever, forPg g > 0.57, single liquid LSM seems to perform

of the single liquid LSM con guration is lower than that of better. Hence we conclude that at higher degrees of spatisdy,

multiple liquids. ensemble approach performs better than a single liquid baselin
In section 3.3, we explored the benets of the ensemblevith the same number of connections.

approach due to reduced number of connections in the liquid. Apart from the percentage connectivity, di erent connectyvit

A single liquid LSM con guration hadlepnstimes more number  patterns within the liquid were also considered in literature.

of connections as the LSM witlhNens number of liquids as For example, a probabilistic local connectivity within thguid,

explained in section 3.3. In order to view if a single liquidinspired by the connectivity in biological neurons is suggdsn

with sparser connectivity o ers better accuracy than an LSMViaass et al. (2003WWe conducted an experiment with di erent

with Nensnumber of liquids and higher percentage connectivity,sets of parameters (refer to tBeipplementary Materia) for the

we conducted an experiment. In other words, the goal of thgrobabilistic local connectivity model. Our results indieahat,

experiment is to view the accuracy of two LSM con gurationsthe highest accuracy achieved (for the ranges of parameters w

with same number of connections. The dominant component ohave considered) with the probabilistic local connectivitgdel

the number of connections in an LSM is the connections betwee(an LSM with 1,008 neurons arranged in a liquid column 6

the excitatory neurons. Therefore, we varied ¢ g fortwo 6 28, gave a maximum accuracy of 78%, for the Tl-alpha

LSM con gurations Nens D 1 andNeps D 4) and observed the speech recognition application) is lower than that attaindiden

accuracy for the Tl46-alpha applicatidrigure 18illustrates that  our proposed ensemble approach (4 ensembles with 250 neurons

for Pa g < 0.57, the multiple liquid con gurationlens D 4)  in each, resulted in an accuracy of 83%, for the same Tl-alpha

provides better accuracy, suggesting that the ensemble agproapplication). More information on our analysis is included et

gives better results even under same number of connectiorf®upplementary Material

in comparison to the single liquid baseline. For example, the

ensemble approach gives 83% accuracy &z ¢ D 0.4 and 3.5. Limitations of the Ensemble Approach

for the same number of connections, (i.e.,Rat ¢ D 0.1), the In this section, we analyze whether dividing a liquid with any

single liquid LSM con guration gives lower accuracy (76%). number of neurons Nit) would result in similar accuracy
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FIGURE 17 | (A) The maximum accuracy among all the LSM con gurations with diérent Py g and Pg; g (B) The average accuracy across all the LSM
con gurations with differentP;\y g and Pgy .

FIGURE 19 | The accuracy varying with the number of liquids in the ensenié
approach, for different total number of neuronsNiqt). The LSM classi es
speech data in the Tl-alpha dataset.

FIGURE 18 | The accuracy variation of the single liquid LSM baseline and
ensemble approach Nens D 4) at different percentage connectivity values
(Pe1 ). The accuracy of the ensemble approach aPg; g D 0.4 is higher

than the accuracy of the single liquid LSM aPg, g D 0.1. Note that the .
number of connections in both the cases considered are the sme. The of the ensemble approaCh for LSMs. In order to Improve the

accuracy was evaluated on the TI46-alpha classi cation task. accuracy of an LSM, the number of neurons can be increased.
However, beyond a certain point, accuracy does not improve
further. In such a case, the ensemble approach can be utilized t

further increase the accuracy. Such accuracy improvemeats a

Rot attainable by means of other simple methods that preserve
the structural and training simplicity of the standard LSMgchku

as changing the connectivity.

improvements. To this e ect, we created ensembles of liquid
with di erent total number of neurons Kiot). As Figure 19
illustrates, liquids with large number of neurons show clgign

of accuracy improvement when divided into smaller liquids.
However, when the number of neurons is smaller, dividing . L .

the liquid may result in decreased accuracy. For example nog-6- Multiple Liquid-Multiple Readouts

that the accuracy reduces continuously when a liquid witb 25 (MLMR) Approach

neurons is divided. This result is similar to the observatin ~ When moving from the single liquid approach to the ensemble of
Srinivasan et al. (2018Wwhere the authors have shown that theliquids approach, any bene t in terms of classi er training tém
input and liquid subdivision is bene cial for LSMs with large was not observed. This is due to the fact that the number @fltot
number of neurons. Similarly, here the ensemble approach maké&quid neurons is the same, and we are using a single classi er.
sense only for LSMs with large number of neurons in them. Inin this section, we analyze, if including a readout at the efd o
conclusion, we state the following with respect to the appllitgb  each small liquid is bene cial than having a single readoutl
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FIGURE 20 | The structure of the multiple liquid-multiple readout (MLR) approach. There are multiple small liquids, and individliclassi ers at the end of each liquid.
These are de ned as small LSMs or s-LSMs. Final outcome (globautput) is calculated by considering the maximum vote amagall the local classi ed outputs from
the s-LSMs (local outputs).

the liquids. The basic structure of this multiple liquid-ntiple  trained with, and zero knowledge about other clusters. Tfuges
readouts (MLMR) approach is shown Figure 20 an s-LSM may not correctly identify an input that belongs to a
In contrast to our previous approach, this structure coulddi erent cluster, apart from what it was trained with, leading
be viewed as a collection of small LSMs (s-LSMs). Each s-LI&tge accuracy degradation at the global classi er. For example
is trained individually, and the nal classi cation is donby if a rotated image of digit “1” is given as the input, the s-LSM
considering either the maximum outcome, or the majority @ot that was trained with rotated images will correctly recagnihe
among all the local classi ers. During training, we do noewdl  given image. i.e., the output neuror gives the highest outcome
the training data points for each local s-LSM classi er. &&d, we (there are 10 output neurons and they are indexed as neufbn
divide the training space among the ensemble of s-LSMs based tirough neuron 9 as shown inFigure 21).  Other s-LSMs
the following two criteria: may not recognize this input correctly, potentially leading to
another neuron apart from neuronl to give a high value at
the outputs of their corresponding classi ers. When getting th
nal outcome using “maximum output” method, the neuron that
In random training space division (RD) method, we randomlygives the highest value over all the s-LSMs may not be neuton
divide the training data space among the ensemble of s-LSMistead, it could be some di erent neuron from an s-LSM that
and feed them to obtain the corresponding liquid state vestir was not trained with rotated images. To address this issee, w
the output of each liquid. These state vectors were then used tise an “inhibition” criterion to suppress the s-LSMs from giyin
train the local classi ers attached to each s-LSM in the eride  high outputs for cluster types that they are not trained with.
using gradient descent error backpropagation. For example, lfitially we divide the training space into clusters alongtwitteir
there areNensnumber of s-LSMs andlly,in number of examples standard target vectors (vectors of which the length is iguae
in the training set, each s-LSM will be trained w ::” number number of classds. If the input belongs to théth class, then the
of randomly picked training examples. On the other hand, inith element in the vector will be “1” and the other elementsl wil
the clustered input space division (CD) method, we divide theébe “0.” Refer tdmigure 21). Then, we randomly select 10% of the
training instances into certain clusters depending upon rtheitraining instances from each cluster (foreign instances), add
features, (for instance, we have selected “original,” testA them to the training space of all other clusters. The targetorsc
“shifted,” and “noisy” images from the extended MNIST dataseof the foreign instances are forced to have all their eleseqgual
as clusters) and used them to train each readout. Here, &M-L to 1=L (L is the number of classes) and we name this target vector
has speci ¢ knowledge about the cluster of examples that it igs “inhibitory label vector”. This will force each s-LSM caitne

1. Random training space division (RD)
2. Clustered training space division (CD)
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FIGURE 21 | (A) Target vectors that correspond to images in the extended - MIST data set.(B) Examples from the clustered training data space of the exteted
MNIST dataset.(C) The clustered training space division method. Each s-LSM igained with a particular cluster of images, and an additical 10% of the images in
the other clusters (foreign data). The target vectors of thioreign data are modi ed to have each value equal to 0.1.

TABLE 3 | Accuracy of different ensemble approaches. in the considered example in this work follow three di erent
distributions as shown ifrigure 22A The gure elaborates the

Approach (total number of neurons= 1, 000) Accuracy (%) t-Distributed Stochastic Neighbor Embedding (t-SNE)aaten
Single liquid, single readout (baseline) 86.9 and Hinton, 200§ of the high dimensional images that belong to

4 ensembles, single readout (MLSR) 890 the afor_emen_tloned three clusters, for b_etter wsuahzgtm_the_

4 ensembles, 4 readouts, (MLMR) random training space 825 lower dimensional space (2D). Due to this separate distrilmstio
division (RD) examples that belong to the same class but in di erent clusters
4 ensembles, 4 readouts, (MLMR) clustered training 83.1 may not spatially stay t09ether in the higher dimensional spac
space division (CD) For exampleFigure 22Bshows the data points that correspond

to digit “0” and digit “1” in di erent clusters, and neither the
data points of digit “0” nor “1” stay together. Let us consider
the RD method, and how it tries to classify the aforementioned
to be low, when the presented input does not belong to the dlusteligit “0” and digit “1.” If there areNy; amount of training
with which the s-LSM was trained. This method is explainecexamples and classes, the number of examples that belongs to
graphically inFigure 21, by means of an example. classi each classi er sees Mgyj D %";s The Neyi number

We used the handwritten digit recognition application of examples a classier in RD method sees belongN¢as
with the extended MNIST data set, to check the accuracyyumber of clusters and they are distributed all over as shown
performance, and training time of the aforementioned metbod in Figure 22B According to the gure, the two classes are
The training data set was divided into 4 clusters; original I8N not linearly separable. Therefore, the RD method leads to more
images, noisy images, rotated images and shifted imagésl. Tomisclassi cations as elaborated fFgure 22A In contrast, a
number of neurons were 1, 000 and each s-LSM has 250 neuroassi er trained for “shifted” data cluster in CD method t®
The connectivity is set as indicated Table 1 Table 3reports a decision boundary that classi es digit “0” and digit “1” tha
the accuracy of the above explained two training space divisioonlybelonggo “shifted” data cluster. Owing to the proposed
methods (RD and CD) along with the accuracy of the baselinahibition criterion, the classi er trained for “shiftedéxamples
(single liquid with 1,000 neurons). The accuracy of the twdn CD tries to put the data points that belong to other clusteit®in
methods (RD! 82.5% and CO 83.1%) are inferior to that a single category. As tliegure 22B illustrates, the classes: “digit
of the baseline (86.9%). 0, “digit 1,” and “foreign” are more linearly separable by CD

When comparing with RD method, CD gives better accuracynethod than the RD method, and this leads to higher accuracy
for the same number of neurons. The reason for this carin RD method.
be explained as follows. The clusters in the training dataset Selecting more foreign examples would result in the classi er
can have dierent overlapping/non-overlapping distributions. to concentrate more on tting the foreign data into “nhibitg
For instance, three clusters (“noisy,” “shifted,” and ‘at@d”) label vectors,” instead of classifying data in the correspand
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FIGURE 22 | (A) The t-Distributed Stochastic Neighbor Embedding (t-SNE)fcthe high dimensional input data points, in 2D space for beér visualization. The
distribution of data points that belong to three clusters (Noisy,” “Shifted,” and “Rotated”) stay spatially separate. (B) The distribution of data points of digit “1” and
digit “0” that belongs to three clusters.

FIGURE 23 | (A) The graphical representation of the RD method trying to clasfy digit “0” and digit “1” that belong to three clusters ugig a linear classi er. Note that
the digit “0” that belong to the shifted cluster is misclassed as digit “1". (B) The graphical representation of the CD method trying to clasfy digit “0” and digit “1”.
The particular classi er shown has learned to correctly clesify digit “0” and digit “1” that belong to “shifted” cluster Furthermore, it recognizes the data points that
belong to foreign clusters due to the proposed inhibition dterion. The dashed lines show the classi er decision boundades.

cluster. Consider adding ax % of foreign instances per cluster. The memory requirement, inference time, and training time

: : o (Nens L)X % were calculated for two scenarios. Fifdfg: in the baseline was
This would result in addinge, ryory overal percentage of selected such that both the baseline and the RD method have the
extra data that does not belong to the cluster to which thesame accuracy (82.5%). SecdNg in the baseline was selected
classi er must be trained. The training space of the classh@t  g,ch that it matches the accuracy of the CD method (83.1%). In
‘rlnust”be tra|_ned fo_r _“s:lhn:ted” Images _C(_)rls?ts of t_he f°'!°9"'“ each of the above scenarios, the obtained memory requirement
'sets”. (1) shifted digit"0," (2) shifted digit "1,"..., Jhifted digit terence time, and training time values were normalizethwi
9 randomly selected images from (11) “noisy” cluste2)(1 regpect to the baseline. These normalized values for thedeesc
“original” cluster, (13) “rotated” cluster. We selected egeaitage, are shown in a single graph iRigure 24 The CD method is
that will pick approximately equal number of data points from better in terms of memory requirement and inference time, in
each of the aforementioned 13 sets. In our particular exaniple, comparison to the single liquid baseline and RD method. ’We

0 o
make 7.7%0 190:13? of the training space to be attached tOclalculated the total number of MAC (multiply and accumulate)
each of the above “sets;% needs to be selected as 10%. The tota . . o ) L
o (Neme 1% Operations during training to estimate the training time {& a
percentage of the foreign instances are 23% {—ryoc1 function of the number of neurons in a liquid, number of output
per cluster. neurons, and number of training examples). Lowest traininggti

In order to see if there is any bene t in the MLMR approach was achieved in the RD method. The CD method o ers 56%
when achieving a “given” accuracy, we reduddg; in the reduction in memory and 45% reduction in inference time, lwit

baseline to match the accuracy of both the RD and CD methodsespect to the baseline. For a 1, 000 total number of neuroes, th
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compared with other simple mechanisms of improving the LSM
accuracy such as increasing the number of neurons, changing
the percentage connectivity, and utilizing the probabitidtcal
connectivity models. Apart from providing improved accuracy,
the proposed ensemble approach comes with other bene ts
including lower memory requirement and lower inference ém
We have shown that creating an ensemble of liquids leads to
lower inter-connections in comparison to a single liquid witte
same number of neurons. Furthermore, the liquid evaluatian
potentially be parallelized in the ensemble approach due to the
existence of small independent liquids. This results in il
LSM inference time. The accuracy improvement with incregsin
number of liquids in the ensemble becomes less evident wheen t
FIGURE 24 | Normalized total memory requirement, inference time, and total number of neurons is small. In fact, creating an enskemb
training time of the clustered training space division metsd (CD), random of liquids with a small number of neurons will rather redudet
training spfice division methqq (RD), and the single liquiddseline. The results accuracy. Hence the ensemble approach makes sense for LSMs
are under ISO-accuracy conditions. . ..

with large number of neuronsyrinivasan et al., 20).8
Since there is no bene t in terms of training time between a

4 ensemble case with a single classi er (studied in sectian 3 Single-liquid LSM and the proposed ensemble approach (MLSR),

Let us denote this method as multiple liquids, single readaut o investigated the MLMR approach where a classi er is added
tp each small liquid in the ensemble. By dividing the tragnin

MLSR approach) resulted in 78% reduction in memory usag . )
and 72% reduction in inference time along with 2.1% accurac§*@mPle space to train each small LSM, we were able to attain

improvement (hence better than both CD and RD methods undeP!9Ni cant bene ts in terms of training time, when compared
the memory usage and inference time metrics). However, ii/ith MLSR approach. There are multiple classi ers that were
terms of training time, the MLSR approach did not show anyt@ined independently in the MLMR approach, and the nal

improvement, whereas the MLMR showed 88% reduction witUtPut is the maximum vote of all the local classiers. The
respect to the baseline. set of multiple liquid-classi er units are in fact a colleatiof

small LSMs (noted as s-LSMs). Despite the performance bene ts
during training, we noticed an accuracy degradation in the
4. CONCLUSION MLMR approach, when compared with both the MLSR approach
and the single-liquid baseline LSM with equal number of ladjui
We have presented an ensemble approach for Liquid Stateeurons. The reason for this can be explained as follows. The
Machines (LSMs) that enhances separation and approximatioclassi ers in each s-LSM are smaller than that of the baselird
properties, leading to accuracy improvements. The separatidhe MLSR approaches. A large classi er (as in the baseline and
property in LSMs measures the dispersion between projectedLSR approach) has more number of parameters and is capable
liquid states from di erent classes, whereas the approxinmatio of tting in to an unknown function better than a small classr
property indicates the concentration of the liquid statesttha(Krzywinski and Altman, 201); leading to improved accuracy.
belong to the same class. The ratio between SP andD&® (
is a measure of the class discrimination. We witnessed tit t DATA AVAILABILITY
DRincreases when a large liquid is divided into multiple smalle
independent liquids across four speech and image recognitiofe gatasets generated for this study are available on se¢uie
t_asks. We observe_d th(_e emstence_of an optimal number gfo corresponding author.
liquids (Nensopt) until which the DR increases and saturates
thereafter. Owing to the improvement in ti2Rin our proposed
ensemble approach, we noticed an LSM accuracy enhancemézdt THOR CONTRIBUTIONS

with increasing number of liquids. The accuracy peaked at the ) ] ) )
sameNengpt point at which eachDR saturated, for di erent PW performed the simulations. All the authors contributed in

recognition tasks. This validated the existence of an ogtim41€Veloping the concepts, generating experiments, and writing
number of liquids which gives the best accuracy for the LSM, anthe manuscript.
this point is highly dependent upon the application and the total
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