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Warming Trends and Long-Range
Dependent Climate Variability Since
Year 1900: A Bayesian Approach

Eirik Myrvoll-Nilsen, Hege-Beate Fredriksen, Sigrunn H. S grbye and Martin Rypdal *

Department of Mathematics and Statistics, UiT The Arctic Unersity of Norway, Tromsg, Norway

Temporal persistence in unforced climate variability malsedetection of trends in surface
temperature dif cult. Part of the challenge is methodologial since standard techniques
assume a separation of time scales between trend and noisenlthis work we present
a novel Bayesian approach to trend detection under the assuption of long-range
dependent natural variability, and we use estimates of histical forcing to test if the
method correctly discriminates trends from low-frequencynatural variability. As an
application we analyze 2 2 gridded data from the GISS Surface Temperature Analysis.
In the time period from 1900 to 2015 we nd positive trends for99% of the grid points.
For 84% of the grid points we are con dent that the trend is postive, meaning that the
95% credibility interval for the temperature trend contaied only positive values. This
number increased to 89% when we used estimates of historicalorcing to specify the
noise model. For the time period from 1900 to 1985 the correspnding ratios were 42
and 52%. Our ndings demonstrate that positive trends sincel900 are now detectable
locally over most of Earth's surface.

Keywords: trend detection, climate change, long-range depe ndence, fractional Gaussian noise, bayesian methods

1. INTRODUCTION

Since the year 1900, the global mean surface temperature (Eh4SThcreased by almost 1 degree
K due to increasing concentrations of greenhouse gase<iatthosphere. While we are far from
a full understanding of the complex dynamics of Earth's cliejahe cause of the industrial-era
warming is well understood, and the question of detectiorglafbal warming is today of little
relevance. Recent detection studies for global temperatawe imstead focused on identifying the
onset time of the anthropogenic warming, as well as the timemthe warming became statistically
detectablefbram et al., 2015 For local and regional temperatures the situation is direéNot all
of Earth's surface has warmed since 1900, and in some losatie warming is small compared to
the natural variabilitySutton et al. (2015oint out that the question of local detectability is highly
relevant since it provides insight into the strength of thermuang signal relative to the natural
uctuations for which ecosystems are adapted.

From a statistical point of view, temperature trends providex@ue challenge since the climate
naturally uctuates on an extended range of time scales.ahdard set-up is to assume that a
temperature anomaly time serigsT (t) can be approximated by a model on the form:

1T(t) D m(t) C"(t), 1)
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where m(t) D a C bt is a linear trend, and"(t) is a zero-mean stationary Gaussian process with covarianceifumc
stochastic proces3(oom eld, 1993. In the zero-dimensional (Mandelbrot and Ness, 1958
global energy-balance model (EBM),

2
C1TD 1 TdtCF({t)dtC oudB(t), (2) Cov('i,")) D i i jc 1j2H Cii j 1j2H Cji jj2H 4)
' > .
the unforced temperature uctuation$(t) are de ned by the
equationCd' D " dtC oudB(t), which describes an Ornstein-
Uhlenbeck (OU) process (the continuous interpretation of
rst-order auto-regressive (AR1) process) with a charastési

correlation scale D C=:

Several previous studies have modeled climatic data using a
alinear trend modelm(t)) D aC bt, i D 1,:::n, and an
LRD noise term Cohn and Lins, 2005; Koutsoyiannis and
Montanari, 2007; Franzke, 2012; Lavsletten and Rypdal,)2016
. ou Zy t 9= Some of these studies conclude that trends that have been
D c , e dB(s). identi ed as statistically signi cant based on AR1 noise migge
are not found to be signi cant when LRD noise models are
In the equations above; is the average heat capacity of Earthsused. Ideally, the parameters in the noise model (the Hurst
surface, is the feedback parameter, aR(t) is a forcing record. exponentH and the scale parameter) and the parameters
For this model, parameter estimates in temperature time serign the trend model (the intercepat and the slopeb) should
yield values of that are much shorter than those relevant for be estimated simultaneously, but most previous studies have
the warming trend. Hence, there is a separation of time scalegsed non-parametric measures of the second-order statistics
that makes it easy to estimate the characteristics of theenoito determine the Hurst exponent. A standard approach is
process without in uence from the long-term trend. However,to estimate a trend using a least-squares method, and to
the zero-dimensional EBM in Equation (2) does not model thesubsequently estimate a Hurst exponent and a scale parameter
slow thermal response of the deep oceans, and the genem@tizatiof the de-trended signal using a uctuation function overange
to the so-called 2-box EBMJeo roy et al., 201Bgives a noise of time scales. The uctuation function could be a wavelesdxh

model on the form: uctuation function, a variogram, the de-trended uctuain
Z, (DFA) function, or the PSD. The signi cance of a positive
"(t)D Gt 9dB(9), trend can then be tested using Monte-Carlo simulations, or by
1

theoretical estimates based on the speci ed noise model. The
disadvantage of the two-step approach is that it does not fully

take into account the dependence between the estimates of the
trend and the estimates of the noise parameters. Part of the

functions. Models with multiple characteristic time scalee a '€8S0N Why uctuation-based estimatorstéfand - are popular
consistent with observations. Estimated power spectraliiess 'S that likelihood-based methods are computationally cofity

(PSDs) of temperature reconstructions show approximate scaRi0C€SSes with LRD. Computing the likelihood function involves
invariance, i.e.Sf) f , for frequencies corresponding to inversions of the dense_ covariance matfix de ned by the
time scales from months to several hundred thousand yeaf@ementsij D Cov(';,"j) in Equation (4).

(Rypdal and Rypdal, 20).6Analyses of the relation between In this paper we take advantage of recent yvork?wrbyg
reconstructed forcing and reconstructed temperatures,alsag . @- (2019)who incorporate fGn models within a Bayesian
experiments in Earth System Models (ESMs), show approxima{EerarCh'Cal form_ulatlon using the computational framework
scale invariance in the climate response and in unforcedatem Of latent Gaussian models. These models can be analyzed
variability on time scales from months to several hundredrge € C|ently using the methodology Of, integrated nested Laplace
(Rypdal and Rypdal, 2014’ Rypdal et al., aOIae implication apprOXImatlon (lNLA) (_ieveloped |nRUe- et al. (2009)The .
for trend detection is that the noise processes that represetftl-A methodology provides accurate estimates of the posterior
natural variability should be allowed to exhibit long-rang marginal distributions for all of the model parameters which

dependence (LRD). A parsimonious model with LRD is obtained@" then be used to calculate summary statistics like posterior
by using a power-law response functi@(t) D (t= )=2 1 means, variances, credible intervals, and posterior proliasili

With this choice, the noise modéit) is a fractional Gaussian Of _particul_ar _interest is the posterior marginal distripution
noise (fGn). The parameter is identical to the exponent in p(b] y), which is used to calculate the probability Prob{ 0 y]

the PSD and related to the so-called Hurst exponent via th@f @ positive trend given the observed temperature anomglies
relation D 2H 1. The Bayesian modeling approach is described further in section

2. In section 3 we discuss an alternative approach to trend
detection where data of historical forcing is used to diséniate
between forced response and natural variability. The resofit
yD (y1,:::,yn)” D m(t1) C"(ta),:::,m(tn) C"(tn) >, (3) the latteris used to test and validate the methods described
section 2. Results of analyses of gridded temperature data from
wherey is the temperature time series. Using the short-handhe GISS Surface Temperature Analysis are presented in section
notation "; D "(t), the vector” D ("1,:::,"n)” is a 4, and discussed in section 5.

where the response functioB(t) D ce 1 C pe ¥2is a
sum of two exponential functions. The generalization\ebox
models gives response functions that are sum efkponential

We write the discrete-time version of Equation (1) on the
following vector form:
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2. BAYESIAN INFERENCE The main aim of the current analysis is to nd the posterior
marginal distributionsp(b j y), p(H j y)andp( | V).
To analyse the regression model dened by Equation (3)hese distributions are then used to nd summary statistics
for a large number of gridded time series, computationafor the parameters. Especially, signi cance of warming trends
eciency is crucial. The presented Bayesian approach makegre assessed by the probability lnf > 0 according to the
use of the Computational framework of latent Gaussian mOde'%ensityp(bj y) More genera"y’ posterior margina| distributions
These models can be seen as a exible class of three-stgge all components ofx and the hyperparameters in might
Bayesian hierarchical models where the di erent stages §pecihe of interest. Theoretically, such marginals are expresyed
the distribution of an observational vectoy, a Gaussian integrating out all other variables in Equation (6), but ghis
prior for a latent random eld x and priors for random not a computationally feasible approach. Posterior samples from
hyperparameters . The rst stage of the model assumes thatthe posterior marginals can be obtained using Markov chain
the observations are conditionally independent given therta  Monte Carlo approachesGamerman and Lopes, 200¢but
eld and the hyperparameters. The resulting joint conditidna this is computationally slow as such approaches are simulation-
distribution of the observations is then expressed as theyrdd pased. The INLA methodologyR(ie et al., 200Fepresents an

of the marginals: accurate and computationally superior alternative as inestes
. D . . the posterior marginals without any simulations, combining
PYIX ) D PO xe ) Pl ] X, ). numerical approximations with numerical interpolation and

In our case, the observations represent the temperature timfgtedration (seekue et al., 20)7or a recent review. In order
series at some grid point and are assumed to have a Gaussi@h INLA to be computationally fast, the latent el needs to
distribution and the marginals are just univariate Gaussia °€ @ GMRF having a sparse precision ma@iin Equation (5).

distributions. We consider each local time series indepetige 1 NS IS not the case when the noise termis fGn having an
and thus do not include spatial correlation. LRD structure, but the precision matrix of an AR1 process

The second stage of the latent Gaussian model formulatiof$ tridiagonal. In Serbye et al(2019, the fGn process is
speci es that the conditional distribution ok given is a aPProximated using a weighted sum of AR1 processes where

Gaussian random eld. Based on the regression formulation i the Weights and the rst-lag autocorrelation coe cients tfie
Equation (3), the expectation gfis modeled in terms of a linear approximation are optimized such that the covariance function
predictor, D E(y). The latent eldx includes all the random of the approximation matches the exact covariance function of

variables of the predictax D (a,b,")” . By assigning Gaussian [Cn de ned in Equation (4). The latent eldk is extended to
priors to all of these variables will also be Gaussian and this is Include the AR(1) components that make up the approximation.

what separates a latent Gaussian model from general thagge-st This implies th_at full Bayesia_n inference is obtain_ed f_orsﬂe_ms
Bayesian hierarchical models. The conditional distribotof x well. For th? time scales of interest, the apprOX|mat|on_ Iy ver
given hyperparameters is then de ned by: accurate using a sum of only four AR1 processes. This speeds

up the model tting of Equation (3) considerably, see sectibn
xj N(C.QMY (5) forresults.

where denotes the mean vector ai@lis the precision (inverse 3 SING HISTORICAL FORCING TO
covariance) matrix of all the random variables¥nThe matrix §.PEC|FY NOISE MODELS

Q re ects conditional independence properties of the element

I X, giVing z€ros for a_II_ combinations of elementsand; that The alternative approach to trend detection that we present in
are independent conditioned on the other elements.disually, this paper makes use of the historical global data of radiative
X1 "’YSS“mEd to be a Qaussan 'V'?”‘OV random eld (GMRF}orcing F(t) (an updated version of the forcing iHansen et al.,
implying that the precision matri@ will be sparse. . 201). This is done to validate the results of the approach in
The nal stage of the model formulation species priors section 2 which does not account for information about rddia

for the hyperparameters which here include D (H, -). forcing. For the EBM in Equation (2), the forced temperature
Assuming independent priors, the probability density funatie ﬁasponse is:

p( ) D p(H)p( ) where both parameters are assigned penalize
complexity priors Gimpson et al., 20).7 This is a recently 1 Zy ~ ou Zy ~
developed class of priors which introduces a framework to 1 T(t) D C e (0 9% F(gdsC < e (0 9% dB(s.
compute priors for hyperparameters based on speci c principles. ! 1

For scaling parameters such as the PC prior can be computed Expressed as in (1) we get thigt) is an OU model with
to equal the exponential distribution. The PC prior for the Htir  characteristic correlation lengthand,

exponent is computed numerically as explainedSiarbye and 7

Rue (2018)Using Bayes theorem, the posterior joint distribution 17t t 9=

of the latent eld and the hyperparameters is expressed as: m(t) D Cc e F(9ds

is a convolution of the exponential kerna & with the

¥
p( . xjy) ! plyi]x, )p(xj Jp(H)P( ). (6) histori ,
istorical forcing.

iD1

Frontiers in Earth Science | www.frontiersin.org 3 August 2019 | Volume 7 | Article 214


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Myrvoll-Nilsen et al. Trends and Long-Range Dependent Climate Variability

Rypdal and Rypdal (2014roposed an LRD modi cation of The two methods presented do give quite similar results
this model in discrete time wheré in Equation (3) is an fGn for the parameterd, -, and H, indicating that the method
process with Hurst exponei, variance 2, and mean function: described in section 2 produces reasonable estimates obike n

parameters. Howeveigure 3shows that the root mean square

Xi ,
mt)D ¢ (G 9" F2RCHY, iDL::n (7 orondenedby
D1 S 5
s | b @n(t)?
The parameteiFy is introduced to make sure that the forcing RMSED Bt TR (8)
recordsF(t;) have the correct mean as this a relative measure, n

while ¢ is an additional scaling parameter. Myrvoll-Nilsen et al.
(submitted) extend the methodology described in sectioro 2 t Wherer(t;) is the posterior marginal mean aii(t;), is generally
analyse models where the fGn process has mean de ned Kjgher when a linear trend is used. Hence, the noise processes
Equation (7). This approach is more computationally demandindleed to account for more variability in the models described
as it introduces the additional hyperparametegsand Fp, such in section 2 than in the models described in section 3. This
that D (H, -, ,Fo). Here,Fp is assigned a vague Gaussiarf €ct can also be seen iRigure 4, which summarizes the main
prior, while the other hyperparameters are assigned penalizedings of this work, but the e ect s very subti€igures 4A,C.E
complexity priors. show the posterior probability of a positive linear trend given
Figure 1shows surface temperature anomalies from two gridhe observed temperature time series for each grid point
points, one located around the city of Moscow (55N, 37E), an#sing the method described in section 2, aRjures 4B,D,F
one location in the tropical Paci ¢ ocean (33S, 120W). Thaeit Show the same numbers obtained using the method described
blue lines show the estimated linear trema(t) D a C bt In section 3.Figures 4A,B show results for the years 1900
using the methods described in section 2, and the solid black950.Figures 4C,Dshow results for the years 1900-1985, and
curves are the estimated forced responses in Equation (ijgUs Figures 4E,Fshow results for the time period 1900-2015. Using
historical forcing implies that we are imposing a global wargni  data up to the year 1950 we nd Prab[> 0 j y] > 0.95 for
signal, and hence estimates of increasing functimfg) can 3571 and 4,606 out of the 11,997 analyzed grid points, for the
not be considered as detection of warming trends. Howevefwo methods, respectively. These numbers increase to 5,140 an
our purpose is not to obtain estimates of{t;), but rather to 6,223 is the time period extends to year 1985. And to 10,121 and

estimate the parameters in the noise tefmwhen the forced 10,683 when the analysis includes all years from 1900 to 2015.
response is modeled more realistically than a linear fumctio Figure 4shows that there are large areas in the oceans where the
Hence, our second method for trend detection is to use a lineaS€a-surface temperature warming signal has become defectab
modelm(t) D a C bt together with a noise model, where over the last 30 years.

the parameters - and H are xed and equal to the posterior  Fitting the model in Equation (3) where the linear trend and
marginal mean values obtained from the model wheng;) is the parameters of the fGn model are estimated simultaneously,

given by Equation (7). required on average 2.7 s per time series. This gives a total
elapsed computation time of 9 h for all 11,997 grid points.
4. RESULTS Using the approach described in section 3, we rst t an fGn

process where the mean is speci ed by Equation (7). The average

In this section we present results for 2 2 gridded data from "un time to t this model to a single time series was almost 8
the GISS Surface Temperature Analysis. Annual data is us&d 9iving a total run time of 25.9 h. The second step of the
and parameter estimates are given for those time series thatethod in section 3 ts the linear trend combined with the
have no more than 5% missing values. We have used the ten noise term using xed parameters. Fitting of this model
di erent methods described in sections 2 and 3, respectively@quired on average 1.5 s for individual time series, giving
Figure 2 shows maps of estimates for the trend parameteFOta| elapsed computation time of5 h for all grid points. The

b, and the noise parameters: and H for the time period main reason for the increased computation time of the approach
1900-2015. The presented estimates are the posterior medigscribed in section 3 compared with the method in section 2
obtained from the estimated posterior marginal distributio 1S the increased number of hyperparameters. Also, tting of
The method described in section 2 is used to obtain the estima the model including radiative forcing required extensiotts

in Figures 2A,C,Eand the method described in section 3 is useXisting software, see Myrvoll-Nilsen et al. (submitted) for
to obtain the estimates ifigures 2B,D,F It is well-known that further details.

the Hurst exponents are higher for sea-surface temperathess t

for land temperaturesHraedrich and Blender, 2003; Monetti 5, DISCUSSION AND CONCLUSIONS

et al., 2003; Fredriksen and Rypdal, 20&hd this is con rmed

in this study. We also observe stronger warming trends in th&he main contribution of this paper is to present a
Arctic compared with the rest of Earth's surface, consisteith ~ computationally e cient Bayesian method for trend-deteatio
polar ampli cation. Of the 11,997 grid points that are analyzedunder the assumption of LRD noise, and to apply the method
11,883 and 11,906 had positive estimates for the trend pasameto detection of global warming in gridded temperature data.
b for the two methods, respectively. By considering two dierent methods, where the second
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A Moscow (55N, 37E) B Pacific Ocean (33S, 120W)

Temperature (C)
1
|
Temperature (C)
1
|

1900 1940 1980 2020 1900 1940 1980 2020
Year Year
FIGURE 1 | (A) Shows surface temperature anomalies for a grid point locattaround the city of Moscow (55N, 37E). The dotted blue line stws the estimated linear

trend m(t) D a C bt estimated using the method described in section 2, and the shd black curve is the estimated forced responses in Equatio(7).(B) As in (A), but
for a location in the tropical Paci c ocean (33S, 120W). For bth panels the black vertical line show the 95% credible intemls at year 2015.

003 -0.02 -001 000 001 002 003 ~0.03 002 -001 0.00 001 002 003
b (Clyr) b (Cfyr)

0.0 0.2 0.4 0.6 0.8 1.0 12 0.0 0.2 0.4 0.6 0.8 1.0 1.2

FIGURE 2 | Shows maps of estimates for the trend parameteb, and the noise parameters » and H for the time period 1900-2015. The presented estimates arehe
posterior means obtained from the estimated posterior maripal distributions.(A) Estimates ofb using the methods described in section 2.(B) Estimates ofb using
the methods described in section 3.(C) Estimates ofH using the methods described in section 2.(D) Estimates ofH using the methods described in section 3.(E)
Estimates of » using the methods described in section 2(F) Estimates of » using the methods described in section 3.
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FIGURE 3 | The root mean square error (RMSE) as de ned in Equation (8), rasuring a standardized difference between the observed teperature signal and the
trend model. (A) The RMSE for the model de ned in section 2(B) The RSME for the model de ned in section 3.

FIGURE 4 | The posterior probability of a positive linear trend giverne observed temperature time series for each grid poin{(A) For the time period 1900-1950 using
the method described in section 2.(B) For the time period 1900-1950 using the method described in sction 3. (C) For the time period 1900-1985 using the method
described in section 2.(D) For the time period 1900-1985 using the method described in sction 3. (E) For the time period 1900-2015 using the method described in
section 2. (F) For the time period 1900-2015 using the method described in sction 3.

uses historical data for global radiative forcing, we \atid produce biased estimates of and H, which again a ect the
that the inaccuracy of a linear trend model does not a ecttrend detection.

the speci cation of the trend model to such a degree that it The results presented in this paper imply that even by the
signi cantly a ects the trend-detection results. Hence, exsid  most conservative estimates, more than 84% of the analyicbd g
a situation where the presence of non-linear temperaturedsen points show signi cant warming at the 0.05-level. This raigo
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higher than the 80% ratio thatgvsletten and Rypdal (2016) DATA AVAILABILITY

obtained after making a model selection between AR1 and fGn

for each grid point, and much higher than what they obtain for Software for the INLA methodology is availabléatNLA.org

a pure fGn model. Our results also show a striking di erence foffor the programming environmentR. INLA allows for fast

the time period 19002015 compared to 1900-1985, and cleafdgyesian inference for latent Gaussian models such as the

demonstrate that even |oca||y, the Warming Signa] has emﬂgrg one described in section 2. However, some modi cations

from the noise over the last 30 years. are required in order to ensure e ciency. First, the latent
The limitations of the approach presented here is that noiseeld is of non-standard form since the mean vector and

models are restricted to the class of fGns. Whereas LRD moddlgvariance matrix of the latent Gaussian eld share the same

are highly accurate on decadal time scales in GMST, locBRrameterH, and thus requires separate speci cation. Second,

temperatures exhibit modes of internal variability that amet ~ due to the LRD assumption, the precision matrix, de ned

well-approximated by scale invariance. The most prominen@s the inverse covariance matrix, is dense and therefore

example being the El Nifio Souther Oscillation (ENSO). Weinsuited for the computationally e cient algorithms that INA

therefore believe that future work on trend detection infaee  applies. In order to retain sparsity we have to introduce

temperature data should be based on more exible model&n approximation such as that introduced iysrbye et al.

with more free parameters. The introduction of more exible (2019) The model with these modi cations are available in

models must be weighed against the risk of statistical dtisy ~ the R-packageINLA.climate  which can be downloaded

for the relatively short instrumental temperature recordn A from the GitHub repositoryeirikmn/INLA.climate . The

alternative approach is to characterize internal variapiits temperature data analyzed is downloaded from https://data.

the uctuations around ensemble means in historical runsgiss.nasa.gov/gistemp/, and the forcing data from http:Aww

in ESMs. Using randomization of phases one can then rugolumbia.edu/~mhs119/Forcings/.

Monte-Carlo simulations without specifying parametric models

However, since spatial patterns of internal variability varyAUTHOR CONTRIBUTIONS

between models it is dicult to ensure that the unforced

uctuations in a particular grid point is a good representation EM-N, SS, H-BF, and MR designed the study. EM-N carried out

of the unforced uctuations of this grid point in the real the analyses. H-BF made the gures. MR, SS, and EM-N wrote

climate system. the paper with input from all authors.
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