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Department of Mathematics and Statistics, UiT The Arctic University of Norway, Tromsø, Norway

Temporal persistence in unforced climate variability makes detection of trends in surface
temperature dif�cult. Part of the challenge is methodological since standard techniques
assume a separation of time scales between trend and noise. In this work we present
a novel Bayesian approach to trend detection under the assumption of long-range
dependent natural variability, and we use estimates of historical forcing to test if the
method correctly discriminates trends from low-frequencynatural variability. As an
application we analyze 2� � 2� gridded data from the GISS Surface Temperature Analysis.
In the time period from 1900 to 2015 we �nd positive trends for99% of the grid points.
For 84% of the grid points we are con�dent that the trend is positive, meaning that the
95% credibility interval for the temperature trend contained only positive values. This
number increased to 89% when we used estimates of historicalforcing to specify the
noise model. For the time period from 1900 to 1985 the corresponding ratios were 42
and 52%. Our �ndings demonstrate that positive trends since1900 are now detectable
locally over most of Earth's surface.

Keywords: trend detection, climate change, long-range depe ndence, fractional Gaussian noise, bayesian methods

1. INTRODUCTION

Since the year 1900, the global mean surface temperature (GMST) has increased by almost 1 degree
K due to increasing concentrations of greenhouse gases in the atmosphere. While we are far from
a full understanding of the complex dynamics of Earth's climate, the cause of the industrial-era
warming is well understood, and the question of detection ofglobal warming is today of little
relevance. Recent detection studies for global temperature have instead focused on identifying the
onset time of the anthropogenic warming, as well as the time when the warming became statistically
detectable (Abram et al., 2016). For local and regional temperatures the situation is di�erent. Not all
of Earth's surface has warmed since 1900, and in some locations the warming is small compared to
the natural variability.Sutton et al. (2015)point out that the question of local detectability is highly
relevant since it provides insight into the strength of the warming signal relative to the natural
�uctuations for which ecosystems are adapted.

From a statistical point of view, temperature trends provide a unique challenge since the climate
naturally �uctuates on an extended range of time scales. A standard set-up is to assume that a
temperature anomaly time series1 T(t) can be approximated by a model on the form:

1 T(t) D m(t) C " (t), (1)
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where m(t) D a C bt is a linear trend, and" (t) is a
stochastic process (Bloom�eld, 1992). In the zero-dimensional
global energy-balance model (EBM),

C1 T D � �1 Tdt C F(t)dt C � OUdB(t), (2)

the unforced temperature �uctuations" (t) are de�ned by the
equationCd" D � �" dtC� OUdB(t), which describes an Ornstein-
Uhlenbeck (OU) process (the continuous interpretation of a
�rst-order auto-regressive (AR1) process) with a characteristic
correlation scale� D C=� :

" (t) D
� OU

C

Z t

�1
e� (t� s)=� dB(s).

In the equations above,C is the average heat capacity of Earth's
surface,� is the feedback parameter, andF(t) is a forcing record.
For this model, parameter estimates in temperature time series
yield values of� that are much shorter than those relevant for
the warming trend. Hence, there is a separation of time scales
that makes it easy to estimate the characteristics of the noise
process without in�uence from the long-term trend. However,
the zero-dimensional EBM in Equation (2) does not model the
slow thermal response of the deep oceans, and the generalization
to the so-called 2-box EBM (Geo�roy et al., 2013) gives a noise
model on the form:

" (t) D
Z t

�1
G(t � s)dB(s),

where the response functionG(t) D c1e� t=�1 C c2e� t=�2 is a
sum of two exponential functions. The generalization toN-box
models gives response functions that are sums ofN exponential
functions. Models with multiple characteristic time scales are
consistent with observations. Estimated power spectral densities
(PSDs) of temperature reconstructions show approximate scale
invariance, i.e.,S(f ) � f � � , for frequencies corresponding to
time scales from months to several hundred thousand years
(Rypdal and Rypdal, 2016). Analyses of the relation between
reconstructed forcing and reconstructed temperatures, as well as
experiments in Earth System Models (ESMs), show approximate
scale invariance in the climate response and in unforced climate
variability on time scales from months to several hundred years
(Rypdal and Rypdal, 2014; Rypdal et al., 2018). The implication
for trend detection is that the noise processes that represent
natural variability should be allowed to exhibit long-range
dependence (LRD). A parsimonious model with LRD is obtained
by using a power-law response functionG(t) D (t=� )�= 2� 1.
With this choice, the noise model" (t) is a fractional Gaussian
noise (fGn). The parameter� is identical to the exponent in
the PSD and related to the so-called Hurst exponent via the
relation� D 2H � 1.

We write the discrete-time version of Equation (1) on the
following vector form:

y D (y1, : : : ,yn)> D
�
m(t1) C " (t1), : : : ,m(tn) C " (tn)

� > , (3)

where y is the temperature time series. Using the short-hand
notation " i D "(ti), the vector " D ("1, : : : , "n)> is a

zero-mean stationary Gaussian process with covariance function
(Mandelbrot and Ness, 1968):

Cov(" i , " j) D
� 2

"

2

�
ji � j C 1j2H C j i � j � 1j2H C j i � jj2H �

. (4)

Several previous studies have modeled climatic data using a
linear trend modelm(ti) D a C bti , i D 1,: : : n, and an
LRD noise term (Cohn and Lins, 2005; Koutsoyiannis and
Montanari, 2007; Franzke, 2012; Løvsletten and Rypdal, 2016).
Some of these studies conclude that trends that have been
identi�ed as statistically signi�cant based on AR1 noise models,
are not found to be signi�cant when LRD noise models are
used. Ideally, the parameters in the noise model (the Hurst
exponentH and the scale parameter� " ) and the parameters
in the trend model (the intercepta and the slopeb) should
be estimated simultaneously, but most previous studies have
used non-parametric measures of the second-order statistics
to determine the Hurst exponent. A standard approach is
to estimate a trend using a least-squares method, and to
subsequently estimate a Hurst exponent and a scale parameter
of the de-trended signal using a �uctuation function over a range
of time scales. The �uctuation function could be a wavelet-based
�uctuation function, a variogram, the de-trended �uctuation
(DFA) function, or the PSD. The signi�cance of a positive
trend can then be tested using Monte-Carlo simulations, or by
theoretical estimates based on the speci�ed noise model. The
disadvantage of the two-step approach is that it does not fully
take into account the dependence between the estimates of the
trend and the estimates of the noise parameters. Part of the
reason why �uctuation-based estimators ofH and� " are popular
is that likelihood-based methods are computationally costlyfor
processes with LRD. Computing the likelihood function involves
inversions of the dense covariance matrix6 de�ned by the
elements6 ij D Cov(" i , " j) in Equation (4).

In this paper we take advantage of recent work bySørbye
et al. (2019)who incorporate fGn models within a Bayesian
hierarchical formulation using the computational framework
of latent Gaussian models. These models can be analyzed
e�ciently using the methodology of integrated nested Laplace
approximation (INLA) developed inRue et al. (2009). The
INLA methodology provides accurate estimates of the posterior
marginal distributions for all of the model parameters which
can then be used to calculate summary statistics like posterior
means, variances, credible intervals, and posterior probabilities.
Of particular interest is the posterior marginal distribution
p(b j y), which is used to calculate the probability Prob[b > 0 j y]
of a positive trend given the observed temperature anomaliesy.
The Bayesian modeling approach is described further in section
2. In section 3 we discuss an alternative approach to trend
detection where data of historical forcing is used to discriminate
between forced response and natural variability. The results of
the latter is used to test and validate the methods describedin
section 2. Results of analyses of gridded temperature data from
the GISS Surface Temperature Analysis are presented in section
4, and discussed in section 5.
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2. BAYESIAN INFERENCE

To analyse the regression model de�ned by Equation (3)
for a large number of gridded time series, computational
e�ciency is crucial. The presented Bayesian approach makes
use of the computational framework of latent Gaussian models.
These models can be seen as a �exible class of three-stage
Bayesian hierarchical models where the di�erent stages specify
the distribution of an observational vectory, a Gaussian
prior for a latent random �eld x and priors for random
hyperparameters� . The �rst stage of the model assumes that
the observations are conditionally independent given the latent
�eld and the hyperparameters. The resulting joint conditional
distribution of the observations is then expressed as the product
of the marginals:

p(y j x, � ) D p(y1 j x1, � ) � � � p(yn j xn, � ).

In our case, the observations represent the temperature time
series at some grid point and are assumed to have a Gaussian
distribution and the marginals are just univariate Gaussian
distributions. We consider each local time series independently
and thus do not include spatial correlation.

The second stage of the latent Gaussian model formulation
speci�es that the conditional distribution ofx given � is a
Gaussian random �eld. Based on the regression formulation in
Equation (3), the expectation ofy is modeled in terms of a linear
predictor, � D E(y). The latent �eldx includes all the random
variables of the predictorx D (a,b, " )> . By assigning Gaussian
priors to all of these variables,x will also be Gaussian and this is
what separates a latent Gaussian model from general three-stage
Bayesian hierarchical models. The conditional distribution of x
given hyperparameters is then de�ned by:

x j � � N (� ,Q� 1) (5)

where� denotes the mean vector andQ is the precision (inverse
covariance) matrix of all the random variables inx. The matrix
Q re�ects conditional independence properties of the elements
in x, giving zeros for all combinations of elementsxi andxj that
are independent conditioned on the other elements ofx. Usually,
x is assumed to be a Gaussian Markov random �eld (GMRF)
implying that the precision matrixQ will be sparse.

The �nal stage of the model formulation speci�es priors
for the hyperparameters which here include� D (H, � " ).
Assuming independent priors, the probability density function is
p(� ) D p(H)p(� " ) where both parameters are assigned penalized
complexity priors (Simpson et al., 2017). This is a recently
developed class of priors which introduces a framework to
compute priors for hyperparameters based on speci�c principles.
For scaling parameters such as� " , the PC prior can be computed
to equal the exponential distribution. The PC prior for the Hurst
exponent is computed numerically as explained inSørbye and
Rue (2018). Using Bayes theorem, the posterior joint distribution
of the latent �eld and the hyperparameters is expressed as:

p(� ,x j y) /
nY

iD1

p(yi j xi , � )p(x j � )p(H)p(� � ). (6)

The main aim of the current analysis is to �nd the posterior
marginal distributionsp(b j y), p(H j y) and p(� � j y).
These distributions are then used to �nd summary statistics
for the parameters. Especially, signi�cance of warming trends
are assessed by the probability ofb > 0 according to the
densityp(b j y). More generally, posterior marginal distributions
for all components ofx and the hyperparameters in� might
be of interest. Theoretically, such marginals are expressedby
integrating out all other variables in Equation (6), but this is
not a computationally feasible approach. Posterior samples from
the posterior marginals can be obtained using Markov chain
Monte Carlo approaches (Gamerman and Lopes, 2006), but
this is computationally slow as such approaches are simulation-
based. The INLA methodology (Rue et al., 2009) represents an
accurate and computationally superior alternative as it estimates
the posterior marginals without any simulations, combining
numerical approximations with numerical interpolation and
integration (seeRue et al., 2017) for a recent review. In order
for INLA to be computationally fast, the latent �eldx needs to
be a GMRF having a sparse precision matrixQ in Equation (5).
This is not the case when the noise term� is fGn having an
LRD structure, but the precision matrix of an AR1 process
is tridiagonal. In Sørbye et al.(2019), the fGn process is
approximated using a weighted sum of AR1 processes where
the weights and the �rst-lag autocorrelation coe�cients ofthe
approximation are optimized such that the covariance function
of the approximation matches the exact covariance function of
fGn de�ned in Equation (4). The latent �eldx is extended to
include the AR(1) components that make up the approximation.
This implies that full Bayesian inference is obtained for these as
well. For the time scales of interest, the approximation is very
accurate using a sum of only four AR1 processes. This speeds
up the model �tting of Equation (3) considerably, see section4
for results.

3. USING HISTORICAL FORCING TO
SPECIFY NOISE MODELS

The alternative approach to trend detection that we present in
this paper makes use of the historical global data of radiative
forcing F(t) (an updated version of the forcing inHansen et al.,
2011). This is done to validate the results of the approach in
section 2 which does not account for information about radiative
forcing. For the EBM in Equation (2), the forced temperature
response is:

1 T(t) D
1
C

Z t

�1
e� (t� s)=� F(s)dsC

� OU

C

Z t

�1
e� (t� s)=� dB(s).

Expressed as in (1) we get that" (t) is an OU model with
characteristic correlation length� and,

m(t) D
1
C

Z t

�1
e� (t� s)=� F(s)ds

is a convolution of the exponential kernele� t=� with the
historical forcing.
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Rypdal and Rypdal (2014)proposed an LRD modi�cation of
this model in discrete time where" in Equation (3) is an fGn
process with Hurst exponentH, variance� 2

� , and mean function:

m(ti) D � f

tiX

sD�1

(ti � s)H� 3=2�
F0 C F(s)

�
, i D 1,: : : ,n. (7)

The parameterF0 is introduced to make sure that the forcing
recordsF(ti) have the correct mean as this a relative measure,
while � f is an additional scaling parameter. Myrvoll-Nilsen et al.
(submitted) extend the methodology described in section 2 to
analyse models where the fGn process has mean de�ned by
Equation (7). This approach is more computationally demanding
as it introduces the additional hyperparameters� f and F0, such
that � D (H, � " , � f ,F0). Here,F0 is assigned a vague Gaussian
prior, while the other hyperparameters are assigned penalized
complexity priors.

Figure 1shows surface temperature anomalies from two grid
points, one located around the city of Moscow (55N, 37E), and
one location in the tropical Paci�c ocean (33S, 120W). The dotted
blue lines show the estimated linear trendm(ti) D a C bti
using the methods described in section 2, and the solid black
curves are the estimated forced responses in Equation (7). Using
historical forcing implies that we are imposing a global warming
signal, and hence estimates of increasing functionsm(ti) can
not be considered as detection of warming trends. However,
our purpose is not to obtain estimates ofm(ti), but rather to
estimate the parameters in the noise term" when the forced
response is modeled more realistically than a linear function.
Hence, our second method for trend detection is to use a linear
model m(ti) D a C bti together with a noise model" , where
the parameters� " and H are �xed and equal to the posterior
marginal mean values obtained from the model wherem(ti) is
given by Equation (7).

4. RESULTS

In this section we present results for 2� � 2� gridded data from
the GISS Surface Temperature Analysis. Annual data is used
and parameter estimates are given for those time series that
have no more than 5% missing values. We have used the two
di�erent methods described in sections 2 and 3, respectively.
Figure 2 shows maps of estimates for the trend parameter
b, and the noise parameters� " and H for the time period
1900–2015. The presented estimates are the posterior means
obtained from the estimated posterior marginal distributions.
The method described in section 2 is used to obtain the estimates
in Figures 2A,C,E, and the method described in section 3 is used
to obtain the estimates inFigures 2B,D,F. It is well-known that
the Hurst exponents are higher for sea-surface temperatures than
for land temperatures (Fraedrich and Blender, 2003; Monetti
et al., 2003; Fredriksen and Rypdal, 2016), and this is con�rmed
in this study. We also observe stronger warming trends in the
Arctic compared with the rest of Earth's surface, consistentwith
polar ampli�cation. Of the 11,997 grid points that are analyzed,
11,883 and 11,906 had positive estimates for the trend parameter
b for the two methods, respectively.

The two methods presented do give quite similar results
for the parametersb, � " , and H, indicating that the method
described in section 2 produces reasonable estimates of the noise
parameters. However,Figure 3shows that the root mean square
error, de�ned by:

RMSED

s P n
iD1(yi � Om(ti))2

n
, (8)

where Om(ti) is the posterior marginal mean ofm(ti), is generally
higher when a linear trend is used. Hence, the noise processes
need to account for more variability in the models described
in section 2 than in the models described in section 3. This
e�ect can also be seen inFigure 4, which summarizes the main
�ndings of this work, but the e�ect is very subtle.Figures 4A,C,E
show the posterior probability of a positive linear trend given
the observed temperature time series for each grid point
using the method described in section 2, andFigures 4B,D,F
show the same numbers obtained using the method described
in section 3.Figures 4A,B show results for the years 1900–
1950,Figures 4C,Dshow results for the years 1900–1985, and
Figures 4E,Fshow results for the time period 1900–2015. Using
data up to the year 1950 we �nd Prob[b > 0 j y] > 0.95 for
3571 and 4,606 out of the 11,997 analyzed grid points, for the
two methods, respectively. These numbers increase to 5,140 and
6,223 is the time period extends to year 1985. And to 10,121 and
10,683 when the analysis includes all years from 1900 to 2015.
Figure 4shows that there are large areas in the oceans where the
sea-surface temperature warming signal has become detectable
over the last 30 years.

Fitting the model in Equation (3) where the linear trend and
the parameters of the fGn model are estimated simultaneously,
required on average 2.7 s per time series. This gives a total
elapsed computation time of� 9 h for all 11,997 grid points.
Using the approach described in section 3, we �rst �t an fGn
process where the mean is speci�ed by Equation (7). The average
run time to �t this model to a single time series was almost 8
s, giving a total run time of� 25.9 h. The second step of the
method in section 3 �ts the linear trend combined with the
fGn noise term using �xed parameters. Fitting of this model
required on average 1.5 s for individual time series, givinga
total elapsed computation time of� 5 h for all grid points. The
main reason for the increased computation time of the approach
described in section 3 compared with the method in section 2
is the increased number of hyperparameters. Also, �tting of
the model including radiative forcing required extensionsto
existing software, see Myrvoll-Nilsen et al. (submitted) for
further details.

5. DISCUSSION AND CONCLUSIONS

The main contribution of this paper is to present a
computationally e�cient Bayesian method for trend-detection
under the assumption of LRD noise, and to apply the method
to detection of global warming in gridded temperature data.
By considering two di�erent methods, where the second
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FIGURE 1 | (A) Shows surface temperature anomalies for a grid point located around the city of Moscow (55N, 37E). The dotted blue line shows the estimated linear
trend m(t) D a C bt estimated using the method described in section 2, and the solid black curve is the estimated forced responses in Equation (7).(B) As in (A), but
for a location in the tropical Paci�c ocean (33S, 120W). For both panels the black vertical line show the 95% credible intervals at year 2015.

FIGURE 2 | Shows maps of estimates for the trend parameterb, and the noise parameters� " and H for the time period 1900–2015. The presented estimates are the
posterior means obtained from the estimated posterior marginal distributions.(A) Estimates ofb using the methods described in section 2.(B) Estimates ofb using
the methods described in section 3.(C) Estimates ofH using the methods described in section 2.(D) Estimates ofH using the methods described in section 3.(E)
Estimates of� " using the methods described in section 2.(F) Estimates of� " using the methods described in section 3.
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FIGURE 3 | The root mean square error (RMSE) as de�ned in Equation (8), measuring a standardized difference between the observed temperature signal and the
trend model. (A) The RMSE for the model de�ned in section 2.(B) The RSME for the model de�ned in section 3.

FIGURE 4 | The posterior probability of a positive linear trend given the observed temperature time series for each grid point.(A) For the time period 1900–1950 using
the method described in section 2.(B) For the time period 1900–1950 using the method described in section 3. (C) For the time period 1900–1985 using the method
described in section 2.(D) For the time period 1900–1985 using the method described in section 3. (E) For the time period 1900–2015 using the method described in
section 2. (F) For the time period 1900–2015 using the method described in section 3.

uses historical data for global radiative forcing, we validate
that the inaccuracy of a linear trend model does not a�ect
the speci�cation of the trend model to such a degree that it
signi�cantly a�ects the trend-detection results. Hence, weavoid
a situation where the presence of non-linear temperature trends

produce biased estimates of� " and H, which again a�ect the
trend detection.

The results presented in this paper imply that even by the
most conservative estimates, more than 84% of the analyzed grid
points show signi�cant warming at the 0.05-level. This ratiois
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higher than the 80% ratio thatLøvsletten and Rypdal (2016)
obtained after making a model selection between AR1 and fGn
for each grid point, and much higher than what they obtain for
a pure fGn model. Our results also show a striking di�erence for
the time period 1900–2015 compared to 1900–1985, and clearly
demonstrate that even locally, the warming signal has emerged
from the noise over the last 30 years.

The limitations of the approach presented here is that noise
models are restricted to the class of fGns. Whereas LRD models
are highly accurate on decadal time scales in GMST, local
temperatures exhibit modes of internal variability that arenot
well-approximated by scale invariance. The most prominent
example being the El Niño Souther Oscillation (ENSO). We
therefore believe that future work on trend detection in surface
temperature data should be based on more �exible models,
with more free parameters. The introduction of more �exible
models must be weighed against the risk of statistical over�tting
for the relatively short instrumental temperature record. An
alternative approach is to characterize internal variability as
the �uctuations around ensemble means in historical runs
in ESMs. Using randomization of phases one can then run
Monte-Carlo simulations without specifying parametric models.
However, since spatial patterns of internal variability vary
between models it is di�cult to ensure that the unforced
�uctuations in a particular grid point is a good representation
of the unforced �uctuations of this grid point in the real
climate system.

DATA AVAILABILITY

Software for the INLA methodology is available atR-INLA.org
for the programming environmentR. INLA allows for fast
Bayesian inference for latent Gaussian models such as the
one described in section 2. However, some modi�cations
are required in order to ensure e�ciency. First, the latent
�eld is of non-standard form since the mean vector and
covariance matrix of the latent Gaussian �eld share the same
parameterH, and thus requires separate speci�cation. Second,
due to the LRD assumption, the precision matrix, de�ned
as the inverse covariance matrix, is dense and therefore
unsuited for the computationally e�cient algorithms that INLA
applies. In order to retain sparsity we have to introduce
an approximation such as that introduced bySørbye et al.
(2019). The model with these modi�cations are available in
the R-packageINLA.climate which can be downloaded
from the GitHub repositoryeirikmn/INLA.climate . The
temperature data analyzed is downloaded from https://data.
giss.nasa.gov/gistemp/, and the forcing data from http://www.
columbia.edu/~mhs119/Forcings/.
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