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One of the main obstacles for the implementation of deep corslutional neural networks
(DCNNSs) in the clinical pathology work ow is their low capattity to overcome variability in
slide preparation and scanner con guration, that leads to banges in tissue appearance.
Some of these variations may not be not included in the traing data, which means that
the models have a risk to not generalize well. Addressing sincvariations and evaluating
them in reproducible scenarios allows understanding of whe the models generalize
better, which is crucial for performance improvements and eétter DCNN models. Staining
normalization techniques (often based on color deconvolign and deep learning) and
color augmentation approaches have shown improvements inhie generalization of the
classi cation tasks for several tissue types. Domain-inu@ant training of DCNN's is also
a promising technique to address the problem of training a sigle model for different
domains, since it includes the source domain information tauide the training toward
domain-invariant features, achieving state-of-the-artesults in classi cation tasks. In
this article, deep domain adaptation in convolutional netarks (DANN) is applied to
computational pathology and compared with widely used staiing normalization and
color augmentation methods in two challenging classi catin tasks. The classi cation
tasks rely on two openly accessible datasets, targeting Ghson grading in prostate
cancer, and mitosis classication in breast tissue. The beohmark of the different
techniques and their combination in two DCNN architecturesllows us to assess the
generalization abilities and advantages of each method irhé considered classi cation
tasks. The code for reproducing our experiments and preproessing the data is publicly
availablé'. Quantitative and qualitative results show that the use of BNN helps model
generalization to external datasets. The combination of seral techniques to manage
color heterogeneity suggests that several methods togethesuch as color augmentation
methods with DANN training, can generalize even further. Bhresults do not show a
single best technique among the considered methods, even wén combining them.
However, color augmentation and DANN training obtain mostften the best results (alone
or combined with color normalization and color augmentatio). The statistical signi cance
of the results and the embeddings visualizations provide @sul insights to design DCNN
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that generalizes to unseen staining appearances. Furtherone, in this work, we release
for the rst time code for DANN evaluation in open access dataets for computational
pathology. This work opens the possibility for further ressrch on using DANN models
together with techniques that can overcome the tissue prepeation differences across
datasets to tackle limited generalization.

Keywords: staining normalization, adversarial neural netw orks, digital pathology, color augmentation, color
normalization, domain shift

1. INTRODUCTION One of the more recurrent problems in the preparation of the
specimen is over- or under-staining. The time and amount of
Since its start, one of the main goals of computational patiiplo dye applied to the tissue on the glass make the process prone to
(CP) is to nd precise and reproducible methods to quantify perceptual di erences in color and intensity of the tissue i th
the content of tissue slides and the relationships of thishwit digitized slide Bejnordi et al., 2016; Van Eycke et al., 2017
the disease stage and patient outcoméaqabhushi, 2009;  The changes in color intensity due to di erent slice thickses
Madabhushi et al., 2011; Al-Janabi et al., 2012; Kothari.et agre acknowledged as a source of variation. Few articles have
2013. During the last decade the methods for analyzingexplored how to overcome this aspect using automatic tools,
images in digital pathology have become more precise anstesumably because of the complexity of the experimental setups
have greatly bene ted the CP community, also thanks to theyotably, the work ofBug et al. (2017)provides a staining
steady development of deep learning algorithms and partitsula normalization method based on an end-to-end deep learning
thanks to deep convolutional neural networks (DCNN), Shift  (DL) architecture that takes into account the context of the
from handcrafted features toward end—to—end architecifte  tissue to normalize the extracted features. The authorsiated
detect cancer in histopathology images at the image patdffieir method on lung cancer tissue images varying not only
level (Veta etal., 2015; Janowczyk and Madabhushi, 2016; Ciomig terms of H&E concentrations but also in section thickness.
et al., 201y and at the whole-slide-image leveliifens et al., They showed that their method gives a consistent normalinatio
2016; Cruz-Roa et al., 20}8methods have become more through the studied protocols and less variance in the output
precise, achieving is some cases for speci ¢ tasks classncat with respect to the classic methodsificenko et al. (200%nd
performance comparable to pathologists. Bejnordi et al. (2016)

Despite the performance improvements of the methods, there  Although standardization procedures are often applied in
are still technical barriers that prevent the translationtibése laboratories and clinical practice’ perfect color Ca]ib]a]among
advances into better clinical applications. Two of the mogidgl  samples is hard to achieve. The scanning parameters that are
chemicals used in pathology to stain tissue slides are Hetpiito  hardcoded in the whole slide scanner hardware (that change
and Eosin. These chemicals hlghllght the nuclei with a darléccording to the Vendorsy such as Aperioy Ph|||ps’ \/entana)
purple color (Hematoxylin) and the cytoplasm with a light pink result in specic color characteristics in the resulting it
one (Eosin). One of the most important factors preventing themage, for example, varying in the image sensor and also the
application of machine learning methods to clinical practicestitching techniques. These parameters are also a part of the
is related to the heterogeneity of Hematoxylin and Eosinigital pathology pipeline on which pathologists have limited
(H&E) images due to tissue preparation and several parameteggntrol. In the work ofLeo et al. (2016the authors evaluate the
involved in the tissue preparation and digital scanning precesstability of features in prostate cancer classi cation asseveral
(temperature of the tissue, thickness of the cuts, imageosensscanner producers. Their results show that only a portion ef th
of the digital camera, etc.). Several image processing ar@mmonly used features in digital pathology are robust to such
machine learning techniques reported in the literature deitih  scanner di erences. Interestingly, the authors show thabco
color heterogeneity improving classi cation and segmeiotat normalization alone cannot solve the problem of inter-scanne
performance for various tissue type& Eycke et al., 2017; Roy feature instability. Therefore, it is crucial to develog@ithms
etal., 2018; Tellez etal., 2Q1owever, this challenging problem that generalize well on heterogeneous datasets for a morsstob
is far from being solved. deployment of computer-aided diagnostic systettsthari et al.,

Color heterogeneity can a ect the performance of the machine013: Leo et al., 20).6
learning algorithms that easily overt when trained with tda Image processing and machine learning approaches that deal
from one center or scanner and fail to generalize to image® fro with color heterogeneity show generalization improvemeints
other centers Kothari et al., 2014; Ciompi et al., 201One  classi cation and segmentation performanceldCann et al.,
example of this problem is shown Figure 1 2014; Vahadane et al., 2016 Bentaieb and Hamarneh, 2018:

The heterogeneity of colors in H&E images is due to tissugen et al., 2018; Roy et al., 2018; Tellez et al., 2018a,H, 2019
preparation and is related to the complex set of preparatiorsuch techniques can generally be grouped into three di erent
phases related to staining procedures, section thickness, atypes. The rst approach (which is probably the most frequently
scanner di erencesl(eo et al., 2006 studied) is staining normalization, meaning that the color
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Training Samples Internal Test: P(GP3) = 0.95External Test: P(GP3) = 0.53

(S _—

External

S —

Test: P(GP4) = 0.38

Internal Test: P(GP4) =0.93
FIGURE 1 | Test images with different staining conditions can affectie performance of a DCNN model trained with images with a lin@d set of similar staining and

preparation methods: Gleason pattern 3 (top row) and patter 4 (bottom row) patches; the internal test set probabilitytiird column) can lead to biased estimates of
the performance of the model. The last column shows how probhility drops in the baseline DCNN when predicting the classiipatches with different staining.

concentration of all the images in the database is mapped tGamelyonl7 challengeBéndi et al., 2019 These approaches
match the staining appearance of a target image. This problemse deep learning architectures in conjunction with exieas
has been thoroughly studied in literatur®écenko et al., 2009; color augmentation to force their networks to be robust to
Li et al.,, 2015; Ciompi et al., 2017; Van Eycke et al., R017color variation.
Staining normalization applied with DCNN allowed to improve  The third and most recent family of techniques is
classi cation accuracy by over 20%iompi et al., 201y in  inherently related to deep learning architectures. Deemieg
colorectal cancer tissue classi cation. In the work\efn Eycke models account for the complexity of learning the staining
et al. (2017)a series of steps for color vector extraction istransformation in the test set by means of learning a cascade
described. Two main challenges often arise when usingistain of non-linear transformations of the training input images.
normalization techniques. First, as the source images@m-c This learnt information is used to either normalize the image
transformed into the target image color space, the algorgthmor to explicitly design a deep learning model architecture
using the normalized images are sensitive to the selectfon that penalizes or does not take into account the staining
the image taken as referenceefitaieb and Hamarneh, 20018 information (Bug et al., 2017; Janowczyk et al., 2017; Ren et al.,
Second, the time of staining normalization algorithms for2019. This deep learning-based family of techniques is further
standardizing a batch of images can easily take up to 30 m#&utdiscussed in section 2.4.
as noted byshaban et al. (2018) As discussed, staining variability and color augmentation
The second approach is color augmentation, where mangan dramatically a ect automatic image analysis algorittand
variations of the original image are created for trainingdayying  several techniques have been proposed to tackle the problem
intensity, brightness, contrast, RGB channel values and alslepending on the image analysis task. Perfect color cailiorat
altering them in other color spaces such as the Hue Saturaticemong samples is hard to achieve, despite standardization
Value (HSV) space, or deconvolving the Hematoxylin-Eosinprocedures being applied in clinical practice. In this paper,
DAB (HED) channels and slightly modifying thenvgn Eycke we contribute to tackle this challenge by comparing the three
et al., 2018; Bandi et al., 2019; Tellez et al., ROe color mentioned approaches in intra and inter—center classi cation
augmented images are usually generated at training time artdsks (targeting the classi cation of mitotic cells in breas
given as input to the algorithm to cope with possible variationscancer and Gleason pattern classi cation in prostate cancer).
in the test set. Data augmentation is usually built into theWe thoroughly evaluate the adversarial neural networknireg
pipeline of training deep learning models, since such modelapproach rst proposed byLafarge et al. (2017jo learn
usually learn color invariances by processing a large amofint domain invariant features, showing that the use of DANNs can
annotated samples. Color augmentation can lead to excellehtlp generalization to external datasets. The combinatibn o
results, such as the ones obtained by the leading teams of ttexhniques also suggests that by using basic color augrmmgat
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in addition to techniques such as DANN training and staining The rst dataset is the Tumor Proliferation Assessment

normalization, the models can generalize even further. Challenge (TUPAC), which is built to evaluate algorithmic
performance for mitotic gure detection in breast cancer
tissue {eta et al., 2019 We refer to this dataset as TUPAC.

2. MATERIALS AND METHODS The dataset contains 1,522 mitotic gures extracted fromhhi

2.1. Color-Heterogeneous Datasets power elds of 73 breast cancer cases from three pathology labs.

ina th lizati bilit fth h This suits our purpose of evaluating the generalization sl iof
For comparing the generalization capabilities of the approac ealgorithms across inter-center variability. The datasetipan is

we used two highly heterogeneous data sets that targgts same as inafarge et al. (2017All our DCNN models in
classi cation tasks. The data sets account for the staining1is dataset are trained and validated with eight (458 neig)s
variability by including images with di ering prepara}tion and four cases (92 mitoses) from the rst pathology lab. The
parameters from several centers. Such parameters resulbimgst remaining 12 cases (533 mitoses) from the rst pathology Iab a

di ?\;encefzs in the I\"S?al chharactlerlsgcs O; thle mz;ges. bset used as an internal test set. The 50 examples from the two other
. ost frequently, for the evaluation of algorit ms, Subsets o athology labs (469 mitoses) are used as an external testoset. T
images from the same center are used as a training set aE

S Jo e ) Peate a set of challenging negative samples, an initial GNN i
then validation and testing is done with images of dierent

. b ith similar i . h L trained with mitotic patches as positive patches and on random
Fha;ﬁg::e g(tex\':gr similar image preparation characteristresi patch locations as negative ones that do not overlap with tigito

I luati d the classical luati bpatches. Once the network is trained, only the false positiveds an
n our eva uation, we exten_ the classical eva uat_loq ¥|egative patches with a high probability of being mitotic aesn
separating internal test data: dierent patients with similar

. o . " as negative samples, this set of hard-negative mined samples ar
preparation parameters, from external test data: di erent pate kept throughout all the experiments. Our hard-negative main

and preparation charact(_aristi_cs. Such an evaluation providgi ers, and thus, the performance is not directly comparabléwi
us W_'th a betFer approxmgtlon of the performance ,Of thethose reported by afarge et al. (2017The cardinality of each
algorlthms on images acquired from di erent centers, i.6e t partition is in Table 1, and a few example image locations are
generalizability of the networks to such changes. shown inFigure 2for TCGA-PRAD and example image patches
in Figure 3for the TUPAC dataset, respectively.

The second dataset is comprised of images from prostate
cancer tissue with Gleason patterns 3 and 4 (GP3, GP4). It
contains image patches from diagnostic slides of the cancer
genome atlas prostate adenocarcinoma dataset (TCGA-PRAD)
and also from the manually annotated prostate tissue micaarr
Partition Mitosis ~ Non-mitosis Total #of cases  Center images used in the study @frvaniti et al. (2018)we refer to
this dataset as TCGA-TMAZ. The TCGA-PRAD images were

TABLE 1 | Number of original patches for the TUPAC dataset, due to theigh
class imbalance, we use data augmentation only in the mitaticlass by creating
rotated and ipped patches.

Train 458 3,842 4,300 8 ! recorded in 16 tissue source cenfetisat were used for training,
Validation 92 1,196 1,288 4 ! validation and internal test sets. Whereas, the TMA-Ziridieve
Internal test 533 12,317 12,850 12 1

External test 469 505 974 50 2,3

Total 1,552 17,860 19,412 74 2,3 2https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGAoBafc

FIGURE 2 | GP3 patch locations extracted (red bounding boxes) from slie TCGA-2A-A8VL(Left) belonging to the training set and the slide TCGA-EJ-7321Right)
from the internal test set using the heatmap resulting from guation (2).
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FIGURE 3 | Mitotic gure examples with an original patch size of 96 96
pixels. Staining differences between the internal and theest sets are evident.
These changes are also noticeable in the quantitative redslof section 4.

used as an external test set since it contains signi carnisig
variability as shown irfFigure 4.

Since in the TCGA-PRAD dataset there are no Gleason
pattern annotations but only the global labels of the two most
prominent Gleason patterns, we selected only those diagnostic
images with the same primary and secondary Gleason patterns,
i.,e., GS = 3 + 3 and GS = 4 + 4. With this consideration,
we are more likely to extract patches from relevant regions.
Furthermore, we employ the heuristic rst presentediyusson
et al. (2018)to build a heatmap that guides patch extraction
from non-annotated Whole Slide Images (WSI) using the
following transformation of the original RGB WSI at the 10X
magni cation level:

2B R
640 R G B
h, D tanh —————C 0.5 C0.5 1
2 D tan 300 (1)

hD 0.5tanhfth, 1.75)C 0.5 )

validation, and test partitions.

FIGURE 4 | Example patches from each partition for the Gleason patteralassi cation task. In this case the external test set differgonsiderably from the training,
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By xing a threshold (0.65) on the resulting heatmdpwe  TABLE 2 | Number of original patches for the TCGA-TMA dataset.
selected a xed amount of random patches in the WSI from
positive locations in the thresholded image. Example locatio

Partition GP3 GP4 Total #centers

of extracted patches from two WSIs of the train and internatte ain 1,184 1.219 2.403 6
sets are illustrated iRigure 2 While there are a minority of patch  vaiidation 479 658 1,137 4
locations outside relevant regions, this unsupervised art@  internal test 811 510 1,321 6
locate regions of interest allows us to have the right amafnt External test 1,602 2,359 3,961 1
relevant regions that contains GP3 and GP4 patches. Total 4,076 4,746 8,822 17

In contrast to the TUPAC dataset, in this case, we have more
than 3 centers, the total number of source centers for the ACG
TMAZ dataset is 34, which makes it challenging to train th
algorithms with a limited amount of images for each centdreT
total number of images per partition is reported Table 2

We do not have a larger public data set with information on
the di erent centers, which is a current challenge for evélva
of the generalization of CP algorithms. In the literaturesth
are interesting approaches to solve CP classi cation tasés th
use more than 100 million annotated patches aslagpal et al.
(2018) However, it is noteworthy that in this work we did not 2.3. Color Augmentation
use any annotations of regions or private data source. Oréy thone common strategy used to create new images with color
public annotations of the TUPAC mitotic regions and an openyariations consists of multiplying each of the color chanrigls
access dataset with limited annotations are used. The s@m  (or estimated staining concentrations in the H&E space) @ th
lename lists with (x,y) locations of the patches are providedpriginal image by a random small constamtthat will scale the
in order to allow reproducing the same image patches used igriginal intensity value and then add a second constathat
our experiments. shifts the color toward higher/lower intensity values:

values. Using this estimation, the mati®is xed to normalize

€all the images in the database by multiplying each value of the
concentration of the source images pixelwise. Then, the @mag
is in the H&E space of the target (template) image. An optional
step is to preprocess the image with brightness standardizati
making the obtained coe cients less dependent on the brigtes
values. A schematic view of the normalization approach, used in
our experiments, is displayed kigure 5.

2.2. Staining Normalization 19 adcChye A3)
Since all the pixels of the digital H&E images are represented

in RGB space, ideally each pixel should contain a compositioTihe range from where the random constaagsandb; are drawn

of the color representation of Hematoxylin, Eosin, anddetermines how much variation is allowed in the generatién o
background. Images acquired from the same center anthe new images. Examples of color augmented patches from the

using the same preparation parameters should share the stailUPAC dataset using this strategy in the RGB space are shown
absorbance coe cients, which can be written as the lineain Figure 6.

transformation (omitting background that should be close265 While staining normalization methods aim at homogenizing
for the three channels): the appearance of the images, they might fall short at inter-
center generalization because of a non-optimal normalizadio
sD Hr Hg Hp over tting in the training set due to the small amount of vation
Er Ec Bs between the samples. Recent studies have shown how by creating

images for training with an expansion of the training set with
Where the rst-row vector corresponds to the RGB componentsiuplicate images from a broader color range have a signi cant
of hematoxylin and the second one to the components of Eosinmpact at generalization in the inter-center evaluation ofahiae
In staining normalization methods, the aim is to estimate th learning methods. Particularly with deep learning arctitees,
individual staining absorbance coe cients of the imagésand  studies have shown how color augmentation techniques usually
quantify the absorbed light by the tissue when it was scanned,outperform staining normalization methods3¢jnordi et al.,
which is the value in the H&E space of each pixel. The Beep017; Tellez et al., 20L9his might be intuitive in the context
Lambert law provides a way to estimate them in the opticabf training deep learning models, where the larger the amount
density space, given the original pixel content for¢fehannellc:  of data the model is fed with, the more variations the model is

exposed to. Therefore, it is more robust to changes in appearance

IcDlgexp( & C) in the test set.

Where c ranges in the RGB channels,2 [0,C1 I3 2is the 2.4. Deep Learning Approaches for

matrix of absorbance coe cientsC 2 [0,C1 ]2 is the vector Staining Normalization

of the two staining concentration coe cients andly is the Recent approaches based on deep learning models such as
background value. The widely used methodN\dficenko et al. staining normalization stacked autoencodessr{owczyk et al.,
(2009)provides an estimation dbby computing a plane using 2017 and U-net-based architecturesTdllez et al., 2019

the two largest singular value decomposition vectors ofitegge  allow to capture complex staining transformations and build
and then projecting the data into this plane and clipping extremenormalizers and generators in an end-to-end manner. In the
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FIGURE 5 | Staining normalization scheme. First, a target or templatenage is selected to extract its staining concentrations. \ith brightness normalization, the
images are less dependent regarding brightness. Thereforérightness standardization is done by modifying the lumissity channel in the LAB color space such that
at least 5% of the pixels are white. Then, the staining conceration matrix from the brightness-corrected template imge is extracted using the Macenko method
(Macenko et al., 2009). Finally, all the images in the dataset are normalized ugithe xed template staining (*indicates pixelwise multigtation with the template).

FIGURE 6 | Examples of random color augmentations for training patcheinduced by Equation (3).

work of Tellez et al. (2019he impact of color augmentation mapped augmented versions of the image to a normalized
and staining normalization is assessed in three organgdegp one. This showed signi cantly better results than standard
cancer: prostate, breast, and colorectal. The authors propoaegmentation and normalization methods. IBentaieb and

a normalization method based on a U-Net architecture thatHamarneh (2018)the authors explored several ways of training
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a deep adversarial staining transfer model in colon, ovarfunction fortheN D n C ntraining samples is:

and breast cancer datasets showing that a combination of

penalty terms of consistency of the normalized images and 1 X' 1 : 1 .

a conditional term that adapts to the task leads to the bedt D Ly( 1 y) 5 Ly( 1 a)C 0 La( 12 o)
results in classi cation tasks. The models mentioned above ib1 ib1 ibnC1

require the training of an external deep learning model

that normalizes the images. This is used subsequently f(\)/\r/here Ly and Lq are the task and domain loss functions,

the DCNN model training of the task, thus not using the respectively. Botn andn®are drawn from the dataset with the

L ] . - = di erence thatn are training samples for which the task label is
source domain information for guiding the training of stéy . 0 o
. . available, where for the”samples only the domain is known. It
invariant features.

is worth noting thatn® are the samples with di erent domains
in the training but can include samples from the test set, from
2.5. Domain Adaptation and Adversarial which only the domain label is needed to adapt the shared featu
Learning representation. IrGanin et al. (2016ghe authors nd that such

From a data-driven perspective, the disparities between theddle points can be found using the following iterative séstie

digital histopathology image stainings caused by the changdradientupdates:
in preparation methods and scanners make the distribution of i i
the generated images di er. The training of machine learning @ %
models with only images created from a subset of preparation @ @
methods, scanners or centers creates vulnerable models that
might fail at correctly classifying near out-of-distribom i
samples with staining changes. Discriminative learninghuods % (5)
for classi cation, such as neural networks or support vector Y Y @y’
machines, perform well when training and test data are drawn
from the same distribution. Therefore, when a model is tesin @l
using a set from one distribution and then tested in anotfitsr, d d —d
performance will be hindered by the dissimilarity betweee th @q
training and test distributions. This is a well-known problén  \Where is the base learning rate for the task classi er arisithe
machine learning called domain adaptation (DA). Itis an @eti domain learning rate multiplier that allow to learn the domain
research area in machine learning where many novel framksvor dependant features at a di erent pace from the task-relatedsone
have been propose@(ammer etal., 2006; Ben-David et al., 2007Equations (5) and (6) optimize the parameters for the task and
Tzeng etal., 2037 domain loss functions, respectively, as in a classical rouljput

In Ben-David et al. (20073he authors provided a framework DCNN scenario. The loss for the task classi er is minimized
to analyze the contributions of domain adaptation for thewnhile the loss for the domain classi er is maximized. This is
generalization of models by learning features that accdant done in Equation (4) that is optimized in an adversarial manne
the domain disparity between training and test set distribns. by going in the opposite gradient direction that minimizeskas
The theory of DA suggests that a good representation for erosgoss and in the positive direction of the gradient for the dama
domain transfer is one in which the algorithm cannot learn tofeatures, maximizing the domain classi er loss.
identify the domain of origin of the input observation. This A simpli ed architecture scheme is shown Figure 7, where
led to the authors of5anin et al. (2016}o propose a concrete the task and the domain classi ers are at the top of a shared
implementation of this idea in the context of deep neural netvv  representation that maximizes the classi cation performate
models. The objective of domain adversarial neural networkeparate between mitotic and non-mitotic images and at the
models (DANN), is to learn features that do not take into aged  same time minimizes the probability to recover in which cente
the domain of the training samples. The domain adversarialdomain) the image was generated. If the model converges, th
features combine discriminativness and domain invariaimte  for a test image the inferred representation avoids to inelady
the same representation. To build such representations, twegenter-speci cinformation. The original center for the témage
classi ers are involved: (i) the label classi er that predithe  could be unknown, since this label is not needed and we arng onl
main task classes (e.g., mitosis/non-mitosis) at traine@  interested in obtaining the mitosis/non-mitosis probability
testing time, and (i) the domains classi er that discrinaites The main characteristic of DANN models is that they do not
between several domains. Both classi ers can be tied usieg trequire external models to perform staining normalization or
same set of features. Having two outputs with separate logslor augmentation but are the task labels and the indicator
functions, one that measures the error at classifying tasscbf  from the scanners or domains that are used to drive the trajnin
the sample correctly and the second one,measuring the etror grocess and solve the task without depending explicitly on such
classifying the origin of the sample (i.e., the domain). models. This feature is also a potential drawback if one is

The optimization objective of a DANN model is to nd a interested in a staining quanti cation scenario, becaugeNIN
saddle point solution of parameters for the task classi® models do not output an explicit normalized image but the
domain parameter§ and domain-invariant feature®. The loss normalization is done in the feature space instead. This group

(4)

(6)
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FIGURE 7 | Domain adversarial scheme: A domain-balanced batch of imags is passed as input to the network that has two types of outpts: the task classi cation
output and the domain classi cation output. The shared representation ¢ is optimal for the task classi cation and unable to discrimiate between then domains.

samples from the same class regardless of the domain fromewherormalization, and max-pooling. At the end of the network, two

they were generated. Our experiments are inspired by the wotranches of dense layers are connected to the mitosis anditiom

of Lafarge et al. (201%yhere the authors build a DCNN with a class predictions. For the domain branch, the gradient isresd

reverse gradient layer that aims to learn in an adversaramer in order to optimize (Equation 4).

the mitotic probability of patches and their domain. For the TCGA-TMAZ dataset, we used as base model the
It was noted byEngilberge et al. (201that in the context of MobilNet architecture used in the experiments Byvaniti et al.

DCNN, the models are sensitive to color changes and also th&2018) The last layer was removed in order to add the two

in the more common architectures, the color-sensive units a branches for the domain and Gleason pattern classi catiore Th

located in the rst layers of the network, which suggestdtha  gradient reversal layer was added in the same way as in the

stain-dependent information of the network should be remdve TUPAC architecture, i.e., after the common convolutionadérs

from the rst layers of the architectures, this lead us to plélsce  and before the domain-speci ¢ dense features.

reversal gradient information before the fully connectegkls of

the network as shown in the experimental setup section 3. 3.2. Implementation Details

We implemented the DCNN architectures and performed model

training using the Keras deep learning framework with the
3. EXPERIMENTAL SETUP Tensor ow backend. For the staining normalization metheodk
3.1. CNN Architectures used the public implementation of the Macenko method from the

We designed a baseline DCNN model for both datasets. FéptainTools library. A crucial implementation detail is the need
the TUPAC dataset, we designed a relatively compact DCNKP generate domain-balanced batches for the adversariztepd
architecture due to the small input size of 96 96 3  of DANN models; this is a dataset-speci ¢ part of the pipeline
patches. The architecture is composed of two convolutioyai Where the number of domains should be provided, since they are
followed by two blocks of convolution, batch normalizatiamd ~ used as a one-hot encoding domain-label vector for each of the
max-pooling. Then, a dropout layer is included to regularize
the model followed by another block of convolution, batch3nttps:/github.com/Peter554/StainTools
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TABLE 3 | Results on the TUPAC dataset.

CNN model combinations  Baseline DCNN

Color augmentation X X X X
Staining normalization X X X
Domain adversarial X X X
Internal test set (F1-score) 0.8088 (0.02)  0.8117 ( 0.001) 0.7630( 0.04)  0.6950 ( 0.379) 0.7787 ( 0.03) 0.6985( 0.01)  0.6945 ( 0.02)
External test set (F1-score) 0.71173(0.02)  0.7306 ( 0.07)  0.5424 ( 0.01) 0.8236( 0.071) 0.5963( 0.1)  0.6740( 0.01)  0.5742 ( 0.009)
Internal test set (AUC) 0.9596 (0.006) 0.9631 ( 0.005) 0.9351( 0.001) 0.8972( 0.011) 0.9503 ( 0.01) 0.9030( 0.002)  0.8871( 0.02)
External test set (AUC) 0.8014 (0.01) 0.8270 ( 0.06) 0.848 ( 0.075)  0.9146 ( 0.003) 0.7925( 0.06) 0.8446 ( 0.004)  0.8255( 0.06)

Performance measures for the possible combinations of color augmenten, staining normalization, and DANN. The rst column corresponds to the beeline DCNN without any staining
normalization nor color augmentation. Numbers in bold indicate the bésesult for that row (performance measure).

TABLE 4 | Results for the TCGA-TMAZ dataset.

CNN model combinations Baseline DCNN

Color augmentation X X X X
Staining normalization X X X
Domain adversarial X X X
Internal test set (F1-score) 0.5614 (0.01) 0.5386 ( 0.03) 0.5928( 0.05) 0.6232( 0.03) 0.6761( 0.01) 0.6493 ( 0.01) 0.6317 ( 0.01)
External test set (F1-score) 0.4837 (0.02) 0.5732( 0.04) 0.5863( 0.04) 0.5908 ( 0.03) 0.6222( 0.05) 0.5821 ( 0.01) 0.5625 ( 0.06)
Internal test set (AUC) 0.8155 (0.01) 0.7429 ( 0.01) 0.7391( 0.01) 0.8409 ( 0.05)  0.7544 ( 0.01)  0.7755( 0.03)  0.7049 ( 0.02)
External test set (AUC) 0.6368 (0.01) 0.6735( 0.06) 0.6633( 0.01) 0.6838( 0.01) 0.6798 ( 0.02) 0.6913( 0.01) 0.6712( 0.01)

F1-scores for the possible combinations of color augmentation, staing normalization and domain adversarial. The rst column corresponds to thbaseline model. Numbers in bold
indicate the best result for that row (performance measure).

samples. The learning rates were explored in the base models daglers described in section 3. The F1 score was selecte@ as$ on
xedto D 0.01 for the mitosis model and D 0.001 for the the performance measures to account for the class imbalance of
Gleason pattern classi cation model, according to the bestifts  our datasets. The other measure selected was the area unader t
on the test set. receiver operating characteristics curve (AUC) since thetyin

A warmup of 100 batch iterations for the task branch D  decision threshold is not always close to 0.5 for all the madel
0) in the DANN model was observed to lead to a more stabl®ualitative UMAP visualizations of feature embeddings foe t
training as compared to starting with random weights for bothexternal TUPAC dataset are displayeddigure 8
branches. We provide the code of our experiments for further
implementation detaifs 4.1. TUPAC

Four DCNN models were trained for each experiment|n the TUPAC dataset experiments, color augmentation shows a
combination, to minimize performance variations in the tests  good performance on the internal test set, while the perforneanc

Average and standard deviation in performance is the nalifes Thjs result might be due to variance in the external test set

reported. In total 56 DCNN models were trained. staining that can not be captured by color augmentation alone
When both color augmentation and DANN are combined, the
4. RESULTS performance is not outstanding neither for internal nor extal

datasets. However, the results represent a good tradeo ¢ clos
The classi cation results are shown ifiables 3 4. Each of to the best results for the external test dataset. The besitee
the cells shows the average performance of the four DCNFpr the external dataset are obtained with the DANN approach.
initializations and standard deviation in parenthesis. Eac An interesting result, yet not fully understood, is that DAN
column represents a combination of the strategies, and tise r Show an essential decrease in performance on the internal tes
column is the performance of the base DCNN model without anyset. Staining normalization decreased the performance i bot
staining normalization or augmentation technique. We tdl  the internal and external test set images, likely due to atieg
the DCNN models without dropout but observed over tting in the training domains.
and degraded performance on the test sets. Therefore, allrof o
baseline DCNN include dropout with a probability of 0.25 inthe 4.2. TCGA-TMAZ
For this dataset the best results involve color augmentatio
4https://github.com/sebastian x/stain_adversarial_learning and DANN. DANN alone obtained the best AUC performance
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FIGURE 8 | UMAP embedding of the 128-dimensional rst fully connecteddyer features of the task branch. The points are 80 randomlyasnpled patches of the
external test set using the baseline model with dropout: FLitlisks correspond to mitotic embeddings, empty circles corespond to non-mitotic ones. Red elements are
from a different center than the black ones. The baseline DONImodel of the rst cell shows how same-center features are clatered (ellipses), next cell shows how
the baseline model with dropout drastically changes this bjaving a better intra-class variability than the baseline#ture embeddings, presumably linked to the
regularization effect induced by dropout. Staining norm&ation alone shows an inter-class mixed embedding, which epicts the possible over tting in the training
sources. Color augmentation also shows an excellent intratass mixing while at the same time nicely separating mitasifrom non-mitosis samples. There are local
clusters in the non-mitotic samples that are visible. The jot color augmentation and staining normalization model dplay a similar behavior to color augmentation but
with fewer separated inter-class embeddings. Finally, DANlembeddings show how the intra-class embeddings are mixed \ile retaining the inter-class separability,
showing that it is feasible to learn the desired property oftaining-invariant features.

on the internal test set and DANN combined with color signicant (p < 0.05) in three out of four runs for the internal
augmentation obtained the best AUC performance for theest datasetq < 1.0922 10 5, 0.1919, 0.0008, 1.58240 6,
external test. Staining normalization and color augmeiotat respectively), and signi cant in the four runs for the extelna
together obtained the best F1 scores, both for the interndl a test dataset(< 1.9029 10 1%, 6.0386 10 20, 1.0652 10 %2,
external datasets. 3.1229 10 %),

4.3. Statistical Signi cance of the Results 5. DISCUSSION AND CONCLUSIONS

Comparing the decisions of the best vs. second-best perfgmin

methods using the Wilcoxon signed-rank test yield the follmyv ~ The results show the importance of having separate evaluation

results: For the TUPAC dataset, the di erence between thercolalatasets, as the results in only one can be misleading. #itist

augmentation and DANN, were compared only for the externakigni cance of the results suggests that DANN and color

dataset, since the number of patches in the internal testw@lya augmentation (also in combination with staining normaliizen)

led to ap-value of 0. In the external test set, the di erence wasan deal with the problem of having a limited set of centers for

signi cant (p < 0.05) in two out of four runsp < 1.7232 10 7,  training deep learning models.

0.0723, 0.1808, and 1.87210 9, respectively. In the TCGA-TMAZ dataset, the performance gain of
For the TCGA-TMA dataset, the dierence between theDANN+CA with respect to the baseline is considerable and

combination of color augmentation and staining normalizati  shows how naively training DCNN models without any strategy

vs. the combination of DANN and color augmentation wasto overcome staining variety is suboptimal.
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The combination of color augmentation, staining a training of DANN with staining augmentation done in an
normalization, and DANN training of DCNN models did end-to-end architecture, also evaluating DANN performance
not improve the results and, in some cases, obtained resultsoroughly, including the external setimages in the naihing
below the baseline. Such behavior might be due to over ttmg of the model.
the train centers because color augmentation over the nbze
images accounts only for a limited range of variation (those DATA AVAILABILITY
the training centers) and leading to domain adversariainiray
to not learn enough staining invariances. Similar beha@turs 16 gatasets analyzed for this study can be found in the
when training DANN with stain-normalized images, for which 1cGaA.PRAD repository (https://portal.gdc.cancer.gov/progéc
the results are not reported here in the table, but were close a TCGA-PRAD) and the Replication Data for Automated Gleason

in some cases worse than the baseline. ~_ grading of prostate cancer tissue microarrays via deep ilegrn
To conclude, the experimental results show that stamlnqdoi: 10.7910/DVN/OCYCMP).

normalization, color augmentation, and DANN methods
improve DCNN generalization for classi cation tasks using
digital pathology images. Results did not show a cleianer or AUTHOR CONTRIBUTIONS
combination strategy. Statistical signi cance tests @& thsults .
suggest that the use of color augmentation can alleviater col 5 MA. VA, AK, and HM conceived the study and wrote the
heterogeneity problems up to some extent and that DANNTanuscript. SO carried out the experiments.
training of DCNN models alone or in combination with color
augmentation can lead to even better results. FUNDING

Designing deep learning experiments for computational
pathology with images from dierent centers can provide This work described in this paper has received partial funding
meaningful insights about the performance of the classi@at from the European Union's Horizon 2020 research and
algorithms in realistic scenarios (for instance by predigti innovation programme under grant agreement No. 825292
class labels for data with the same pathology but scannd&xaMode). SO thanks Colciencias through the call 756 for
under di erent staining conditions). In future work, we desg¢  PhD studies.
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