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Adaptive agents must act in intrinsically uncertain environments with complex

latent structure. Here, we elaborate a model of visual foraging—in a hierarchical

context—wherein agents infer a higher-order visual pattern (a “scene”) by sequentially

sampling ambiguous cues. Inspired by previous models of scene construction—that

cast perception and action as consequences of approximate Bayesian inference—we

use active inference to simulate decisions of agents categorizing a scene in a

hierarchically-structured setting. Under active inference, agents develop probabilistic

beliefs about their environment, while actively sampling it to maximize the evidence

for their internal generative model. This approximate evidence maximization (i.e.,

self-evidencing) comprises drives to both maximize rewards and resolve uncertainty

about hidden states. This is realized via minimization of a free energy functional

of posterior beliefs about both the world as well as the actions used to sample

or perturb it, corresponding to perception and action, respectively. We show that

active inference, in the context of hierarchical scene construction, gives rise to many

empirical evidence accumulation phenomena, such as noise-sensitive reaction times

and epistemic saccades. We explain these behaviors in terms of the principled drives

that constitute the expected free energy, the key quantity for evaluating policies under

active inference. In addition, we report novel behaviors exhibited by these active

inference agents that furnish new predictions for research on evidence accumulation

and perceptual decision-making. We discuss the implications of this hierarchical active

inference scheme for tasks that require planned sequences of information-gathering

actions to infer compositional latent structure (such as visual scene construction

and sentence comprehension). This work sets the stage for future experiments to

investigate active inference in relation to other formulations of evidence accumulation

(e.g., drift-diffusion models) in tasks that require planning in uncertain environments with

higher-order structure.
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FIGURE 9 | Simulated trial of scene construction under high sensory precision. (A) The evolution of posterior beliefs about scene identity—the first factor of hidden

states at Level 2—as a deep active inference agent explores the visual array. In this case, sensory precision at Level 1 is high, meaning that posterior beliefs about the

motion direction of each RDM-containing quadrant are resolved easily, resulting in fast and accurate scene categorization. Cells are gray-scale colored according to

the probability of the belief for that hidden state and time index (darker colors correspond to higher probabilities). Cyan dots indicates the true hidden state at each

time step. The top row of (A) shows evolving beliefs about the fully-enumerated scene identity (48 possibilities), with every 12 configurations highlighted with a

differently-colored bounding box, correspond to beliefs about each type of scene (i.e., UP-RIGHT, RIGHT-DOWN, DOWN-LEFT, LEFT-UP). The bottom panel

shows the collapsed beliefs over the four scenes, computed by summing the hidden state beliefs across the 12 spatial configurations. (B) Evolution of posterior beliefs

about actions (fixation starting location not shown), culminating in the categorization decision (here, the scene was categorized as UP-RIGHT, corresponding to a

saccade to location 6. (C) Visual representation of the agent’s behavior for this trial. Saccades are depicted as curved gray lines connecting one saccade endpoint to

the next. Fixation locations (corresponding to 2nd factor hidden state indices) are shown as red numbers. The Level 1 active inference process occurring within a

single fixation is schematically represented on the right side, with individual motion samples shown as issued from the true motion direction via the low level likelihood

A(1),1. The agent observes the true RDM at Level 1 and updates its posterior beliefs about this hidden state. As uncertainty about the RDM direction is resolved, the

“Break-sampling” action becomes more attractive (since epistemic value contributes increasingly less to the expected free energy of policies). In this case, the

sampling process at Level 1 is terminated after only three timesteps, since the precision of the likelihood mapping is high (p = 5.0) which relates to the speed at which

uncertainty is resolved about the RDM motion direction—see the text for more details.

we manipulate the uncertainty associated with beliefs
at different levels of the generative model to see how
uncertainty differentially affects inference across levels in
uncertain environments.

5. SIMULATIONS

Having introduced the hierarchical generative model for our
RDM-based scene construction task, we will now explore
behavior and belief-formation in the context of hierarchical active
inference. In the following sections we study different aspects of
the generative model through quantitative simulations. We relate
parameters of the generative model to both “behavioral” read-
outs (such as sampling time, categorization latency and accuracy)
as well as the agents’ internal dynamics (such as the evolution
of posterior beliefs, the contribution of different kinds of value
to policies, etc.). We then discuss the implications of our model

for studies of hierarchical inference in noisy, compositionally-
structured environments.

5.1. Manipulating Sensory Precision
Figures 9, 10 show examples of deep active inference agents
performing the scene construction task under two levels of
motion coherence (high and low, respectively for Figures 9, 10),
which is equivalent to the reliability of motion observations
at Level 1. In particular, we operationalize this uncertainty
via an inverse temperature p that parameterizes a softmax
transformation on the columns of the Level 1 likelihoodmapping
to RDM observations A(1),1. Each each column of A(1),1 is
initialized as a “one-hot” vector that contains a probability of
1 at the motion observation index corresponding to the true
motion direction, and 0s elsewhere. As p decreases, A deviates
further from the identity matrix and Level 1 motion observations
becomemore degenerate with respect to the hidden state (motion
direction) underlying them. Note that this parameterization of
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FIGURE 10 | Simulated trial of scene construction with low sensory precision. Same as in Figure 9, except in this trial the precision of the mapping between RDM

motion directions and samples thereof is lower, p = 0.5. This leads to an incorrect sequence of inferences, where the agent ends up believing that the scene identity is

LEFT-UP and guessing incorrectly. Note that after this choice is made and incorrect feedback is given, the agent updates their posterior in terms of the “next best”

guess, which is from the agent’s perspective either UP-RIGHT or DOWN-LEFT (see the posterior at Time step 8 of (A)). (C) Shows that the relative imprecision of the

Level 1 likelihood results in a sequence of stochastic motion observations that frequently diverge from the true motion direction (in this case, the true motion direction

is RIGHT in the lower right quadrant (Location 5)). Level 1 belief-updating gives rise to an imprecise posterior belief over motion directions that are passed up as

inferred outcomes to Level 2, leading to false beliefs about the scene identity. Note the “ambivalent,” quadrant-revisiting behavior, wherein the agent repeatedly visits

the lower-right quadrant to resolve uncertainty about the RDM stimulus at that quadrant.

motion incoherence only pertains to the last four rows/columns
of A(1),1, as the first row/column of the likelihood (A(1),1(1, 1))
corresponds to observations about the “Null” hidden state, which
is always observed unambiguously when it is present. In other
words, locations that do not contain RDM stimuli are always
perceived as “Null” in the first modality with certainty.

Figure 9 is a simulated trial of scene construction with sensory
uncertainty at the lower level set to p = 5.0. This manifests as
a stream of motion observations at the lower level that reflect
the true motion state ∼ 98% of the time, i.e., highly-coherent
motion. As the agent visually interrogates the 2 × 2 visual array
(the 2nd to 5th rows of Panel B), posterior beliefs about the
hidden scene identity (Panel A) converge on the true hidden
scene. After the first RDM in the lower right quadrant is seen
(and its state resolved with high certainty), the agent’s Level 2
posterior starts to only assign non-zero probability to scenes
that include the RIGHTwards-moving motion stimulus. Once
the second, UPwards-moving RDM stimulus is perceived in
the upper left, the posterior converges upon the correct scene
(in this case, indexed as state 7, one of the 12 configurations
of UP-RIGHT). Once uncertainty about the hidden scene
is resolved, G becomes dominated by instrumental value,
or the dot-product of counterfactual observations with prior

preferences. Expecting to receive correct feedback, the agent
saccades to location 6 (which corresponds to the scene identity
UP-RIGHT) and receives a “Correct” outcome in the second-
modality of Level 2 observations. The agent thus categorizes
the scene and remains there for the remainder of the trial to
exploit the expected instrumental value of receiving “Correct”
feedback (for the discussion about how behavior changes with
respect to prior belief and sensory precision manipulations,
we only consider behavior up until the time step of the first
categorization decision).

Figure 10 shows a trial when the RDMs are incoherent (p =

0.5, meaning the Level 1 likelihood yields motion observations
that reflect the true motion state ∼ 35% of the time). In this
case, the agent fails to categorize the scene correctly due to the
inability to form accurate beliefs about the identity of RDMs at
Level 1—this uncertainty carries forward to lead posterior beliefs
at Level 2 astray. Interestingly, the agent still forms relatively
confident posterior beliefs about the scene (see the posterior
at Timestep 7 of Figure 11A), but they are inaccurate since
they are based on inaccurate posterior beliefs inherited from
Level 1. This is because even though the low-level belief is
built from noisy observations, posterior probability ends up still
“focusing” on a particular dot direction based on the particular
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FIGURE 11 | Effect of sensory precision on scene construction performance.

Average categorization latency (A) and accuracy (B) as a function of sensory

precision p which controls the entropy of the (Level 1) likelihood mapping from

motion direction to motion observation. We simulated 185 trials of scene

construction under hierarchical active inference for each level of p (12 levels

total), with scene identities and configurations randomly initialized for each trial.

Sensory precision is shown on a logarithmic scale.

sequence of observations that is sampled; this is then integrated
with empirical priors and subsequent observations to narrow
the possible space of beliefs about the scene. The posterior
uncertainty alsomanifests as the time spent foraging in quadrants
before making categorization (nearly double the time spent by
the agent in Figure 9). The cause of this increase in foraging time
is 2-fold. First of all, since uncertainty about the scene identity
is high, the epistemic value of policies that entail fixations to
RDM-containing quadrants remains elevated, even after all the
quadrants have been visited. This is because uncertainty about
hidden states is unlikely to be resolved after a single saccade to a
quadrant with an incoherent RDM, meaning that the epistemic
value of repeated visits to such quadrants decreases slowly with
repeated foraging. Secondly, since Level 2 posterior beliefs about
the scene identity are uncertain and are distributed among
different states, the instrumental value of categorization actions
remains low—remember that instrumental value depends not
only on the instrumental value of receiving “Correct” feedback,
but also on the agent’s expectation about the probability of
receiving this feedback upon making an action, relative to the
probability of receiving “Incorrect” feedback. The relative values
of the prior preferences for being “Correct” vs. “Incorrect”

thus tune the risk-averseness of the agent, and manifest as a
dynamic balance between epistemic and instrumental value. See
Mirza et al. (2019b) for a quantitative exploration of these prior
preferences and their effect on active inference.

We quantified the relationship between sensory precision
and scene construction performance by simulating scene
construction trials under different sensory precisions p (see
Figure 11). The two measures shown are: (1) categorization
latency (Figure 11A), defined as the number of time steps elapsed
before a saccade to one of the choice locations is initiated; and
(2) categorization accuracy (Figure 11B), defined as percentage
of trials when the agent’s first categorization resulted in “Correct”
feedback. In agreement with intuition, for low values of p
agents take more time to categorize the scene and categorize
less accurately. As sensory precision increases, agents require
monotonically less time to forage the array before categorizing,
and this categorization also becomes more accurate. In the next
section, we explore the relationship between sensory precision
and performance when the agent entertains prior beliefs of
varying strength about the probability of a certain scene.

5.2. Manipulating Prior Beliefs
For the simulations discussed in the previous section, agents
always start scene construction trials with “flat” prior beliefs
about the scene identity. This means that the first factor of the
prior beliefs about hidden states at Level 2 D(2),1 was initialized
as a uniform distribution. We can manipulate the agent’s initial
expectations about the scenes and their spatial arrangements by
arbitrarily sculpting D(2),1 to have high or low probabilities over
any state or set of states. Although many manipulations of the
Level 2 prior over hidden states are possible, here we introduce
a simple prior belief manipulation by uniformly elevating the
prior probability of all spatial configurations (12 total) of a single
type of scene. For example, to furnish an agent with the belief
that there’s a 50% chance of any given trial being a RIGHT-

DOWN scene, we simply boost the probabilities associated
with hidden states 13–25 (the 12 spatial configurations of the
RIGHT-DOWN scene) relative to the other hidden scenes,
so that the total integrated probability of hidden states 13–
25 is 0.5. This implies that the other hidden scenes each now
have (1−0.5)

3 ≈ 0.1667 probability, once respectively integrated
over their 12 configuration states. Figure 12 shows the effect
of parametrically varying the strengths of prior beliefs on
the same behavioral measures shown in Figure 11. Similar to
Figures 11, 12 demonstrates a monotonic increase in accuracy
with increasing sensory precision, regardless of how much the
agent initially expects a particular scene type. This means that
strong but incorrect prior beliefs (over initial states) can still be
“overcome” with reliable enough sensory data. However, agents
with stronger priors are less sensitive to the increase in sensory
precision than their “flat-priored” counterparts, as can be seen
by the lower accuracy level of the most purple-colored lines in
Figure 12. Note that the averages shown are only for agents with
“incorrect” prior beliefs; namely, the prior over hidden states in
the generative model for each trial was always initialized to be
a different scene type than the true scene. This has the effect
of setting the minimum accuracy for the “strongest-priored”
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FIGURE 12 | Effect of sensory precision on scene construction performance

for different prior belief strengths. Same as in Figure 11 but for different

strengths of initial prior beliefs (legend on right). Prior belief strengths are

defined as the probability density of the prior beliefs about hidden states (1st

hidden state factor of Level 2—D(2),1) concentrated upon one of the four

possible scenes. This elevated probability is uniformly spread among the 12

hidden states corresponding to the different quadrant-configurations of that

scene, such that the agent has no prior expectation about a particular

arrangement of the scene, but rather about that scene type in general. Here,

we only show the results for agents with “incorrect” prior beliefs—namely,

when the scene that the agent believes to be at play is different from the scene

actually characterizing the trial.

agents (who typically categorize the scene identity at the first
time step) at 0% rather than 25% (chance performance). These
results are consistent with the fundamental relationship between
the likelihood term and prior probability in Bayes’ theorem (see
Equation 1): the posterior over hidden states is calculated as the
product of the likelihood and the prior. Increasing the precision
of one of these two will “shift” the posterior distribution in
the respective direction of the more precise distribution. This
manifests as a parametric “de-sensitizing” of posterior beliefs
to sensory evidence as priors become stronger. This balance
between sensory and prior precision is exactly manifested in the
prior-dependent sensitivity of the accuracy curves in Figure 12B.

The interaction between sensory and prior precision is not
as straightforward when it comes to categorization latency.
Figure 12A shows that when the sensory precision p is high
enough, most of the variance in latency introduced by prior
beliefs vanishes, since observations alone can be relied on to
ensure fast inference about the scene. For low values of p,

however, latency is highly-sensitive to prior belief strength.
Under weak prior beliefs and low p, the agent displays
ambivalence—beliefs about RDM direction at Level 1 are not
precise enough to enable scene inference, causing the agent
to choose the policies that have (albeit) small epistemic value
while avoiding the risk of categorizing incorrectly. This causes
the agent to saccade among RDM-containing quadrants. Agents
with stronger prior beliefs, however, do not rely on observations
to determine posterior beliefs because their prior beliefs about
the scene already lend high instrumental value to categorization
actions. This corresponds to trials when the agent categorizes
the scene immediately (for the strongest prior beliefs, this occurs
even before inspecting any quadrants) and relying minimally
on sensory evidence. This faster latency comes at the cost of
accuracy, however, as evident from the lower average accuracy
of strongly-priored agents displayed in Figure 12B.

Now we explore the effects of sensory and prior precision
on belief-updating and policy selection at the lower level,
during a single quadrant fixation. Figure 13A shows the effect
of increasing p on the break-time (or to analogize it more
directly to eye movements: the fixational “dwell time”) at Level
1. We observe a non-trivial, inverted-U relationship between the
logarithm of p (our analog of motion coherence) and the time
it takes for agents to break the sampling at Level 1. For the
lowest (most incoherent) values of the likelihood precision p,
the agents dwell for as little time as they do as for the highest
precisions. Understanding this paradoxical effect requires a more
nuanced understanding of epistemic value. In general, increasing
the precision of the likelihood mapping increases the amount of
uncertainty that observations can resolve about hidden states,
thus lending high epistemic value to policies that disclose such
observations (Parr and Friston, 2017). An elevated epistemic
value predicts an increase in dwell time (i.e., via an increase in
the epistemic value for the “Keep-sampling” policy at Level 1)
for increasing sensory precision. However, an increased precision
of the Level 1 likelihood also implies that posterior uncertainty is
resolved at a faster rate (due to high mutual information between
observations and hidden states), which suppresses epistemic
value over time. The rate at which epistemic value drops off thus
increases in the presence of informative observations, since the
posterior converges to a tight probability distribution relatively
quickly. On the other hand, at very low likelihood precisions,
the low information content of observations in addition to the
linearly-increasing cost of sampling (encoded in the Level 1
preferences C(1),2) renders the sampling of motion observations
relatively useless for agents, and it “pays” to just break sampling
early. This results in the pattern of break-times that we observe
in Figure 13A.

It is worth mentioning the barely noticeable effect of prior
beliefs (Figure 13A) about the scene identity on break times at
Level 1. Although prior beliefs about the scene at Level 1 manifest
as empirical priors over hidden states (motion directions) at
Level 2, it seems that the likelihood matrix plays a much
larger role in determining break times than the initial beliefs.
This means that even when the agent initially assigns relatively
more probability to particular RDM directions (conditional on
beliefs about scenes at Level 2), this initial belief can quickly
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FIGURE 13 | Effect of sensory precision on quadrant dwell time. (A) Shows

the effect of increasing sensory precision at Level 1 on the time it takes to

switch to “Break-sampling” policy. Here, 250 trials were simulated for each

combination of sensory precision and prior belief strength, with priors over

hidden states at Level 2 randomly initialized to have high probability about 1 of

the 4 scene types. Break-times were analyzed only for the first saccade (at

Level 2) of each trial. (B) Shows the effect of sensory precision on evolution of

the relative posterior probabilities of the “Keep-sampling” vs. the

“Break-sampling” policies (Policy Differential = PKeep-sampling − PBreak-sampling ).

We only show these posterior policy differentials for the first 10 time steps of

sampling at Level 1 due to insufficient numbers of saccades that lasted more

than 10 time steps at the highest/lowest sensory precisions (see A). Averages

are calculated across different prior belief strengths, based on the lack of an

effect, as is apparent in (A). The policy differential defined in this way is always

positive because as soon as the probability of “Break-sampling” exceeds

that of “Keep-sampling” (i.e., Policy Differential < 0), the “Break-sampling”

policy will be engaged with near certainty. This is due the high precision over

policies at the lower level (here, γ = 512), which essentially ensures that the

policy with higher probability will always be selected.

be revised in light of incoming evidence (namely, observations
at Level 1, inverted through the likelihood mapping to produce
a marginal posterior over hidden states). This also speaks to
the segregation of belief-updating between hierarchical levels;
although beliefs about hidden states and observations are passed
up and down the hierarchy, belief-updating occurs only with
respect to the variational free energy of a particular layer’s
generative model, thus insulating variational updating to operate
at distinct spatiotemporal scales. This results in the conditional
independence of decision-making across hierarchical levels, and
clarifies the dissociable influence of prior about scenes on Level
1 vs. Level 2. For example, even on trials when an agent has
strong prior beliefs about the scene and thus takes fewer saccades

to categorize it, differences in lower-level “dwell time” are still
largely determined by the sensory precision p of the likelihood
mapping and the preference to enter the “Break-sampling”
state, encoded as an increasing probability to observe oneself
occupying this state (in C(1),2).

The curves in Figure 13B clarify the rate at which epistemic
value decreases for high sensory precisions. The “policy
differential” measures the difference between the posterior
probability of the “Keep-sampling” vs. “Break-sampling”
policies at Level 1: PKeep-sampling − PBreak-sampling. At the
lowest sensory precisions, there is barely any epistemic value
to pursuing the “Keep-sampling” policy, allowing the break
policy to increasingly dominate action-selection over time. For
higher sensory precisions, the “Keep-sampling” policy starts
with >10% more probability than the “Break-sampling” policy
since the epistemic value of sampling observations is high,
but quickly loses its advantage as posterior uncertainty is
resolved. At this point the probability of breaking becomes
more probable, since posterior beliefs about the RDM are fairly
resolved and the instrumental of breaking is only getting higher
with time.

6. DISCUSSION

In the current work, we presented a hierarchical partially-
observed Markov Decision Process model of scene construction,
where scenes are defined as arbitrary constellations of random
dot motion (RDM) stimuli. Inspired by an earlier model of
scene construction (Mirza et al., 2016, 2018) and a deep
temporal formulation of active inference (Friston et al., 2017d),
we cast this scene construction task as approximate Bayesian
inference occurring across two hierarchical levels of inference.
One level involves optimizing beliefs about the instantaneous
contents of agent-initiated visual fixations; the second level
involves integrating the contents of different fixated locations
to form beliefs about a higher-level concept like a scene.
Through simulations we showed how this deep, temporal model
formulation can be used to provide an active inference account
of behavior in such compositional inference tasks. Deep active
inference agents performing scene construction exhibit the
Bayesian hallmarks of a dynamic trade-off between sensory and
prior precision when it comes to scene inference and saccade
selection. The hierarchical segregation of inference between
saccadic and fixational levels gives rise to unexpected effects of
sensory uncertainty at the level of single fixations, where we
observe an inverted-U relationship between motion coherence
and fixational dwell time. This non-linear relation can be
explained by appealing to the evolution of epistemic value over
time, under the assumption that the agent entertains beliefs
about the precision of the environmental process generating
visual sensations, while simultaneously optimizing the sufficient
statistics of beliefs about the currently-fixated stimulus. The
fact that the precision of the likelihood mapping increases the
epistemic value of policies that furnish observations sampled
from the generative process, while simultaneously increasing
the rate at which posterior uncertainty is reduced, explains
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the non-monotonic influence of sensory precision on Level 1
decision latency.

These results contrast with the predictions of classic evidence
accumulation models like the drift-diffusion model or DDM
(Ratcliff, 1978; Palmer et al., 2005; Ratcliff and McKoon, 2008).
In the drift-diffusion model, reaction times are modeled as
proportional to the latency it takes for a time-varying decision
variable (or DV) to reach one of two fixed decision boundaries
Z and −Z that respectively correspond to two hypotheses (e.g.,
the equivalent of sufficiently-strong posterior beliefs in one of
two hidden states). At each time step, increments to the DV

are calculated as the log of the ratio between the evidence
for each hypothesis conditioned on observations. In discrete-
time environments this update-rule for DV is equivalent to
the Sequential Probability Ratio Test formulated by Wald and
Wolfowitz (1948). For time-independent decision boundaries
and a fixed initial value of the DV, a drift-diffusion process
yields a monotonic decreasing relationship between motion
incoherence and decision latency (Bogacz et al., 2006; Ratcliff
and McKoon, 2008), where motion coherence factors into the
DDM as the drift rate of the DV—this is analogous to the
sensitivity of theDV to incoming sensory evidence. In the current
active inference model, we have binarized policies at Level 1
in part to invite comparison between our model and DDM
models (which in their classical form handle binary hypotheses).
Rather than modeling actions as discrete perceptual decisions
about the most likely hidden state underlying observations (since
in the current context, we have a 4-dimensional RDM state
space), we instead model the decision as selecting between one
of two “sampling” policies, whose probabilities change over time
due to the dynamics of the expected free energy. This evolving
action-probability weighs epistemic drives to resolve uncertainty
against prior preferences that encode an increasing “urgency”
to break sampling. This parameterization of decision-making
permits a flexible (and in this case, somewhat unexpected)
relationship between sensory uncertainty and decision latency
(see Figure 13). We thus provide a novel, principled prediction
for the relationship between sensory uncertainty and reaction
time at different levels of inference in perceptual decision-
making tasks.

A discussion of the relationship between the current model
and previous hierarchical POMDP schemes is also warranted.
The model most closely related to the current work is the “deep
temporal model” of active reading, proposed by Friston et al.
(2017d); the inference schemes are identical, with the critical
difference being the way in which updating is terminated at
the lower level. In Friston et al. (2017d), policies at the lower
level are driven purely by epistemic value and terminate as a
result of posterior uncertainty being reduced beyond a certain
pre-determined level. In contrast, the current model introduces
an additional “Break-policy” (and corresponding observations
of a “Sampling-state”) at the lower level, whose selection is
used to terminate the Level 1 POMDP. This also allows us
to motivate decision-making at the lower level MDP using
individual costs or goals, as encoded via the “sampling cost” in
the lower level prior over observations P(o), explicitly pitting the
epistemic drive to resolve uncertainty about the currently-fixated

RDM stimulus against the increasing cost of continuing to
fixate. Qualitatively, we found that this leads to a smoother
relationship between sensory uncertainty (inverse precision of
the Level 1 A matrix) and the latencies to engage the break
policy (“reaction times”), allowing easier comparison of the
current model to other evidence accumulation schemes (e.g.,
drift-diffusion models).

Insight from the robotics and probabilistic planning literature
could also be integrated with the current work to extend deep
active inference in its scope and flexibility. For instance, the
framework of “planning to see” proposed in Sridharan et al.
(2010) can be used to drive selective visual processing of
goal-relevant features in the sensorium, an important context-
sensitive aspect of visual processing (selective and feature-based
attention) that is lacking in the current formulation. Mirza
et al. (2019a) introduces an active inference model of selective
attention in a visual foraging task; the approach proposed therein
might be combined with a hierarchical scheme to generate a
fully hierarchical model with goal-driven attention operating at
multiple levels.

The hierarchical active inference scheme could also be
extended to dynamic environments, where the scene itself
changes, either due to intrinsic stochasticity or as a function
of the agent’s (or other agents’) actions. This could simply be
changed by encoding appropriate self-initiated state-changes
into the transition model (the “B” matrices) or by introducing
intrinsic, non-agent-controlled dynamics into the generative
process. Ongoing work in the robotics and planning literature has
highlighted the challenges of dynamic, structured environments
and proposed various schemes to both plan actions and form
probabilistic beliefs in such tasks (Ognibene and Demiris, 2013;
Ognibene and Baldassare, 2014). Future research might find
ways to meaningfully integrate existing approaches from the
hierarchical planning and POMDP literature with deep active
inference models, such as the one proposed here.

In future investigations, we plan to estimate the parameters of
hierarchical active inference models from experimental data of
human participants performing a scene construction task, where
the identities of visual stimuli are uncertain (the equivalent of
manipulating the sensory likelihood at Level 1 of the hierarchy).
Data-driven inversion of a deep scene construction model can
then be used to explain inter-subject variability in aspects of
hierarchical inference behavior as different parameterizations of
subject-specific generative models.
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APPENDIX

We provide the derivation of Equation (8), the expected free
energy as an upper bound on the negative information gain and
negative extrinsic value:

G(τ ,π) = EQ(oτ ,sτ |π)[lnQ(sτ |π)− ln P(oτ , sτ )]

= EQ(oτ ,sτ |π)[lnQ(sτ |π)− ln P(oτ , sτ )

+ lnQ(sτ |oτ ,π)− lnQ(sτ |oτ ,π)
︸ ︷︷ ︸

=0

]

= EQ(oτ ,sτ |π)[lnQ(sτ |π)− lnQ(sτ |oτ ,π)

− ln P(oτ )]+ EQ(oτ |π)[EQ(sτ |oτ ,π)[ln
Q(sτ |oτ ,π)

P(sτ |oτ )
]]

︸ ︷︷ ︸

expected KL divergence ≥0

≥ EQ(oτ ,sτ |π)[lnQ(sτ |π)− lnQ(sτ |oτ ,π)

− ln P(oτ )]

H⇒ G(τ ,π) ≥ −EQ(oτ |π)[DKL[Q(sτ |oτ ,π)||Q(sτ |π)]]

− EQ(oτ |π)[lnP(oτ )] (i)

We also offer a derivation of Equation (9), the formulation of the
expected free energy as the sum of “risk” and “ambiguity,” starting
from its definition as an upper bound on the (negative) epistemic
and instrumental values. We can write G for a given future time
point τ and policy π as follows:

G(τ ,π) ≥ −EQ(oτ |π)[DKL[Q(sτ |oτ ,π)‖Q(sτ |π)]]
︸ ︷︷ ︸

Epistemic value

− EQ(oτ |π)[lnP(oτ )
︸ ︷︷ ︸

Instrumental value

]

= −EQ(oτ |π)[DKL[Q(sτ |oτ ,π)||Q(sτ |π)]

+ lnQ(oτ |π)− lnQ(oτ |π)
︸ ︷︷ ︸

=0

]− EQ(oτ |π)[lnP(oτ )]

= −EQ(oτ |π)[EQ(sτ |oτ ,π)[ln
Q(sτ |oτ ,π)Q(oτ |π)

Q(sτ |π)Q(oτ |π)
]]

− EQ(oτ |π)[lnP(oτ )]

= −EQ(sτ |π)P(oτ |sτ )[ln
Q(sτ |π)P(oτ |sτ )

Q(sτ |π)Q(oτ |π)
]

− EQ(oτ |π)[lnP(oτ )]

= EQ(sτ |π)
[

H[P(oτ |sτ )]
]

︸ ︷︷ ︸

Ambiguity

+DKL[Q(oτ |π)||P(oτ )]
︸ ︷︷ ︸

Risk

(ii)

The above derivation assumes that the mapping from predicted
states Q(sτ |π) to predicted observations Q(oτ |sτ ,π) is given
as the likelihood of the generative model, i.e., Q(oτ , sτ |π) =

P(oτ |sτ )Q(sτ |π).
We provide a derivation of Equation (10), the full variational

free energy of the posterior over observations, hidden states
and policies:

F = EQ(s̃,π)[lnQ(s̃,π)− ln P(õ, s̃,π)]

= −EQ(s̃,π)[ln P(õ, s̃,π)]−H[Q(s̃,π)]

= EQ(π)
[

−EQ(s̃|π)[lnP(õ, s̃|π)]−H[Q(s̃|π)]
]

+ DKL[Q(π)||P(π)]

= EQ(π)[F(π)]+ DKL[Q(π)||P(π)] (iii)
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