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Measurement of the width of fetal lateral ventricles (LVs) in prenatal ultrasound (US)

images is essential for antenatal neuronographic assessment. However, the manual

measurement of LV width is highly subjective and relies on the clinical experience of

scanners. To deal with this challenge, we propose a computer-aided detection framework

for automatic measurement of fetal LVs in two-dimensional US images. First, we train a

deep convolutional network on 2,400 images of LVs to perform pixel-wise segmentation.

Then, the number of pixels per centimeter (PPC), a vital parameter for quantifying

the caliper in US images, is obtained via morphological operations guided by prior

knowledge. The estimated PPC, upon conversion to a physical length, is used to

determine the diameter of the LV by employing the minimum enclosing rectangle method.

Extensive experiments on a self-collected dataset demonstrate that the proposed

method achieves superior performance over manual measurement, with amean absolute

measurement error of 1.8mm. The proposed method is fully automatic and is shown to

be capable of reducing measurement bias caused by improper US scanning.

Keywords: biometric measurement, computer-aided diagnosis, ultrasound, fetal head, deep learning, lateral

ventricle

1. INTRODUCTION

Ultrasound (US) is widely used in prenatal diagnosis because it is non-radiative, noninvasive,
real-time, and inexpensive (1, 2). Ventriculomegaly, one of the most common abnormal findings
in prenatal diagnosis, is often a sign of central nervous system malformation, chromosomal
abnormalities, intrauterine infections, or other problems (3, 4). Ventriculomegaly can be diagnosed
by measuring the fetal lateral ventricles (LVs) in standard plane images of the fetal brain. Currently,
to measure the width of LVs, human scanners determine the maximum distance by marking two
endpoints on the inner and outer edges of the LV. The line segment between these endpoints is
considered the diameter of the LV and its length is generally referred to as the LV width (5), as
shown in Figure 1A. However, such manual measurement requires extensive and comprehensive
clinical knowledge of fetal LVs. It is a challenging task, especially for novice scanners. Additionally,
scanners often suffer from repetitive stress injuries caused by multiple keystrokes (6). Therefore, it
is necessary to develop automatic methods for fetal LVmeasurement, and crucial image-processing
issuesmust be resolved to achieve amore accurate and efficient obstetric examination. Although the
automatic measurement of fetal biometrics—such as head circumference (7, 8) and femur length
(9, 10)—has attracted widespread attention in recent years, work on fetal LV measurement is rare.
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FIGURE 9 | Scoring criteria of three ultrasound experts, who scored the degree of fitting between predicted LV contours and the ground truth on a scale from 0 to 4.

FIGURE 10 | (A) Error recognition and (B) failure recognition for LVs. The first row shows the ground truth and error recognition; the second row shows the ground

truth and failure recognition.

samples, with a specificity of 96.67% for calipers and 93.02%
for LVs.

In addition, to verify the accuracy of the LV contour segments
obtained by Mask R-CNN, we invited three US experts to score
the degree of fitting between the predicted LV contours and
the ground truth on a scale from 0 to 4. The scoring criteria
are shown in Figure 9, and the results are reported in Table 2.
Predicted results scoring 4 points accounted for 77.4% of the

cases, with an average score of 3.5. To summarize, the network
appears to accurately predict the LV contours.

The accuracy of LV detection is lower than that of caliper
detection. A separate analysis of incorrect recognition cases, as
shown in Figure 10A, indicates that structures similar to LVs
are likely to be present in the images, demonstrating that object
detection in US images is still a challenging task. As can be
seen in Figure 10B, the unrecognized images are too dark, and
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FIGURE 11 | Measurement results obtained using our method (left) compared with the ground truth (right).

the contour of the LV is not obvious. A possible reason is that
the training dataset is insufficient. In future work, more LV
images will be collected and used for optimization of the network
structure to improve the detection of LVs.

Under the same hardware conditions (CPU Intel Core i7-7700
3.60GHz X8; GPU GeForce GTX 1060 6GB / PCIe / SSE2),
we train DeepLab V3+ networks with the same training set.
The hyperparameters are chosen as follows: train_crop_size is
set to 401 × 801, train_batch_size is set to 2, and the model is
iterated 40,000 times; the remaining hyperparameters are set to
their default values in previous work (21). Figure S1 shows the

comparison results. The experimental results indicate that the
performance is worse than that ofMask R-CNN, a possible reason
being that the images in the training set are relatively small, only
512 × 512. In contrast, the images in our training set are large
enough, with most of the sizes being 700× 1,400.

3.2. Accuracy of the PPC
The accuracy of the obtained PPC depends on the judgment
of the caliper type. To better represent the accuracy of
caliper type judgments with different data complexities, we
randomly select 20 images with black backgrounds and 80
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images with complex backgrounds to make up a 100-image test
dataset. Table 3 demonstrates the accuracy of our method in
caliper classification.

The experimental results indicate that our method performs
well in the recognition of caliper types against a black
background, with an accuracy of 95%; however, the accuracy of
recognition of caliper types against a complex background could
be further improved.

3.3. Measurement Error
Test sets consisting of 200 LV images measured by scanners
are used as the ground truth. We measure the same LVs using
our method and compare the results. Notably, the LVs are not
recognized in 19 of the 200 images; these images are considered to
be 0mm in the measurement error statistics. Figure 11 displays
LVmeasurement results obtained by our method, compared with
the LV ground truth provided by experts. The LV diameters
determined by our method are quite close to the ground
truth, and the measurement error is small. The mean absolute
error, standard deviation, root mean squared error, and time
consumption of our method are listed in Table 4. Because 19 of
200 images are considered to be 0mm, the standard deviation
is large, 3.4mm. The experimental results demonstrate that our
method is accurate and efficient for measuring fetal LV width; for
example, the time consumption is 0.13 s per image and the mean
absolute measurement error is 1.8mm.

4. CONCLUSION

This paper describes an automatic method for measuring the
width of LVs in 2D US images. To the best of our knowledge, this
is the first study proposing an automatic measurement method
for fetal LVs based on 2D US images using deep learning. Our
method is able to automatically recognize and locate the fetal LV
in 2D US images and can measure the width of the LV rapidly
and accurately. Moreover, our model, with slight modifications,
can be extended to the measurement of other fetal biometrics,
such as femur length and head circumference. The demonstrated
robustness of the model implies that it is also a promising tool
to be used with various ultrasonic instruments to facilitate quick
clinical prenatal diagnosis. The experimental results on 200 LV
images indicate that the performance of our proposed method
is close to the manual method of LV measurement in terms of
accuracy and efficiency.

The measurement errors of our method mainly arise from
three sources: inadequate fitting of the LV contour, inaccurate
PPC calculation, and inaccurate diameter location. In future

work, we will focus on reducing measurement errors by using
a greater amount of LV data, improving the network structure
to enhance its abilities of detection and segmentation, and
modifying the location algorithm for determining LV diameter.
Our long-term goal is to develop an automatic system that can
measure all biometrics based on fetal US images.
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