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We present a theoretical framework for immiscible incompressible two-phase flow in

homogeneous porous media that connects the distribution of local fluid velocities to

the average seepage velocities. By dividing the pore area along a cut transversal to the

average flow direction up into differential areas associated with the local flow velocities,

we construct a distribution function that allows us to not only re-establish existing

relationships of between the seepage velocities of the immiscible fluids, but also to find

new relations between their higher moments. We support and demonstrate the formalism

through numerical simulations using a dynamic pore-network model for immiscible two-

phase flow with two- and three-dimensional pore networks. Our numerical results are in

agreement with the theoretical considerations.
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1. INTRODUCTION

When two immiscible fluids compete for the same pore space, we are dealing with immiscible
two-phase flow in porous media [1]. A holy grail in porous media research is to find a proper
description of immiscible two-phase flow at the continuum level, i.e., at scales where the porous
medium may be treated as a continuum. Our understanding of immiscible two-phase flow at the
pore level is increasing at a very high rate due to advances in experimental techniques combined
with an explosive growth in computer power [2]. Still, the gap in scales between the physics at the
pore level and a continuum description remains huge and the bridges that have been built so far
across this gap are either complex to cross or rather rickety. To the latter class, we find the still
dominating theory, first proposed by Wyckoff and Botset [3] and with an essential amendment by
Leverett [4], namely relative permeability theory. The basic idea behind this theory is the following:
Put yourself in the place of one of the two immiscible fluids. What does this fluid see? It sees a space
in which it can flow limited by the solid matrix of the porous medium, but also by the other fluid.
This reduces its mobility in the porous medium by a factor known as the relative permeability,
which is a function of the how much space there is left for it. And here is the rickety part: this
reduction of available space—expressed through the saturation—is the only parameter affecting the
reduction factor or relative permeability. This is a very strong statement and clearly does not take
into account that the distribution of immiscible fluid clusters will depend on how fast the fluids are
flowing. Still, in the range of flow rates relevant for many industrial applications, this assumption
works pretty well. It therefore, remains the essential work horse for practical applications.

Thermodynamically Constrained Averaging Theory (TCAT) [5–9] is built on the framework of
relative permeability. However, it is based on a full analysis based onmechanical conservation laws,
constitutive laws, e.g., for the motion of interfaces and contact lines, and on thermodynamics at
the pore level. These are then scaled up using averaging theorems, which, loosely explained, consist

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00004
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00004&domain=pdf&date_stamp=2020-01-24
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:subhadeeproy03@gmail.com
https://doi.org/10.3389/fphy.2020.00004
https://www.frontiersin.org/articles/10.3389/fphy.2020.00004/full
http://loop.frontiersin.org/people/690771/overview
http://loop.frontiersin.org/people/116173/overview
http://loop.frontiersin.org/people/73058/overview


















Roy et al. Flow-Area Relation in Two-Phase Flow

FIGURE 4 | Measurement of the co-moving velocity (vm) and its higher moments for the 2D network. The top row corresponds to the calculations using Equations

(29) and (30) with the direct measurements. The bottom row shows the measurements of v
q
m using the differential area distributions with Equation (46) and compared

with the direct measurements where higher fluctuations are observed. vm has a unit mm/s. Subsequently, for q = 2 and 3, the units for v
q
m will be mm2/s and mm3/s,

respectively.

FIGURE 5 | Measurements of v
q
m for the 3D Berea network where the top row corresponds to the direct measurements using Equations (29) and (30), and the bottom

row corresponds to the measurement from the differential area distributions using Equation (46). Here, larger fluctuations in the results calculated with the differential

pore area are observed compared to the 2D network. vm has a unit mm/s. Subsequently, for q = 2 and 3, the units for v
q
m will be mm2/s and mm3/s, respectively.
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measurements from the differential area distribution. A good
agreement with the relations can be observed for first as well as
for the higher moments for both the networks.

Next we measure the fluctuations in the seepage velocities
which obey Equation (74). Numerically, 1v2p, 1v2w, and 1v2n are
calculated from the knowledge of the 1st and 2nd moments by,

1v2p = 〈v2〉p − 〈v〉2p,
1v2w = 〈v2〉w − 〈v〉2w,
1v2n = 〈v2〉n − 〈v〉2n. (86)

In Figure 3, we plot these fluctuations for the two networks
to compare with Equation (74) and good agreements is
observed. There are some deviations in the results for the Berea
network, since the results in 3D is based on only one network
configuration whereas the results for 2D are averaged over 10
different configurations.

Finally, we verify the relations between seepage velocities
and their higher moments while varying the fluid saturation as
given by the Equations (29), (30), and (62). For this, we first
calculated the co-moving velocity (vm) and its higher moments
from Equations (29) and (30) where we used the values of the
seepage velocities measured with the direct approach. This is
shown in the top rows of Figures 4, 5 for 2D and 3D, respectively,
which show good agreements with Equations (29) and (30). We
then compare these values of v

q
m with the measurements from

the differential transversal areas using Equation (46). For this,
we first constructed the histogram for the differential pore area
am corresponding to the co-moving velocity from Equation (47)
where we have used the variations of ap, aw, and an with the
saturation Sw. For this purpose, we have considered 21 different
values of saturations within 0 and 1 with an interval of 0.05.
We then integrate am from −∞ to ∞, weighted by the velocity
and normalized by the total pore area to obtain the desired co-
moving velocity with Equation (46). These results are plotted
in the bottom row of Figures 4, 5 where they are compared
with the results from direct measurements. The data points
roughly follow the diagonal straight line showing satisfactory
agreement with the theoretical formulations. However, we
observe deviations in the results that is higher compared to the
direct measurements. We believe this is due to the numerical
errors that added up from several steps in the calculation such
as the binning techniques while measuring the distributions,
taking the derivatives and calculating the integrals. Moreover, the
fluctuations for 3D are much higher compared to 2D, which is
due to the lack of averaging over different samples as we have
already mentioned earlier.

7. SUMMARY

The aim of this paper is to provide the link between the pseudo-
thermodynamic theory at the continuum level developed in
Hansen et al. [21] (see section 3) and the velocities occurring at
the pore level during immiscible two-phase flow in porousmedia.
This link is provided by defining the differential transversal pore
areas defined in section 4, which essentially correspond to the

statistical distributions of velocities at the pore level. The central
quantities are the velocity differential transversal pore area ap,
the wetting fluid differential velocity transversal pore area aw,
the non-wetting fluid velocity differential transversal pore area
an, and the co-moving velocity differential transversal pore area
am. We also consider the thermodynamic velocity differential
transversal pore areas âw and ân. The relations found by Hansen
et al. [21] for the average seepage velocities, the co-moving
velocity and the thermodynamic velocities are generalized to
the differential transversal areas here. In the following section
5, the relations are generalized to higher moments of the
velocity distributions.

The theoretical derivations are then in section 6 validated
by numerical simulations. We used dynamic pore-network
modeling where an interface-tracking model is used to simulate
steady-state two-phase flow.We used both regular pore networks
and an irregular pore network reconstructed from a Berea
sandstone for our simulations. By measuring the seepage
velocities from the differential area distributions and comparing
them with the direct measurements, we validated the essential
predictions from the earlier theoretical sections.

Both Hansen et al. [21] and the present paper are to be seen
as installments toward a theory for immiscible flow in porous
media at the continuum scale. The structure of this theory
reflects that found in thermodynamics: A set of general relations
between the macroscopic variables based on energy conservation
(i.e., the Gibbs relation) and Euler homogeneity. These general
equations then have to be complemented by an equation of
state which introduces the specifics of the system at hand. In
the immiscible two-phase flow theory we are presenting here,
Euler homogeneity and mass conservation provide the general
equations that transcend the specifics of the porous medium.
These general equations then have to be complemented by the
constitutive equations for vp and vm, which provide the specifics
of the porous medium.

The resulting set of equations may then be solved for
structured porous media where the structure are associated with
length scales larger than that set by the REV. This is e.g., seen in
the explicit appearance of the porosity φ in Equations (34)–(36).

An open question, though, is what happens when there is
non-trivial structure in the porous medium all the way from the
pore scale to the continuum scale, see [37] and [38]—or when
the saturation of the system is at a critical value, see [36]. The
fundamental Euler scaling assumption (12) would then need to
be modified, and with it, all the ensuing equations.
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