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Attentional selectivity tends to follow events considereds interesting stimuli. Indeed,
the motion of visual stimuli present in the environment atict our attention and allow
us to react and interact with our surroundings. Extractingelevant motion information
from the environment presents a challenge with regards to #nhigh information content
of the visual input. In this work we propose a novel integraih between an eccentric
down-sampling of the visual eld, taking inspiration from he varying size of receptive
elds (RFs) in the mammalian retina, and the Spiking Elemeaty Motion Detector (SEMD)
model. We characterize the system functionality with simated data and real world
data collected with bio-inspired event driven cameras, sucessfully implementing motion
detection along the four cardinal directions and diagonall

Keywords: attentional selectivity, motion detection, ecce ntric down-sampling, spiking elementary motion
detection, bio-inspired visual system, humanoid robotics, e vent driven

1. INTRODUCTION

Most modern robotic systems still lack the ability to e ecliv@nd autonomously interact with
their environment using visual information. Key requirenis to achieve this ability are e cient
sensory data acquisition and intelligent data processisgfll information about the environment
(e.g., how far away an object of interest is, how big it is,theaeit is moving) can be extracted from
sensory data. More complex interactions, for example locatimlyatrieving a particular resource,
require an attentive system that allows robots to isolagrttarget(s) within their environment as
well as process complex top-down information.

There are a number of ways for autonomous robots and naturghwisms alike to gather
information about their surroundings. Teleceptive sensdos,example those using ultrasound
or infra-red light, are common in engineered systems, anel @so exploited by some natural
organisms for navigation and object trackingglson and Maclver, 2006; Jones and Holderied,
2007. However, a closer relationship between attention antvation in the visual cortex has been
observed byvaunsell and CooK2003, showing the importance of vision when interacting and
being attentive within an environment whilst performing asta Motion detection, in particular,
represents one of the important attentional cues for faciliigtagent-environment interactions
(Cavanagh, 1992and is used by natural organisms to avoid obstacles, respoickly and
coherently to an external stimulus within a scene, or to faitention to a certain feature of
a scene Abrams and Christ, 2003 Due to its wide range of applications, motion detection

Frontiers in Neuroscience | www.frontiersin.org 1 May 2020 | Volume 14 | Article 451


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00451
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00451&domain=pdf&date_stamp=2020-05-08
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:giulia.dangelo@iit.it
https://doi.org/10.3389/fnins.2020.00451
https://www.frontiersin.org/articles/10.3389/fnins.2020.00451/full
http://loop.frontiersin.org/people/761737/overview
http://loop.frontiersin.org/people/940569/overview
http://loop.frontiersin.org/people/933103/overview
http://loop.frontiersin.org/people/589001/overview
http://loop.frontiersin.org/people/202597/overview
http://loop.frontiersin.org/people/21489/overview
http://loop.frontiersin.org/people/21102/overview

D'Angelo et al. Event-Based Eccentric Motion Detection

has been an area of research for decades and has producedracessing architecturess{ulioni et al., 2016; Haessig et al.,
number of di erent detection models, ranging from gradient- 2018; Milde et al., 20)8Even though the former mechanisms,
based algorithmsL{cas and Kanade, 1981; Benosman et alwhich leverage standard processing capabilities, showtireal-
20129, over local-plane tting Brosch et al., 2015; Milde optic ow estimation with very high accuracy, they are not
et al.,, 201p and time-to-travel methods Kramer, 199p to  suited for spiking neural networks and neuromorphic processor
correlation-based approacheddriuchi et al., 199). Gradient- This is due to the way information is represented, using real
based methods utilize the relationship between the velocitvalues in these algorithms. Additionally, the power consumptio
and the ratio between the temporal and the spatial derivativeand computational complexity irGallego et al. (2018, 2019)
Hence, to determine the speed and direction of the motion, thés too high for constrained robotic tasks. The neuromorphic
derivation of the spatial and temporal intensity for each pigel approaches on the other hand can naturally interact with sgikin
needed. All correlation-based models share the linear patles  networks implemented on low-power neuromorphic processing
temporal ltering of measured intensities, which are furmts of — architectures as information is encoded using events.
time and location. The best-known correlation motion detees In the last decade a number of spike-based correlation motion
are the biologically derived Hassenstein—Reichardt and theetectors have been introducedi(lioni et al., 2016; Milde et al.,
Barlow—Levick models{assenstein and Reichardt, 1956; Barlon2019. Of particular interest to this work is the spiking elementar
and Levick, 1966 The Hassenstein—Reichardt model was derivednotion detector (SEMD) proposed bylilde et al. (2018) The
from behavioral experiments with beetles, while the BarlowsEMD encodes the time-to-travel across the visual eld as a
Levick model was inspired by motion detection in the rabbitsnumber of spikes (where time-to-travel is inversely propartb
retina. In both cases one elementary motion detection usit ito velocity). The sEMD's functionality has been evaluated in
selective to motion in one cardinal direction (preferredetition)  Brian 2 simulations and on SpiNNaker using real-world data
and suppresses output to motion in the opposite direction (antivecorded with the Dynamic Vision Sensor (DVS)li(de et al.,
preferred direction) Barlow and Levick, 195 The models 2018; Schoepe et al., 201Burthermore, the model has been
themselves (from 1956 and 1964, respectively), are stilireessu implemented on a neuromorphic analog CMOS chip and tested
to describe motion detection in organisms such as fruit iessuccessfully. The implementation on chip presents a low Igtenc
(Borst et al., 2010; Maisak et al., 2013; Mauss et al., 201<¢t; Band low energy estimate of locally occurring motion. It fuet
and Helmstaedter, 2015; Strother et al., 201X limitation o ers the advantage of a wider range of encoded speeds as
of correlation-based detectors is that, depending on thestim compared to the Hassenstein-Reichardt model, and it can be
constant of the lters used, the detector is only receptiveato tuned to di erent working ranges in sympathy with the desired
limited range of velocities. This range can be shifted byiwar output. Event-driven cameras, compared with classic frame-
the parameters but always remains limited. based cameras, dramatically reduce the computational cost in
Environment analysis using traditional frame-by-framewal  processing data, however they produce a considerable amount
processing generally requires a robot to extract and ewaluaof output events due to ego-motion. Previous implementations
huge amounts of information from the scene, much of whichof the sEMD have applied a uniform down-sampling across the
may be redundant, which hinders the real-time response ofameras visual eld. However, recent studies have found tha
the robot. The computational resources required for visuamotion detection performance depends strongly on the locatio
processing can be signi cantly reduced by using bio-inspiredf the stimulus on the retina, due to the non-uniform distrition
event-based camerads¢htsteiner et al., 2008; Posch et al., 2011 of photoreceptors throughout the mammalian retineréschiitz
where the change in temporal contrast triggers asynchronoust al., 201, Rod and cone density in the mammalian retina is
events. Event-based cameras perceive only the parts of a sceigh at the fovea, and decreases toward the periphery. The non-
which are moving relative to themselves. Thus, they are idleniform distribution of photoreceptors in the retina has aatg
until they detect a change in light intensity above a rekativ role in speed discrimination, and it should be taken into aatio
threshold. When this happens, the pixel reacts by producings an important factor in motion estimation. Taking inspir@rti
an event characterized by its time of occurrence. Addressom the mammalian visual systenirieeman and Simoncelli,
Event Representation (AER) protocol allows the asynchronoug011; Wurbs et al., 20),3vhere Receptive Fields (RFs) linearly
readout of active pixels while providing information onthesew  decrease in size going from the retinal periphery toward the
polarity and the pixel location. As such, the cameras outpufovea {Harvey and Dumoulin, 200)] we propose areccentric
are ON-events for increments in temporal contrast and OFFspace-variant, down-sampling as an e cient strategy to furthe
events for decrements. Optical ow, the vector representatio decrease computational load without hindering performances
of the relative velocity in a scene, has a wide range & good approximation of the mammalian space-variant down-
uses, from navigationNelson and Aloimonos, 1989; Milde sampling is the log-polar mapping, describing each point in the
et al., 201} to predicting the motion of objects@elbukh 2D space as logarithm of the distance from the center and angle.
et al., 201 We propose that these models can also be useB@iven its formalized geometrical distribution, the log-polar
to direct attention toward moving objects within a scene.mapping provides algorithmic simpli cation and computational
Recent studies have developed event-based motion detection idvantages, for example for tasks such as moving a robot's
optical ow estimation both relying on conventional procasgi cameras toward a desired vergence con guratiBar(erai et al.,
architectures Benosman et al., 2012, 2014; Gallego et al., 2018995, or binocular tracking Bernardino and Santos-Victor
2019; Mitrokhin et al., 200&nd unconventional neuromorphic (1999. Recently, the log-polar approach has been studied also
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for event-driven cameras, with the proposal of the Distribati  with eccentric Itering of the visual eld are a novel approaath t
Aware Retinal Transform (DART) HRamesh et al., 20)..9 motion detection. Link to the authors' repository containitige
Although the log-polar representation would better suit themodel and the data: https://github.com/event-driven-raoiss/
implementation of the eccentric down-sampling, the results isEMD-iCub.

polar dimension would not be comparable with the classic

down-sampling of the sEMD with Cartesian coordinates. Fon METHODOLOGY

benchmarking purposes, in this paper we use an approximate

implementation of the mammalian space-variant resolution;The proposed work integrates bio-inspired eccentric down-
based on Cartesian coordinates. sampling with the sEMD Miilde et al., 201B Our aim is

In this work, we propose a novel approach to spikingto further decrease the computational resources requirgd, b
elementary motion detection, exploiting the non-uniforntires  |tering the number of incoming events into the visual eld hile
model as a down-sampling of the visual eld. By combiningmaintaining a ne resolution in the center of the visual eld
the sEMD with eccentric down-sampling, this work aims to
improve the computational e ciency of the motion computation 2.1. Eccentric Down-SampIing
and take a step toward a bio-inspired attention model where&Several physiological studies have explored the mammalian
information at the center of the eld of view is of higher retina topography such as the blind spot, fovea and eccerigricit
resolution and more heavily weighted than information aeth (Wassle and Riemann, 1978showing that receptive elds
periphery, allowing robots to exploit visual information to are uniformly overlapped in the mammalian retin®dvries
e ectively interact with their environments in real time. 8 and Baylor, 1997 The proposed eccentric down-sampling
proposed architecture is suitable for simulation on neuropiic  approximates the two-dimensional circular retina onto a sgyar
platforms such as SpiNNakeF((rber et al., 2014 and oers maintaining a quadrilateral camera resolutiorFigure 1B),
the possibility to be easily implemented for recorded and livavhere each RF spatio-temporally integrates the information
input data. To the authors' knowledge, arti cial motion deters ~ within its area of sensitivity. The RF size of the squared

*H

FIGURE 1 | The grid in(A) represents the uniform down-sampling of the visual eld in egal matrices ofn by n. (C) Represents the eccentric down-sampling
decreasing the size of the matrices going to the center of theisual eld (fovea). This implementation does not include éblind spot present in the mammalian visual
system. The three gray squares with varied hues represent tee RF sizes at different eccentricities: 0, 39, 70 pixels siant from the center. The square with the same
hue in both grids (A,C) represents a matrix with equal size in the two down-sampling; Panels(B,D) represent the encoding in horizontal and vertical trajectées of the
uniform down-sampling (B) and the eccentric down-sampling(D). On both top rows of (B,D), an example of the RFs belonging to the rst, middle and last hozontal
trajectories, and on the bottom row the vertical trajectoss is given. All RFs are represented with different gray-stafor the reason of visualization.
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approximation decreases linearly toward the foveal regitiere  ow is inversely proportional to this time-to-travel. An sEMD
each RF is de ned by one pixel. All RFs of the same size createcomposed of two pixels and a time di erence encoder (TDE).
a square ring around the foveal region, with each successiWde TDE encodes the time di erence between two pulses into
ring framing the previous one. The eccentric down-samplinghe number of output spikes produced in response to the second
reproduces the RF overlap between RFs of consecutive ringgput pulse. The number of output spikes encodes the motion
ensuring the robustness in response all over the retina. Newe ow of objects moving in front of the two pixels.
the proposed model does not include the central blind spot The synapses connecting the inputs to the TDE are of two
presentin mammalian retina. types - facilitator and trigger (seleigure 2 fac and trig). The
Equations (1) and (2) describe the relationship between théacilitator synapse gates the activity of the TDE neuron. The
receptive eld sizeR®) and its distance from the foveal region, trigger synapse elicits a response from the TDE neuron only
where &) is the center of the top left RF of each squared ring andf its input event occurs after the event from the facilitator
i D [1,..,n] is the number of squared rings over the retinal layer.synapse (compar&igures 2B,0). The output current of the
The termx in Equation (1) represents the x axis of the camerdrigger synapse increases the TDE neuron's membrane potentia
where the origin is placed in the top left cornenaXR%] is the  as shown irFigure 2C). The strength of the current depends on
maximum kernel size of the outermost peripheral ring, allea  the exponentially decaying gain variable of the facilitatorapse.
is the total distance from the periphery to the edge of the fovea Therefore, the TDE not only detects the direction of motion
but also encodes the velocity of the stimulus in the number of
output spikes and time to rst spike. The faster the stimulus

Rx) D maxR7 x C max{R? (1) propagates, the more spikes are produced by the TDE. In order
drovea to mitigate the noise present at the output of a silicon retiaa,
RED R, C & @) pre-processing ltering stage is used. It consist of neural spatio-
! 1 2 temporal Iters (SPTCs) used to detect correlated events. Two
dt 1 uniform neighborhoods, oh by n pixels, are connected to a
M D M; 1e C — (3)

Rt LIF neuron each. The neurons re once only if within a speci c
time, de ned by their time constant, 66% of the pixels in the

Each RF is a matrix of input pixels from the sensor. Every RReighborhood produce events. The proposed implementation
is modeled as a leaky integrate and re (LIF) neuron intetpgt  exploits the eccentric down-sampling (Chapter 2.1) repladirg t
the information in space and time (Equation 3), whek is  uniform ltering stage previously used with the SEMD model
the membrane potential of the RE, represents the temporal by Milde etal. (2018)
information of the incoming event into the RHE} the di erence
in time with the previous event in the RF, andis the time )
constant of the exponential decayD 1,000ns. The membrane 2.3. EXperiments
potential of every RF integrates incoming spikes until it reech The objective of this work is to quantitatively and qualivaty
the threshold threshold D 1), which is the same for all RFs. characterize the output of the TDE population receiving input
The contribution of each event to the increase in membrandrom the eccentricity lItering layer and to compare it with
potential of a neuron is normalized with the dimension of thethe TDE population receiving input from a uniform resolution
RF. As the activity of the ATIS is sparse, the normalizatiorofact Itering layer. This characterization aims to demonstrateeth
(Rnf) is expressed as a percentage of the area of the RF. Evéfvantages of our proposed model, namely a decrease in
incoming event triggers the updating of the membrane poténtiacomputational load whilst maintaining the ability to estitea
by calculating the temporal decay of the membrane since thée velocity of moving entities within the visual eld. Toith
last event. In addition, the membrane potential is increabgd purpose we characterized and compared the model using moving
the normalization factor. This way, the response from all RFs ibars with 1D and 2D motion. In the following, we will refer
normalized by their occupied space over the visual eld. Fipall to the two di erent implementations as “sEMD with uniform
if the threshold is reached, the neuron emits an output spikedown-sampling” and “sEMD with eccentric down-sampling.”
Hence, the response from each RF coherently encodes the inplite characterization of the proposed motion detection system

information in relationship with the distance from the foae (Figure 3) is achieved using simulated data. Furthermore,
. ) additional experiments are undertaken using real ifpdillected

2.2. The Spiking Elementary Motion with ATIS camerasKosch et al., 20)Imounted on the iCub

Detector (SEMD) robot (seeSupplementary Materialsfor real-world data). The

The spiking Elementary Motion Detector (SEMD) depicted insimulated data used in this work reproduces the activity of an

Figure 2 has been designed for the purpose of encoding opti€ventdriven sensor in response to a bar moving horizontakft]

ow using event-based visual sensofdilde et al., 201 The to Right (LR), Rightto Left (RL)], vertically [Top to Bottom (TB)

use of event-based sensors is suited to perceiving motioa. Th

edge of an object moving from the receptive eld of one pixel; _ , , )

to the adjacent one generates a spike in the two pixels Withe explored_the rea_ll-worldlapplllcablllty of the underlying mot!c‘m detectio
echanism prior to this work in which we demonstrated the functitityeof the

a given time di erence, depending on the velocity of the edgnderiying given variable contrast and event-rates in naturalrenvients (/ilde
and its distance from the pixels. The relative motion or opticet al., 2015, 2018; Schoepe et al., 2019
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FIGURE 2 | Basic principle of the sEMD Iflilde et al., 2018). (A) The model consists of an event-based retina sending eventsifo the Time Difference Encoder (TDE).
Two adjacent RFs are connected to the facilitation synapseral the trigger synapse, respectively(B) TDE computation for a small time differencé t between
facilitation event and trigger event. An event at the faddition synapse generates an exponentially decaying factaralled gain. A trigger pulse at the trigger synapse
shortly after causes an exponentially decaying Excitatofyost Synaptic Current (EPSC). The EPSC amplitude depends dhe gain factor. The EPSC integrates onto
the membrane potential (mem). Every time the membrane potéial reaches the spiking threshold (spike) an output digital pulse is produced.(C) Similar to(B) part but
with high 1 t. (D) Similar to(C) but the trigger pulse arrives before facilitation pulse. Noutput spikes are produced for negative time differences(E) TDE output spike
response over time differencel t between facilitation event and trigger event.

Bottom to Top (BT)] and transversely, i.e., along the diagjarf A deeper understanding of the temporal response
the Cartesian plane. from the neurons was achieved by collecting the

Firstly, we recorded the activity of the SEMD with uniform spike raster plots for nine speeds of the chosen
down-sampling and eccentric down-sampling model, while theange: (0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 05, 0.7, 1
speed of the input bar ranges from 0.01 to 1 px/ms, in accordangex/ms), respectively.

to the experiments ofSiulioni et al. (2016) This ideal input For each speed, we analyzed the response of each sEMD
allows a comparison of the two model's spike raster plots anth the population, mapping its MRF onto the Cartesian space
mean population activities. and visualizing spatial rather than temporal information.

We rst analyzed the selectivity of all sEMDs tuned toWe analyzed how the Mean Firing Rate (MFR) of each
the same movement direction, measuring the mean ringsEMD changes with speed and distance from the center
rate (MFR) of the whole population. Given the symmetricalof the eld of view. Additional experiments have been
connectivity of the sEMD neurons along the eccentric visuaperformed changing the length of the stimulus, by recruiting
eld, the responses from the population of LR, RL, TB, andmore SEMDs, should increase the MFR of the whole
BT sEMD neurons are expected to be comparable, respondimmppulation tuned to the corresponding stimulus direction.
with a large MFR to a stimulus moving along their preferredEventually, we analyzed the response of the model to a
direction and being unresponsive to a stimulus moving alondgar moving transversally exploring the response from the
their anti-preferred direction. population to 2D motion. In such a case, the stimulus does

Further investigations focus on a single population and itsiot elicit the maximum response of any sEMD, rather,
response to its preferred stimulus direction (from left tohig it elicits intermediate activity in more than one sEMD
or top to bottom), assuming transferable responses for thpopulation, that need to be combined to decode the correct
other directions. input direction.
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FIGURE 3 | Basic scheme of the pipeline. From left to right the ATIS outfus processed by the eccentric down-sampling model and sento the sEMD model, hosted
on SpiNNaker neuromorphic hardware. The SEMD model represes the layer of neurons producing spikes and encoding the mibon detection. The eccentric

down-sampling and the SEMD model representation show the satio-temporal Iter neurons (green, blue, violet, and orang square), the facilitator and the trigger, both
synaptically connected to the SEMD neuron. Facilitators Jfand triggers (T) are shown for LR SEMD neuron, RL SEMD neurdfB sEMD neuron, and BT SEMD neuron.

2.4. Experimental Setup parameters are the same. The connectivity of the respective
In all experiments the model was simulated on a SpiNNaker SEMD populations are displayed ifigure 3 The synaptic
board hosting 48 ARM-chips, each with 18 cores. The SpiNNakereights are 0.3 and the synaptic time-constarfsand i, are
architecture supports highly parallelized asynchronoudvoth 20 ms. The neuron parameters amount to: a membrane
simulation of large spiking neural networks in almost reiahé¢.  capacitance of 0.25 nF, and time-constantsand s of 10 ms
The aspect of real-time computation is of utmost importanceand 1 ms, respectively. The reset, resting and thresholdgetia

for the interaction of the robot with the environment. Foreh the neurons are de ned as85, 60, and 50 mv, respectively.
implementation of the SNN we chose 16060 pixels as a retinal To avoid a response of the SEMD-populations perpendicular to
layer resolution, to limit the number of neurons to be simigld  the preferred direction, in case of a bar moving their faattir

on SpiNNaker and to further minimize the impact of the residualand trigger synapses receive input at the same time, the input to
distortion in the fringes of the camera after calibrationhel the facilitator synapse was delayed by 1 ms.

output of the retinal layer serves as input to the uniformly and

eccentrically down-sampled ltering layer, respectivelyr e

uniform down-sampling sEMD, we chose a non-overlapping3, RESULTS

neighborhood matrix size of 44 ATIS pixels to represent one

RF. This Itering layer is simulated on SpiNNaker and consist®ur investigation starts with the characterization of tleeentric

of 1600 LIF neurons. It receives input from a SpikeSourceArraylown-sampling SEMD's response to a simulated bar moving
containing the respective ATIS pixel spike times. The synaptim the four cardinal directions with a speed of 0.3 px/ms:
weight of the connections is 0.3. In contrast, the fovea (1 RF teft to right, right to left, top to bottom and bottom to top.

1 pixel) of the eccentric down-sampling covers 10% of the totefigure 4 shows the response to stimuli moving in the preferred
retinal layer, and the biggest receptive eld has a dimensibn cand anti-preferred directions at xed velocity 0.3 px/ms (the
10 10 pixels with a normalization factor of 60% (Equation 3).middle of the regarded velocity range). In particulBigure 4A
The population is made up of 8836 LIF neurons. The eccentrishows the mean instantaneous ring rates of the preferred and
down-sampling occurs locally before the spike times of thenti-preferred direction populations. The preferred direciso
respective receptive elds are transferred to SpiNNaker in are colored in red and the anti-preferred directions in blue.
SpikeSourceArray. The nal layer of the network consists oAs expected, the preferred direction population's response is
four SEMD populations sensitive to local motion in one cardinalsigni cantly higher than the response of the anti-preferred
directions, respectively, using SEMD neuron model included i direction population. Furthermore, as expected the response
the extra models of the pyNN library. The SEMD populationsfrom all the populations to the respective preferred direction
were connected to the ltering layers along the trajectsra&s is similar in terms of instantaneous ring rate and mean gn
shown inFigure 3 The combination of the output of the four rate, and comparable among each other, thus validating the
populations allows the encoding of transversal stimuli. Eaclassumption that the response to stimuli in the preferred dii@tt
population shares the size of the down-sampling population. Fois similar for all of the populations. Assuming a bar moving
both down-sampling approaches all SEMD neuron and synapsscross the retina at a constant speed, the high variances in
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FIGURE 4 | Response of the SEMDs with eccentric down-sampling to a simlated bar moving with a speed of 0.3 px/ms:(A) Instantaneous MFR and variance of the
four sEMD-populations, each tuned to one of the four cardinkdirections, to the preferred and anti-preferred stimulusSimilarly to the SEMD with uniform
down-sampling, the response to the anti-preferred stimula is negligible with respect to the response to the preferredirection stimulus.(B) Raster plot of the left to
right (LR) population in response to a vertical bar movingdm left to right. In the rst 100 ms, the difference in the size ofhe RF can be seen, as the active neurons
spike with different spike rates and the number of active newns increases with time, when the bar moves closer to the faa. (C) Raster plot of the top to bottom
(TB) population in response to an horizontal bar moving frorop to bottom. The sigmoidal shape arises from the geometry bthe eccentric down-sampling and the
neurons' indexing.

preferred and anti-preferred directions can be explained gy thrather sparse, caused by a lower response from the peripheral
di erence in receptive eld sizes in our proposed model (seeRFs (sensitive to higher speeds). Conversely, from 150 to 400 m
Figure 1). Depending on the stimulus speed, the size of thehe time where the stimulus is expected to cross the fovea, the
RF determines a period of time in which the stimulus movesspike density is higher because the RFs at the fovea are of a size
over the RF. Thus, for the same stimulus speed, a peripheralore suited to the stimuli velocity. The impact of the proposed
RF takes more time to respond than one in the foveal regionnodel is more clearly visible in response to the vertically mgvi
leading to a di erent RF rings having a di erent sensitivity to stimulus Figure 4C). The mapping from the eccentric receptive
stimulus speed. Only the RFs along the same squared ring haedds to the neuron IDs transforms the time sequence of a waiti

the same sensitivity to the same speed. If a bar is moving sicrdsar response to a sigmoid. By contrast, the output of the SEMD
the visual eld at a certain speed, only neighbor RFs, that poedu with uniform down-sampling resembles the shape of stairs, with
spikes able to trigger the TDE neurons, will detect the stiraulu each row activated after one another, spiking with the sarte ra
Consequently, due to the varying RF sizes and varying speddhe non-uniform size of the RFs in our proposed model is again
sensitivities, the size of the RF relative to its neighbor ts¢be  the cause for the di erent spike densities produced in response
response of the TDE. This causes the visual eld to respond norte the stimulus moving at constant velocity. In this experirhen
uniformly. Figures 4B,Cshow examples of characteristic rasterthe sEMDs successfully encode the direction of the bar stisulu
plots of the preferred direction populations, in response to anoving across the visual eld in all the four cardinal dirigts,

bar stimulus moving horizontally and vertically, respeetiv The  showing a negligible response to the anti-preferred directio
color-coding indicates the direction sensitivity of the pdgtion:  This therefore shows that the eccentric down-sampling presser
left to right (red) and top to bottom (green). The rst respoms the ability of the sEMD populations to encode optic ow of
to the horizontal and vertical bar movemerfigures 4B,Q, is  moving stimuli.

delayed by 40 ms. This is due to the stimulus taking 30 ms (speed A comparison of the MFR for all populations of the uniform

of 0.3 px/ms) to travel over the rst peripheral RF (10 10 down-sampling model and the eccentric down-sampling model
px), before reaching the RF connected to the trigger. In thé rsin response to a simulated stimulus moving from left to right
50 ms of reaction to the stimulus, the resulting spike denisity at di erent velocities is shown irFigure 5. The color-coding
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FIGURE 5 | Comparison of the SEMD model with the uniform down-samplingA,B) and the eccentric down-sampling(C,D) in response (MFR) to a left to right
moving bar (simulated data). The preferred direction is ditayed in red (LR), with the anti-preferred direction in bu(RL). The response for the top to bottom (TB) and
bottom to top (BT) populations are displayed in green and maenta, respectively. PanelgB,D) are a magni cation for the anti-preferred direction (rightd left) and the
incorrect directions (top to bottom and bottom to top) of thepanels (A,C). The Figure compares the behavior from the populations of #ntwo approaches to the same
stimulus and over the same range of speeds.

remains the same as igures 4B,C additionally the response of can be extracted based on the eccentricity of the RFs with the
the populations selective to stimuli from right to left and bmn ~ greatest MFR.

to top is depicted in blue and magenta, respectivElgure 5A The response from sEMDs selected at di erent eccentricities
shows the behavior of the uniform down-sampling model, andat 0, 39, and 70 pixels distant from the center) is examined
Figure 5C depicts the behavior of the eccentric down-samplingn Figure 6in relation to the same speed range. In the original
model. Both methods show a trend of increasing MFR untilmodel (Milde et al., 201Bthe MFR of all three neurons would
target velocity reaches 0.6 px/ms. While the response from thiacrease proportionally to the target spe&dgure 6 shows that
sEMD with uniform down-sampling keeps increasing after 0.&he speed encoding for our proposed model depends on the RF
px/ms, the ring rate of the population with eccentric down- size, because the integration time for each RF size correspond
sampling gradually reduces as the target velocity approacBes 10 a speci ¢ range of velocities. This leads to a speci ¢ range o
px/ms. The same trend can also be seen for targets movirigne-di erences between two connected RFs. Each sEMD has a
in the anti-preferred directionFigure 5 shows that, while the speed limit, which depends on its tuning, above which it will be
SEMD response of the anti-preferred (right to left) and theunable to detect motiorFigure 2Eshows the TDE output spikes
incorrect directions (top to bottom and bottom to top) of the over time di erence. If a trigger event occurs before the outpu
uniform down-sampling model Kigure 5B) linearly increases of the facilitation event has had time to reach the minimum
until 1.0 px/ms, the output ring rate of the proposed eccentric threshold required, the sEMD will not re. Due to the varying
down-sampling model Kigure 5D) increases for target speeds sensitivity of di erent RF sizes and enhanced by the 1 ms syoapti
up to 0.5 px/ms and decreases thereafter. Despite the number délay of the facilitator synapse, while the response from theafove
sEMDs required for the proposed model (8,836 per populationjegion (0 px distance) drops to zero for speeds higher than 0.7
being signi cantly higher than for the uniform down-sampling px/ms, the response from the neuron with a middle eccentricity
(1,600 per population) under the same setup conditions, thé39 px distance) begins to decrease dramatically at 0.9 px/ms.
eccentric SEMDs' down-sampling shows an overall signi caniThe response from the peripheral neuron keeps increasing until
decrease in the mean output ring rate of the whole populationthe end of the examined speed range (1.0 px/ms). A possible
in response to the same stimulus. Di erently from frame-basedxplanation for the relatively low MFR of the peripheral neuron
systems, where the number of operations—and hence powerthe increased number of events needed to trigger the RRand i
consumption—depend on the number of lters, in event-driven speci ¢ sensitivity to higher speedsigure 6 shows how the RF
spiking architectures, Iters are active (and consume power}ize a ects the behavior of the correspondent neuron, obtejra
only when they receive input spikes and produce output spikesvider operative range from the whole population. In comparison,
Figure 5 shows that the proposed eccentric down-samplinguniform down-sampling where all the RF sizes are the same
model is able to dierentiate between stimulus in preferredprovides a comparatively limited operative range.

and anti-preferred directions more e ciently than a model thi The spike raster plotsH{gures 4B,Q provide the temporal
uniform down-sampling, without sacri cing performance. The response from the population but they do not provide any spatial
proposed model still maintains an order of magnitude di erenceinformation. The visualization inFigure 7 maps the response
between MFR for stimulus in the preferred direction vs. anti-of the sEMDs to the corresponding x and y locations for
preferred direction. Although the eccentric down-sampled ralod three di erent speeds: slow (0.03 px/miSigure 7A), medium
does not allow for an inference of stimulus velocity to be mad (0.3 px/ms,Figure 7B) and fast (1.0 px/msFigure 70). The
based on the MFR of the entire population, the same informatiordata displayed inFigure 7B corresponds to the spike raster
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FIGURE 6 | Response (MFR) to a left to right moving bar (simulated) froRFs (eccentric down-sampling) of the central horizontahlé of the visual eld at different
eccentricities (distances from the center of the eld of viey In blue, orange and green at 0, 39, and 70 pixels distant frorthe center, respectively (sed-igure 1).
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FIGURE 7 | Response from the population of SEMDs with the eccentric dow-sampling mapped into the cartesian space with a camera reslution of 160 160
pixels. The color-code heatmap represents the MFR of each RFhe stimulus was a bar moving (simulated data) from left taght with constant speed: 0.03 (A), 0.3
(B), 1.0 (C) px/ms, respectively.

plot in Figure 4B Figure 7 shows that the MFR of the whole region of diverse, overlapping connected RFs improves the
population increases in relation to the speed: 0.26, 33.44638.likelihood of the SEMDs picking up the stimulus motion. This
Hz, respectively. The spatial visualization highlights thecfion  does not exist in the regions above and below the fovea,
of the eccentric down-sampling. As proposedTbyschitz et al. in which each RF will only be connected to horizontally
(2012, the slow speeds are detected primarily in the foveahdjacent RFs of the same size, hence the relatively low MFR
region, where RFs have the smallest dimension and are clos@sthese regions.

to one anotherFigure 7A). As the stimulus speed increases, the The response on the right side of the visual eld is attenuated
peripheral region starts responding from the rst squared ringin Figures 7B,Cbecause the SEMDs from the last RF ring are not
around the foveal regiorH{gure 7B) to the rings with the largest connected with any subsequent facilitator (although thossinot

RF size for the fast speeligure 70. cause a problem in detecting stimuli entering the scene).

The response for each RF square ring is dierent for As shown inFigure 7, the RF-ring of maximal response
horizontal and vertical components (most obvious exampleppears to move toward the periphery with increasing velocities
being inFigure 7C This is because the sEMDs in this case ar€&igure 8 shows the mean and variance of the MFRs at
only connected horizontally (as we are working with lefyht  di erent eccentricities for velocities 0.03, 0.3, and 1.0nps/
motion). Therefore, at the left and right peripheries, these i Figures 8A—C respectively. It is clearly distinguishable, that the
a descending and ascending scale of RF sizes approaching amaximal response in MFR shifts toward the periphery with
moving away from the foveal region, respectively. A concéatta increasing velocities.
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FIGURE 8 | Mean and variance in MFR of RFs at different distances from ¢hcenter of the visual eld. The stimulus is a moving bar (simated data) going from left to
right at speeds of: 0.03(A), 0.3 (B), 1.0 px/ms (C).

The higher variances observed at greater eccentricities
(distance from the center) irFigures 8B,G can be explained 80
by the di erent RFs response from the horizontal and vertica
component of the squared rings (which can be seeigure 7).
The low MFR at 29 pixelsHgure 8A) from the center (fovea
region from O to 28 px) can be explained by the connections
between RFs of the rst peripheral squared ring (about 3
px) and the fovea, where each RF has a dimension of 1 p
This sudden increase in size leads to a delay in response fran
the TDE receiving input to the trigger synapse from the large
receptive eld.

To compare the trend of the RFs' peak response increasing in
eccentricity with increasing stimulus speed, the center agsof
the RFs response is plotted in relation to the speed range, from %50 0.2 0.4 0.6 0.8 1.0
0.01 to 1.0 px/ms (seBigure 9). Figure 9 shows that for low speed [pxims]
speeds (0.01-0.06 px/ms) the center of mass of the RFs' responsRsure 9 | Center of mass (solid line) of the neurons response locatico a
shifts from 0 to 27 pixels (distance from the center). The eent | left to right moving bar (simulated data), from 0.01 to 1.0 pins. The dash line
of mass then plateaus from 0.06 to 0.6 px/ms, where only theindicates the end of the foveal region.

RFs of the edges of the foveal region respond to the stimulus.
For higher speeds (from 0.6 to 1.0 px/ms), the eccentricithef t

center of mass of RF responses starts to increase again, due to a . ) . )
lack of activity in the fovea. The center of mass of RF respons@@d 160 px bar. This is because the bar is vertically centered |

eventually shifts to the periphery, reaching a distance of 49 pgpe.wsual eld, and so longer pars cover more of the perlphera!
from center. region—where each RF requires a greater number of events in

A comparison of the MFR of the SEMD with uniform down- order to be activated. Finallizijgure 12shows the behavior of the

sampling and eccentric down-sampling has been explored WitRhOpwagoln toabar mpving transversr(]ely, re\éealing the respof;se
simulated data.Figure 10 shows the dierence in response, 1€ Model to 2D motionFigure 12Ashows the response to a bar

normalized for the total number of neurons, from all population M©Ving from the top left corner to the bottom righFigure 128
of SEMD neurons with uniform down-sampling and eccentric 7o the top right corner to the bottom leftigure 12Cfrom
down-sampling. Even though the uniform down-sampling modelth® bottqm left to the top right corner angtigure 12Dfrom the
has fewer neurons than the eccentric down-sampling moddittom right corner to the top left.

(1,600 compared to 8,836 neurons, respectively) the MFR from All the explore_d cases report a similar response from two kind
the eccentric down-sampling is considerably less at eacodl of SEMD populations and a response close to zero from the other
speed, increasing computational and power e ciency neurons. The combination of the responding SEMD neurons

Figure 11shows the MFR from the population of LR SEMD successfully detects the transverse motion, showing siviR

neurons in response to a stimulus moving from left to right, atV@lues of the neurons that actively respond.

a medium speed of 0.3 px/ms, with bars of varying lengths: 10,

50, 100, and 160 pixels, respectively. The plot shows a positie DISCUSSION

correlation between the size of the bar and the response from

the neurons sensitive to the corresponding directibigure 11  The biological role of detecting temporal changes comprise two
shows that the MFR increment decays as the length of the bafiechanisms: the detection of fast and slow movements. Téte r
increases - most noticeable when comparing the di erence imne to identify an entering stimulus into the scene and tteela
MFR between the 50 and 100 px bar, and that between the 1@Me to recognize its spatial structutdi(rray et al., 1988 Sudden
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FIGURE 10 | Comparison, between the sEMD model with the uniform down-smnpling (1,600 neurons) and the eccentric down-sampling (836 neurons), of MFR
from the LR sEMD neurons in response to a left to right movingar.

FIGURE 11 | MFR response of the sEMD the LR sEMD neurons for a left to rightoving bar at 0.3 px/ms with different bar lengths: 10, 50, 100 160 pixels,
respectively.

onset of motion can attract our attentiom\prams and Christ, by the mammalian retina. The proposed model successfully
2003, 2005, 20pMHence, fast movements, speed and acceleratiafetects the correct direction of an edge moving in the eld of
similarly increase our perception of a threat—making it aview at speeds ranging from 30 to 1,000 px/s, being suitable
noticeable stimulus and grabbing our attentionldward and for the coarse motion processing of robots interacting witle t
Holcombe, 201 Thus, motion detection collaborates with environment Giulioni et al., 201R
attentional mechanisms to react on time and interact with With respect to the uniform down-sampling implementation
the surrounding. presented in the original work\(ilde et al., 201§ the eccentricity

In this paper, we have presented a novel implementation ahodel signi cantly decreases the overall activation of heac
motion detection based on the use of spiking elementary nmotio motion detector at every investigated speed. The reduceihgpik
detectors coupled with non-uniform down-sampling inspired activity makes this implementation more power e cient even
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FIGURE 12 | MFR response of the SEMD neurons reacting to a bar moving traversely at 0.3 px/ms.(A) Bar moving from the top left corner to the bottom right
corner, (B) bar moving from the top right corner to the bottom left corner(C) bar moving from the bottom left corner to the top right cornerand (D) bar moving from
the bottom right corner to the top left corner. The length oftie bar covers the whole visual eld.

in face of an increased number of elementary motion detexctor place the salient region in the fovea. A strong and low latency
To achieve the same result in the uniform down samplingeesponse of peripheral SEMDs to fast stimuli could override the
implementation, the size of the spatio-temporal lters shouldsalience of static objects. The characterization of thpaese
be increased, at the cost of a coarser resolution in the wholgf the sEMDs in the non-uniform down sampling shows the
visual eld and a reduced sensitivity to low velocities. Thesame qualitative overall behavior for real-world stimutipg/ing
eccentricity implementation overcomes this issue mairitejn robustness to noise and to changing the overall spiking gtiv
the sensitivity for low and fast speed — distributed over deet  of the input. The analysis of the individual responses of the
regions of the eld of view — while signi cantly reducing the sEMDs at di erent distance from the fovea shows variability
number of incoming events to be processed by the down-streamhat depends on the discretisation of the receptive elds and
computational layers. on the uneven distribution of the receptive eld sizes. This
In the proposed non-uniform down sampling, the elementarye ect possibly depends on the Cartesian implementation of the
motion detectors are tuned to dierent ranges of speedeccentricity, that approximates the distribution of the redept
depending on their position in the eld of view. The peripheral elds with a rectangular symmetry. A polar implementation
sEMDs are characterized by large receptive elds and are henoé the same concept will reduce the e ects of discretisation
tuned to higher speeds, that progressively decreases toward tand improve the overall population response. In a polar
fovea. Hence, the proposed implementation encodes the speidplementation, the direction of each SEMD will be alignedgo
based on the location of the active sEMD. RFs with similathe polar coordinates (radius and tangent), rather than glon
size work in a similar range of speed producing redundanthe Cartesian directions, further improving the varialilin the
information, and making the decoding of the population actjvit overall response of individual modules and allowing decgdif
robust. Moreover, thanks to the sensitivity to high speeds o$timulus direction beyond the cardinal ones.
the peripheral RFs, the detection of objects moving into the
visual eld is immediate. The SEMDs in periphery will trigger
a response to a fast stimulus entering the eld of view with
extremely low latency. This behavior is desirable in ougéar

scenario, where a robot shall react quickly to fast approag:h_mThe datasets generated for this study can be found in the https:

objects suddenly entering the eld of view, and attracting i . . - .
attention. Furthermore, the combination of RFs with di erent github.com/event-driven-robotics/SEMD-iCub.

size, processing events on the same eld of vision, allow&iwgr

with a wider operative range of speeds. In the nal application,

this motion detection module will be used as one of the featur AUTHOR CONTRIBUTIONS

maps used to compute the salience of inputs in the eld of view,

directing the attention of the robot to potentially relevasttimuli  GD'A: main author of the manuscript and developer
that will be further processed once a saccadic eye motion willf the software. CB, EC, and MM: supervision
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