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With the growing use of machine learning (ML) techniques in hydrological applications,

there is a need to analyze the robustness, performance, and reliability of predictions

made with these ML models. In this paper we analyze the accuracy and variability

of groundwater level predictions obtained from a Multilayer Perceptron (MLP) model

with optimized hyperparameters for different amounts and types of available training

data. The MLP model is trained on point observations of features like groundwater

levels, temperature, precipitation, and river flow in various combinations, for different

periods and temporal resolutions. We analyze the sensitivity of the MLP predictions at

three different test locations in California, United States and derive recommendations

for training features to obtain accurate predictions. We show that the use of all

available features and data for training the MLP does not necessarily ensure the best

predictive performance at all locations. More specifically, river flow and precipitation

data are important training features for some, but not all locations. However, we find

that predictions made with MLPs that are trained solely on temperature and historical

groundwater level measurements as features, without additional hydrological information,

are unreliable at all locations.

Keywords: machine learning, groundwater level prediction, feature selection, sensitivty analysis, hyperparameter

optimization

INTRODUCTION

Groundwater is an important source of freshwater, accounting for almost 38% of the
global irrigation demand (Siebert et al., 2010). With growing economies and increasing
food demand, the stress on freshwater aquifers has increased in places like North America
and Asia (Aeschbach-Hertig and Gleeson, 2012). This situation is further aggravated by
increased climate variability. In California, USA, groundwater provides nearly 40% of the
water used by the state’s cities and farms. Many of the state’s groundwater basins have
experienced long-term overdraft due to withdrawal rates exceeding recharge rates. The
negative impacts of long-term overdraft include higher energy requirements for pumping
water from deeper wells, land subsidence, reduced river flow, and impaired water quality
(especially in coastal aquifers due to saltwater intrusion). Thus, in 2014, following a series
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Sensitivity Analysis of the Prediction
Performance to the Length of the Training
Time series Data
Analyzing the sensitivity of the MLP’s predictive performance to
the length of the training data addresses two questions. First, we
will examine if the predictive performance of the MLP model
is reduced by using a smaller training set. Second, by using a
shorter time series for HPO and training, we can assess the
accuracy of groundwater predictions for a longer time period.
We experiment with using only 2 years of data for training and
2 years of validation, thus testing the MLP’s prediction accuracy
over 4 years. At the three sites, our MLP models are still able to
predict the groundwater levels fairly accurately compared to the
base scenario (Figure 3).

TABLE 4 | Optimal lag hyperparameter chosen in the hyperparameter

optimization process at all three sites and for each scenario.

Scenario label Butte Shasta Tehama

G-T-P-Q-4-d 335 70* 315*

G-P-Q-4-d 350 260 200

G-T-P-4-d 350 95 290

G-T-Q-4-d 355 100 260

G-P-4-d 335* 250 305

G-Q-4-d 355 230 285

G-T-4-d 150 45 355

G-T-P-Q-2-d 305 150 170

G-T-P-Q-4-m 23 3 21

(*) indicates the best performing input feature scenario at each site.

At the Butte site, the overall prediction accuracy is the same
as the base scenario with a slightly higher prediction variability
(Figure 9). The seasonality in the groundwater levels (less water
in the summer and more in the winter) is captured well. The
groundwater predictions are close to the true values for the first
1.5 years of prediction (2014–2015), but in the subsequent years
the model predictions fail to accurately capture the highs and
lows. The errors of the groundwater predictions accumulate over
time, due to how we make next-day predictions [use the previous
[lag] days of groundwater level data, and at some point, we start
making predictions based on predictions and thus the errors
accumulate]. At the Tehama site (see Supplementary Figure 22),
the MLP model makes accurate predictions for the first 2 years
(2014 and 2015) and subsequently we observe that the MLP
predictions fail to capture the highs and the lows. This may
either be related to error accumulation or a missing feature,
such as snow pack or pumping data. A similar result holds
for the Shasta well: the MLP is able to capture the seasonal
behavior of the groundwater levels, but as we make predictions
over multiple years, the prediction inaccuracies increase (see
Supplementary Figure 21).

DISCUSSION

Future Prediction Using MLP Models
With a suitable choice of input features (e.g., G, T, P, and
Q), MLP models can reliably predict groundwater levels for
up to 1 year and possibly longer at a daily frequency. This is
observed at all sites despite the differences in the contribution
of groundwater to the county’s water budget. In addition, models
built exclusively withmeteorological variables using temperature,
precipitation and groundwater as input features (G-T-P-4-d)
also show a good prediction accuracy of about 85–90%. Long-
term forecasts of these meteorological variables generated from

FIGURE 9 | Groundwater level prediction at Butte with input features: groundwater level, temperature, precipitation, and river flow when using only 2 years of data

each for hyperparameter optimization process and training. The MLP is able to capture the seasonality of the groundwater levels, and it reflects well the groundwater

levels during the drought years and the wet years.

Frontiers in Water | www.frontiersin.org 12 November 2020 | Volume 2 | Article 573034



Sahu et al. Groundwater Level Prediction Using ML

different weather models can potentially be used to predict future
groundwater levels. This can help derive sustainable groundwater
management strategies.

Impact of Data Availability
A major challenge in this study was the selection of well sites
and monitoring stations that adequate measurement for training,
and located in near proximity. For example, at the Shasta site,
we would ideally use the discharge rate of the Sacramento River
rather than the CowCreek in theMLPmodel. But we did not find
such a monitoring station near the well site. On the other hand,
it is also difficult to find groundwater wells with a long period
of measurements close to river flow or weather monitoring
stations. Experiments with MLP models trained on monthly
averaged data and the analysis of optimal lag hyperparameter
chosen at the three sites (for different scenarios) also suggest
that access to a longer time range of data can help build better
prediction models. This recurring issue of site selection currently
makes DL techniques inapplicable in the majority of watersheds
in California.

Models built from monthly frequency data show a higher
prediction error than the daily frequency-based model and are
unreliable for making long term (multi-year) predictions. We
found that daily data were unavailable for most of the sites in
California. In fact, out of the 3,907 monitoring wells in the state,
only 387 had daily measurements through California statewide
groundwater elevation monitoring (CASGEM) network, and
most of the high-resolution datasets were only available for wells
in northern California, in mostly low-priority basins. Prediction
accuracies can be improved with access to higher-resolution
daily data, or longer monthly datasets (spanning decades).
Additionally, our current analysis is performed in the absence
of pumping data, which is not publicly available. Yet pumping
is a critical component of groundwater budget, and in several
places the primary driver of groundwater table depths. Access
to such data can potentially better equip our current DL models
with human behavior and improve management strategies. The
potential advantage of using additional data for obtaining more
accurate predictions may lead to investments into more in-situ
or remote measurement infrastructure. Based on our current
results, we recommend using more than 2 years of daily data
for training.

Impact of Training Stochasticity on
Prediction Results Matters
In addition to the prediction accuracy, we find that it is also
important tomeasure the prediction variability of theMLP, which
is due to stochasticity in the training process. The Keras tool used
in the study generated different weight optimized MLP models
for the same set of hyperparameters and training data.We cannot
analyze future predictions or derive water management strategies
based on a single training trial. We recommend training a DL
model of a given architecture multiple times, as the stochasticity
of the optimizer used during the training leads to multiple
prediction models that are consistent with the training data.
The resulting model ensembles allow us to assess the model’s
prediction reliability. Thus, in addition to potential uncertainty in

the data collected we also need to take into account the variability
in the training process. Our study showed that models trained on
groundwater, temperature, precipitation, and temperature data
(G-T-P-Q-4-d) yield the lowest prediction variability, whereas
models trained only on groundwater and temperature data
have the highest prediction variability. Note however, that low
variability does not necessarily mean high prediction accuracy,
and thus both metrics need to be taken into account when
assessing the quality of the DL model predictions. In a future
study, one can tackle this problem from a bi-objective perspective
in which the prediction accuracy is maximized and the variability
is minimized simultaneously.

Automated HPO Framework for Future DL
Applications
A key innovation in this study is the use of an HPO framework to
test different model architecture for making prediction models.
The setup of our study, and the HPO is general enough to be
applicable to any other type of neural network (e.g., CNN and
LSTM). The sensitivity analysis requires conducting multiple
experiments testing different input feature combinations and
our results indicate that each experiment requires a different
combination of hyperparameters. Hand tuning the model
architectures for each experiment can be a cumbersome process
especially when the number of features is large. The HPO
framework used in this study automates this process and ensures
the best model architecture (within the given bounds). We can
also potentially incorporate the choice of input feature into the
framework as a decision variable. The HPO formulation will
then choose the best combination of input features and its best
architecture simultaneously.

Multi-Well MLP Models
The current analysis has been conducted for single groundwater
well sites only, which does not reflect the overall health of
a groundwater aquifer. Thus, a spatially distributed parameter
sensitivity analysis across multiple groundwater well sites and
climatic parameters may reflect a more realistic behavior of a
groundwater aquifer and human use. Our previous study (Müller
et al., 2020) successfully built DL models to simultaneously
predict daily groundwater level at three locations in Butte county.
However, we saw that when we use an average prediction
error metric to measure the prediction performance across the
three wells, only two wells have accurate predictions. Thus, one
remedy could be a reformulation of the objective function by
introducing weights that reflect the importance of each well to
ensure optimal prediction performance across all wells. Although
training can be compute-intensive, once trained and optimized,
DL models are a more viable option for performing multi-
scenario analyses than high-fidelity simulation models, because
the required computational time to make future predictions
is orders of magnitude lower. Our multi-scenario analysis can
readily be used by groundwater managers who have access to
historical groundwater and local weather data.
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CONCLUSION

With the increased deployment of ML tools in hydrological
sciences, there is a need to understand the sensitivity of their
prediction performance to different input features. Groundwater
level timeseries are highly non-linear and non-stationary, making
them difficult to model with standard ARIMA models. DL
models offer a promising alternative for capturing the complex
interactions between features such as groundwater levels, river
flow, temperature, and precipitation.

In our study, we were able to accurately predict groundwater
levels at three different groundwater well locations (Butte,
Shasta, and Tehama) in California using an MLP model.
Additionally, we conducted a sensitivity analysis using multiple
different feature combination scenarios and compared the
accuracy and reliability of the resulting predictions. Our analysis
shows that models trained on groundwater, temperature, river
flow and precipitation data (G-T-P-Q-4-d) lead to the best
predictive performance at two of the three sites, while models
trained without hydrological features and based only on past
groundwater and temperature data consistently showed the
lowest prediction accuracy at all locations. The best predictive
models are shown to reliably predict groundwater levels at least
1 year into the future. The MLP prediction performance is
also affected by the data’s temporal resolution and the length
of the training period. The MLP models trained with only 2
years (rather than four) of data still gave reasonable accuracy
and indicate the potential capability for long-term predictions.
In addition to accuracy, we find that it is also important to
measure the prediction variability caused by the stochasticity in
the training process. The MLP model architectures for different
choices of input features, training length and temporal frequency
which were obtained using a hyperparameter optimization

framework indicate that the optimal combination is location-
specific. These results indicate that DL models are a good
choice for modeling groundwater levels, contingent on the
availability of adequately long time-series of prior groundwater
levels and some hydrological variables (precipitation or river flow
at the minimum).
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