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Lithium-boron (Li-B) alloys play an important role in the fields of thermal batteries

and Li metal batteries, where the electrochemical performance is highly dependent on

microstructure homogeneity and the Li content. In this study, computed tomography (CT)

scanning has been firstly used to study the elemental content and spatial distribution

of Li in a Li-B alloy. For a commercial Li-B alloy, quantitative relationships between the

CT values, [Hu], and the weight percent of Li, wT−Li, and the density, ρLi−B, that is,

[Hu] = 13563.8
36.2×wT−Li−2.8 − 1, 016.2 and [Hu] = 790.1 × ρLi−B − 1, 016.2, respectively.

The experimental data were found to be in good agreement with current theory. The

CT scanning method was non-destructive, and proved to be fast, highly accurate, and

low-cost for the characterization of Li-B alloy ingots in terms of elemental composition,

density, and uniformity.
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INTRODUCTION

Lithium-boron (Li-B) alloys play an important role in the fields of the thermal batteries and Li
metal batteries, and this is attributed to several factors including high specific capacity, high specific
power, the in-situ formed three-dimensional LiB skeleton, and similar electrochemical potential
to Li (Guidotti and Masset, 2008; Duan et al., 2013; Cheng et al., 2014; Zhang et al., 2014; Liu
et al., 2018; Zhong et al., 2018; Wu et al., 2020). The electrochemical performance of Li-B alloys
is highly dependent on the homogeneity of the microstructure, the Li content, and the presence
of defects (such as holes, cracks, impurities). For example, the existence of cracks may lead to
a direct failure of the thermal battery, which often has to operate under harsh environmental
conditions (high acceleration, spin, shock, and vibration) and thus reliability is a strict requirement
(Guidotti, 1995). Moreover, the Li content will affect the discharge capacity, thus highly accurate
measurement is required. However, the prepared Li-B alloys are usually unstable in nature due to
the following factors: (1) The exothermic nature of the preparation process for Li-B alloy usually
results in local overheating, which worsens the uniformity of the prepared samples. (2) During the
final solidification process, shrinkage pores are formed within the alloy ingot. The pores, which
originate from the inconsistent cooling rate from the outside to the inside of the ingot, will affect
the local distribution of compounds. (3) Boron powder, for example, tends to sink due to gravity
despite the use of vigorous stirring, which, in turn, results in volumetric shrinkage of the ingot
and the synchronized filling of liquid Li into the skeleton structure. Therefore, knowledge of the
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FIGURE 8 | Li spatial distribution derived from the CT values.

the performance of ICP-AES and the density test results
(see later).

The Spatial Distribution of Li Content and Density

From the CT Values
The CT data for scanning at three locations (center, 1/2 to
the center, and edge positions) along the axis of the sample
are presented in Figure 7A. It can be seen that the CT values
and the densities of the Li-B ingot gradually decrease from
bottom to top and the density reaches a minimum at the middle
of the ingot. It is clear that the CT value and the density
at the top-center are the highest. A comparison of the CT
values and corresponding densities of the Li-B ingot before and
after CIP is given in Figure 7B. The density of the ingot was
increased by 2.5% on average after CIP. In addition, the increase
of the density in the center and bottom locations was larger
than that in the top, indicating that CIP is an effective way
to remove the pores within the Li-B ingot and thus enhance
density given that the existing pores are known to reduce the
absorption coefficient and lower the CT value (Liu et al., 2001).
According to the change of the CT value before and after
CIP, the porosity (θ) of the Li-B ingot can be calculated by
the formula θ = 1 − ([Hu] + 1, 000)/( [Hu]′ + 1, 000),
and the average porosity of the Li-B ingot is about 2.5%.
Compared to the CT image before CIP (Figure 7C), the CT
image after CIP (Figure 7D) exhibited a reddish tinge, which
is consistent with the disappearance of pores and an increase
in density.

According to Equation (8), the mass fraction of the total
Li (wLi) in the Li-B alloy is negatively correlated with the
CT value, which provides an effective method to determine
the Li content and distribution. As shown in Figure 8, the
spatial distribution of Li was not regular. The content of Li
at the edge was always higher than that of the center along
the whole axis. The use of CIP can decrease the number
of the holes, thus the distribution characteristics for the Li
content reveal the synthesis and solidification characteristics

TABLE 3 | Li content of the Li-B alloy (wt.%).

This work Literature

1# 2# 3# 1# (Niu et al.,

2014a)

2# (Ren et al.,

2019)

3# (Niu et al.,

2014b)

Specified

value

61 61 61 64 60 58

ICP-AES

measurement

58.0 57.8 57.6 60.5 55.5 55

Error 4.9% 5.2% 5.6% 5.4% 7.5% 5.2%

FIGURE 9 | Comparison of the densities as measured by the Archimedes and

the CT methods.

of the Li-B ingot. Given that the edge of the sample would
have been first cooled during the cooling process after the
reaction, the liquid Li-Mg at the edge would have solidified
first, and the subsequently formed shrinkage cavities would
have been then supplied by the internal unsolidified Li-Mg.
During the final stage of solidification, there would have been
no supplementary liquid Li-Mg available for filling of the
internal Li-Mg cavities, thus a lot of shrinkage cavities would
have formed, which is consistent with the color difference
in Figure 7C. The change of the Li content in Li-B alloy
ingot resembled a bowl due to the shrinkage in the internal
regions of the ingot, which is consistent with the general metal
melting characteristics. For a Li-B alloy ingot with a 61% Li
content, the fluctuation in Li content was about 1%. The Li
content derived from the measured CT value was close to
the theoretical value, hence confirming high accuracy for the
CT method.

Comparison of the CT Method and Other Methods
One of the traditional methods for determining the elemental
content of alloys including Li-B alloys is ICP-AES. Therefore,
Li-B ingots were analyzed by ICP-AES and the results for
the Li content of the alloy are shown in Table 3. It can be
seen that the measured Li content was significantly lower than
expected. The average error calculated for Li was 5.63 wt.%.
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The low measured value may reflect the fact that during the
sample dissolution process, a large number of bubbles were
generated due to the intense reaction of the Li-B alloy with water,
causing volatilization of water, a pungent odor, and possible
analyte loss.

The densities of the Li-B ingot as measured by the CT
method and Archimedes method are given in Figure 9. It can
be seen that the differences in the density measured for the two
methods is < 0.5%, hence confirming the effectiveness of the
CT method.

This work demonstrates that CT scanning is an effective
technique for spatially resolved measurement of the Li content
and density of the Li-B alloy. The density and the Li content
of the alloy can be readily determined according to the
CT value for the specific location. Furthermore, there is
no known interference effect. All the factors make the CT
scanning an effective and non-destructive analysis technique
for the detection of the Li content and density of the
Li-B ingot.

CONCLUSION

A medical CT scanner has been developed for spatially
resolved measurement and imaging of Li-B alloys. The
absorption of X-rays was shown to conform to the Beer-
Lambert law and this permitted quantitative relationships to
be established between the CT values and the Li content as
well as the density of the Li-B alloy deduced. The relative

accuracy of the CT method was high (± 1 HU), and the
absolute accuracy for determination of the Li content was
< 0.5%, which was superior to that of ICP-AES. This new
method will greatly assist in advancing the fabrication process
for Li-B alloys.
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