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Precision medicine and molecular systems medicine (MSM) are highly utilized and

successful approaches to improve understanding, diagnosis, and treatment of many

diseases from bench-to-bedside. Especially in the COVID-19 pandemic, molecular

techniques and biotechnological innovation have proven to be of utmost importance

for rapid developments in disease diagnostics and treatment, including DNA and

RNA sequencing technology, treatment with drugs and natural products and vaccine

development. The COVID-19 crisis, however, has also demonstrated the need for

systemic thinking and transdisciplinarity and the limits of MSM: the neglect of the

bio-psycho-social systemic nature of humans and their context as the object of

individual therapeutic and population-oriented interventions. COVID-19 illustrates how

a medical problem requires a transdisciplinary approach in epidemiology, pathology,

internal medicine, public health, environmental medicine, and socio-economic modeling.

Regarding the need for conceptual integration of these different kinds of knowledge

we suggest the application of general system theory (GST). This approach endorses

an organism-centered view on health and disease, which according to Ludwig von

Bertalanffy who was the founder of GST, we call Organismal Systems Medicine (OSM).

We argue that systems science offers wider applications in the field of pathology

and can contribute to an integrative systems medicine by (i) integration of evidence

across functional and structural differentially scaled subsystems, (ii) conceptualization of

complex multilevel systems, and (iii) suggesting mechanisms and non-linear relationships

underlying the observed phenomena. We underline these points with a proposal

on multi-level systems pathology including neurophysiology, endocrinology, immune

system, genetics, and general metabolism. An integration of these areas is necessary to

understand excess mortality rates and polypharmacological treatments. In the pandemic

era this multi-level systems pathology is most important to assess potential vaccines,

their effectiveness, short-, and long-time adverse effects. We further argue that these

conceptual frameworks are not only valid in the COVID-19 era but also important to be

integrated in a medicinal curriculum.
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FIGURE 3 | Today’s biomedical research is faced by the challenge that descriptions of the systems of interest are restricted to different sublevels. A high-level theory

covers a systems view, addressing large subsystems, e.g., multi-organ feedback control systems or even the whole organism including psychosocial relations. This is

complemented by a low-level description of molecular structure and reactions. Unfortunately, the vertical translation, e.g., how molecular data are integrated into the

high-level system description, is difficult. Methods of vertical integration include affine subspace mapping (top-down inference), sensitivity analysis (bottom-up

reasoning) and graphical tools. They require, however, certain preparative steps on both tiers of research to be feasible (74).
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partially to each other, with different patterns of dynamics.
They represent a body-wide antagonistic regulation of functions
(heart, blood vessels, lungs, pancreas, gut system, etc.). On
a second operational level, synergistically connected with
NA, the neurotransmitter dopamine (DA), and serotonin (5
hydrotryptamine, 5-HT) exhibit a partial antagonism. On the
side of ACh, fast operating excitatory glutamate (Glu) and
inhibiting GABA show also partial antagonism. Clinically, these
interactions can be seen in disorders like Parkinson’s disease
with a dominance of acetylcholine over dopamine because of
loss of dopamine cells: substitution of dopamine can induce
a psychotic syndrome and in turn neuroleptic treatment of
psychoses can evoke a Parkinson’s syndrome. By integrating such
antagonistic effects into a neurochemical network model that can
be simplified as a “neurochemical mobile,” the neurochemical
basis of several neuropsychiatric syndromes can be described,
and explained even quantitatively by computer simulations
(89, 90). Effects of new medications (glutamate antagonists)
can be predicted as well (anti-depressive effects): in depression
NA, DA, and 5HT exert a hypofunction in neurotransmission,
compared to a hyperfunction of ACh, Glu, and GABA. In
consequence, selective serotonin reuptake inhibitors (SSRIs) that
enhance 5HT transmission work as antidepressants and also
glutamate antagonists such as ketamine can reduce depressive
syndromes (91). Interestingly, all these neurotransmitters operate
on probably all organismic cells and many body cells even
produce transmitters (e.g., immune system).

The Endocrine System
The endocrine system is a multi-organ system partially centered
around the pituitary gland (92). The principle of asymmetric
antagonistic convergence is only weakly confirmed in the
endocrine system, but at the peripheral organ level the interplay
of glucagon and insulin confirm this concept. The most
important hormone is cortisol, a steroid hormone produced in
the adrenal glands. It involves a range of processes related to
metabolism, stress and immune response. It works ergotropic
and is partially synergistically to NA and classic thyroid
hormones. The main feature of the cortisol system is its multi-
level upstream connection with the CNS via hypothalamus
and the pituitary gland. This connectivity is often quoted
as hypothalamus-pituitary-adrenal or HPA axis: HPA axis
elevates cortisol level which in turn inhibits the HPA axis via
glucocorticoid receptors in hypothalamus and pituitary gland as
a feedback inhibition. This feedback loop exhibits several cyber-
systemic features that make several pathologies [e.g., stress; (63)]
understandable: delayed feedback with consecutive oscillations,
delays, adaptation, allostasis etc. characterize the dynamics of
endocrine systems.

Interestingly, the HPA axis has multiple antagonists on
various anatomical levels (each of them antagonizing certain
partial functions) (Figure 4). They include growth hormone
(anabolic action), insulin (glucose-lowering and anabolic
function), hormones of the non-classical renin-angiotensin
system (angiotensin 1-7, angiotensin 1-9, angiotensin A, and
alamandine with hypotensive and hyponatremic actions) and
thyroid hormones (HPT axis, central antagonism). It is therefore

not surprising that the HPA axis is upregulated in critical
infectious diseases, including COVID-19, while the HPT axis is
downregulated (93).

The Immune System
Regarding the principle of antagonistic convergence, the
immune system has a (fast) pro-inflammatory and (slow) anti-
inflammatory functional differentiation, for instance by signaling
via Th1 and Th2 cells (94). Interferon (IFN) and tumor necrotic
factor (TNF) are secreted from Th1 cells that amongst other
effects activate macrophages and inhibit activity of Th2 cells that
in turn can also inhibit Th1 cells by interleukin IL-4, IL-10 etc. In
acute inflammation, Th1 subsystem dominates Th2 subsystem,
in case of chronic inflammation Th2 subsystem dominates Th1
subsystem. In case of COVID-19, pro-inflammatory components
exhibit a persistent overactivation. In response to a local
pathogenic challenge, an innate immune response is initiated
by type I interferons (IFN) and pro-inflammatory cytokines like
tumor necrosis factor alpha (TNFalpha), interleukin 1beta (IL-
1beta), and interleukin-6 (IL-6). Later on, when the adaptive
immune response kicks in, an overreaction of the immune system
is prevented by anti-inflammatory factors like TGF-beta and
interleukin-10, thus, generating a negative feedback loop onto
the immune response. In the case of COVID-19, this latter step
sometimes fails to keep the immune response under control (84).

The Multi-Level/Multi-Function Interaction
The complexity of these and other regulatory systems can
be structured conceptually by a multi-level/multi-function
interaction network. Regarding the immune system, it is well-
known that ACh inhibits macrophages to secret TNF, whereas
NA could stimulate TNF secretion via alpha- and beta-receptors
(95). In synergy with ACh, cortisol also suppresses macrophage
activity. Several other examples can be worked out (96),
e.g., multimorbitidy and the problem of polypharmacy that
affects about 20% of the population (97, 98). For instance,
the comorbidity of diabetes mellitus and depression can be
revisited by looking to molecular signaling cross-overs between
the CNS (relative hypofunction of noradrenaline, dopamine and
serotonin compared to acetylcholine, glutamate, and GABA in
depression) and the physiological control of beta and alpha cells
in pancreas physiology by these neurotransmitters and also the
effects of insulin in the brain, etc. (99). In addition, imbalances
within the immune system (elevated IL-6) contribute to the
occurrence of depression (e.g., side effect of interferon therapy)
and diabetes.

In consequence, these subsystem interactions need
to be analyzed in detail on the basis of a reference
network model. With regard to COVID-19, chronic
bio-psycho-social stress situation could evoke the
severe persisting shift in the immune system toward
pro-inflammatory mechanisms.
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FIGURE 4 | The hypothalamus-pituitary-adrenal (HPA) axis is the major stress mediator system on an intermediate time scale. It is stimulated by catecholamines

(representing the fast stress system) and inhibited by thyroid hormones (as slow mediators of stress and allostatic load). In addition, it has multiple antagonists

inhibiting partial functions at peripheral levels of the processing structure, some of them (marked by *) resulting from ACE2 activation. AT, angiotensin; STH,

somatotropic hormone. For more details see text.

A SYSTEMS VIEW ON
COVID-19—INTEGRATION OF
EPIDEMIOLOGY AND SYSTEMS
PATHOLOGY

The utility of systems thinking in medicine, especially in the
case of COVID-19, is obvious in epidemiology by the universal
application of SIR compartment models and their derivatives
which help to understand and explore the dynamics of spreading
of the virus (100). The diverse exposure features (asymptomatic
carriers) are crucial for infection so that models have to be
extended (2). At this population level, data analysis andmodeling
demonstrate the dangerous dynamics of exponential growth.
Several theoretical challenges exist to represent the mechanisms
of focal spreading and for evaluation of measures. They can
only be partially solved by agent-based modeling, but only if the
collateral effects of public health measures (home quarantine,
lockdown) are also included in an ecological perspective of
human beings (Figure 1). Systems theoretical analyses can help
to explore and designmanagement strategies ensuring health and
economy, e.g., by cyclic management of lock down (101).

In addition, we propose an integrative compartment-based
andmulti-layer- and multi-level-oriented systems pathology, as a
systemic understanding of Covid-19. It could help to explain the
causes of asymptomatic clinical courses of SARS-CoV-2 infected
persons. The complex pathophysiology of COVID-19 starts at the
entrance of the virus in the compartment of the upper airways
(nose, throat) with its local defense mechanisms on the layer of
fluids that protect the mucosa (nasal mucus), the local expression
of ACE2 on cells and the local presence of immune cells etc..
In this view, still the trivial pathophysiological question is not
clarified if tonsillectomized individuals are at a higher risk that
infection “jumps” down to the second compartment, the lower
airways, respectively, to the alveola where the fatal mechanisms
of hyper-inflammation occur: there might be a higher risk
for respiratory dysfunction in tonsillectomized persons (102).
Thus, the respiratory system in case of airborne virus invasion
must be explored as a “structured whole” (compartment model),
being connected with the circulatory system via alveoli thus
providing oxygen for the whole organism and emitting carbon
dioxide. In addition, each compartment should be conceived
as being composed by a heterogeneous multi-layer tissue and
should be modeled from tissue to cells to molecular processes of
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FIGURE 5 | Interaction of the HPA axis with the immune system in COVID-19: Antagonistic convergence on ACTH production by inhibitory cortisol feedback and

activating interleukin-6 that is released by macrophages after contact with SARS-Cov-2. The structure of the feedback loop explains the glucocorticoid paradox in

COVID-19, i.e., that elevated serum concentrations of cortisol are associated with poor prognosis but that pharmacological use of glucocorticoids like prednisolone or

dexamethasone leads to improved outcomes. For more details see text.

viral pathology addressed by molecular systems biological tools
(103, 104). Here, one should not look only to effects on and
of the molecular mechanisms of the endocrine system (renin-
angiotensin system vs. cortisol system) in both directions but also
consider the molecular effects on and of the autonomous nervous
system (Figure 5). The crucial clinical problem of Covid-19 is that
it appears as a hyper-inflammatory process as a result of a dynamic
imbalance between pro-inflammatory and anti-inflammatory
components of the immune system: On the immune systems level
a macrophage and Il-6 excess is often reported that seems to lead
to severe courses of Covid-19 (105). Also, a very high cortisol
level is observed at hospital admission that could be functionally
understood as an ineffective counterreaction, maybe because of
down-regulation or desensitization of glucocorticoid receptors
in macrophages (106). However, at first, the cellular invasion
of the virus is based on utilization of the ACE2 receptor with
the consequence that a lower amount of ACE2 is available that
converts angiotensin II to angiotensin 1-7 and angiotensin 1-
5 attaching to the mas receptor and operating antagonistically
to proinflammatory ATR1 (107, 108). In consequence, the anti-
inflammatory effects compared to proinflammatory effects are
persistently lower than under normal conditions. This imbalance
could explain the heavy structural and functional changes in the
alveola. A next step might be the modeling of tissue dynamics
in inflammation that can be explored by computer simulations of

models of cell-cell interactions, namely as it was demonstrated for
macrophages and fibroblasts showing that interaction structures
based on growth factors can reach bistable homeostasis. This
system theoretical concept that assumes a strong attractor
basin in pro-inflammatory state space facilitates to understand
pathological locked-in states of cell systems as they are found in
alveolar pathology in Covid-19. As a starting point for a systemic
view on COVID-19, a simplemodel could integrate the activation
of the HPA axis by the inflammatory response triggered by virus
invasion, where cortisol has again an immunosuppressant effect
(Figure 5). The interaction of the involved three feedback loops
could explain both markedly deranged blood glucose levels in
diabetics infected with the SARS-CoV-2 virus (109), especially in
severe cases (110–112), and the apparent paradox that therapy
with glucocorticoids is able to improve the outcome of COVID-
19 (113), whereas patients with elevated cortisol concentration
face a poor prognosis of the disease (114).

CONCLUDING REMARKS

A system-theoretical framework can provide a more consistent
picture for complex diseases like Covid-19, by bridging the
current gaps in medical knowledge, especially enhancing
clinical knowledge, and experience. Systems theory enables the
integration of multiscale top down (organismal view) and bottom
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up (molecular systems medicine) approaches. We propose the
following unsettled strategies in systems medicine: (i) integration
of biochemically-based and physiology-related dynamic models
considering adaptive dynamic equilibrium, antagonism, and
synergism, (ii) developing models of human and human health
in an socio-ecological context with consequences for health
status, and (iii) extending methodology of systemic modeling,
also qualitative, pre-formal conceptualization techniques for the
implementation of system-theoretical thinking and modeling
technologies in the medical curriculum.
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