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In liquid argon time projection chambers exposed to neutrino beams and running on

or near surface levels, cosmic muons, and other cosmic particles are incident on the

detectors while a single neutrino-induced event is being recorded. In practice, this means

that data from surface liquid argon time projection chambers will be dominated by cosmic
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FIGURE 6 | A representation of the multi-plane UResNet architecture. Only two of the three planes are shown in this image for clarity.

TABLE 1 | A description of the multi-plane UResNet architecture used in this work.

Layer X Y Filters Parameters Operations

Initial 640 1024 1 416 conv7x7, BN, LeakyReLU

Down 0 640 1024 8 2,576 Res3x3, Res3x3, MaxPool, Bottleneck 8–16

Down 1 320 512 16 10,016 Res3x3, Res3x3, MaxPool, Bottleneck 16–32

Down 2 160 256 32 39,488 Res3x3, Res3x3, MaxPool, Bottleneck 32–64

Down 3 80 128 64 156,800 Res3x3, Res3x3, MaxPool, Bottleneck 64–128

Down 4 40 64 128 624,896 Res3x3, Res3x3, MaxPool, Bottleneck 128–256

Down 5 20 32 256 2,494,976 Res3x3, Res3x3, MaxPool, Bottleneck 256–512

Bottleneck 10 16 1,536 393,984 Concat across planes, bottleneck 1,536–256

Deepest 10 16 256 16,391,680 Res5x5, 5 layers

Bottleneck 10 16 1536 397,824 bottleneck 256 to 1,536, split into 3 planes

Up 5 20 32 256 2,494,208 Interp., Sum w/ Down 5, Bottleneck, Res3x3, Res3x3

Up 4 40 64 128 624,512 Interp., Sum w/ Down 4, Bottleneck, Res3x3, Res3x3

Up 3 80 128 64 156,608 Interp., Sum w/ Down 3, Bottleneck, Res3x3, Res3x3

Up 2 160 256 32 39,392 Interp., Sum w/ Down 2, Bottleneck, Res3x3, Res3x3

Up 1 320 512 16 9,968 Interp., Sum w/ Down 1, Bottleneck, Res3x3, Res3x3

Bottleneck 640 1,024 16 2,552 Bottleneck1x1 to 3 output filters.

Final 640 1,024 3 57 Final Segmentation Maps

7. TRAINING

The network here is trained on a down-sampled version of the
full-event images, so each event represents three planes of data
at a height of 640 pixels and a width of 1,024 pixels, for a
total of 655,360 pixels per plane and 3 planes. Though it would
be ideal to train on full-resolution images, this is prohibitive
computationally as the network doesn’t fit into RAM on current
generation hardware.

The number of active (non-zero) pixels varies from image
to image. In general the number of pixels which have some
activity, either from particle interactions or simulated noise, is

approximately 11,000 per plane. Of these, approximately 2,300
per plane on average are from cosmic particles, and merely∼250
per plane are from neutrino interactions, on average. See Figure 7
for more details.

To speed up training and ensure the neutrino pixels, which
are the most important scientifically, are well-classified, we adopt
a weight scaling technique. The loss for each pixel is a three
category cross entropy loss, and the traditional loss per plane
would be the average over all pixels in that plane. Here, instead,
we boost the loss of cosmic pixels by a factor of 1.5, and
neutrino pixels by a factor of 10. The final loss is averaged
over all pixels in all three planes. We also experimented with
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FIGURE 7 | Distribution of pixel occupancies, by label, in this dataset. In

general, the cosmic-labeled pixels are <1% of pixels and the neutrino-labeled

pixels are <0.3%.

a loss-balancing technique where, in each image, the weight
for each pixel is calculated so the product of the total weight
of all pixels in each category is balanced: weightbackground ×

Nbackground = weightcosmic × Ncosmic = weightneutrino × Nneutrino.
Experimentally, we find that more aggressive loss boosting of
neutrino and cosmic pixels leads to blurred images around
the cosmic and neutrino pixels, as those pixels are heavily de-
weighted as background pixels. In future studies, we plan to
investigate the use of dynamic loss functions such as focal
loss (Lin et al., 2017) to allow better balancing of background to
significant pixels throughout training.

We report here the performance of several variations of the
network, in order to examine the properties of the final accuracy
and determine the best network. We test several variations of
the network. The baseline model, Multiplane UResNet, is as
described above, trained with the mild weight balancing, using
an RMSProp (Hinton et al., 2012) optimizer. For variations we
train the same network with the following modifications:

• Concatenated Connections—instead of additive connections
across the “U” (the right-most side of every dashed line),
we use concatenation of the intermediate activations (from
upsampling and downsampling layers), and 1×1 convolutions
to merge them.

• Cross-plane Blocked—the concat operation blocked at the
deepest layer (no cross-plane information), effectively using a
single-plane network three times simultaneously.

• Batch Size × 2—a minibatch size of 16, instead of 8, is used.
• Convolutional Upsample—convolutional up-sampling

instead of interpolation up-sampling.
• Num. Filters/2—fewer initial filters (8 instead of 16).
• No Loss Balance—all pixels are weighted equally without

regard to their label.
• Larger Learning Rate—the learning rate is set to 0.003

(10x higher).
• Non Residual—no residual connections in the down-

sampling and up-sampling pass.

• Adam Optimizer—unmodified network trained with Adam
Optimizer (Kingma and Ba, 2015).

• Full Balance—a full loss balancing scheme where each
category is weighted such that the sum across pixels of the
weights for each category is 1/3.

All models, except one, are trained with a minibatch size of 8 (×
three images, one per plane). The learning rate is set to 0.0003,
except for the network that uses a higher learning rate. The other
network is trained with a larger batch of 16 images. Due to the
memory requirements of this network, a single V100 instance
can accommodate only batch size 1. These networks were trained
in parallel on 4 V100 devices, using gradient accumulation to
emulate larger batch sizes. Figure 8 shows the progression of the
metrics while training the Multiplane UResNet model.

In Table 2, we compare the metrics for the different loss
schemes and for the network with the concatenate operation
blocked. We see good performance in the baseline model,
however the models with fully balanced loss and without a
concatenate operation are degraded. The full loss balancing
exhibits a “blurring” effect around the cosmic and neutrino
pixels, since the penalty for over-predicting in the vicinity of
those points is minimal. Since nearly half of all events have some
overlap between cosmic and neutrino particles, this significantly
degrades performance. We also see that using a less extreme
loss weighting performs better than no weighting at all, due
to the relatively low number of neutrino pixels. Notably, the
network with the concatenate connections blocked at the deepest
layer (therefore, no cross plane correlation), performs more
poorly than the baseline model with every other parameter held
constant. Notably, the larger learning rate and use of the adaptive
Adam optimizer give poor results with this network.

The larger batch size shows the best performance, including in
the average of both IoU metrics. The cosmic IoU is higher than
the neutrino IoU due to the difference in difficulty in these labels:
many more cosmic pixels implies that errors of a few pixels have
a small effect on the cosmic IoU, and a large detrimental effect
on the neutrino IoU. We speculate that increasing the batch size
further will improve results and will investigate this further with
the use of a massive computing system needed to accommodate
this large network at a high batch size for training.

As a final comment on the training process, we note that this
network is expensive to train and has challenging convergence
properties. This has limited the experiments performed onmodel
and training hyperparameters. We expect a future result to
investigate hyperparameters in a systematic way. In the following
section, we use the model trained with a minibatch size of 16,
“Batch Size x2,” as it had the best performance on the test set.
Example images of the output of the network are found in
Appendix A.

8. ANALYSIS RESULTS

Figure 9 shows the metric performance as a function of neutrino
energy for the best performing network, broken out across three
kinds of neutrino interactions: electron neutrino charged current,
muon neutrino charged current, and neutral current.
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FIGURE 8 | The training progression of the Multiplane UResNet model, trained for 25 k iterations. The light blue curve is the training performance at each step,

overlaid with a smoothed representation of the same data, and a smoothed representation of the test set.

TABLE 2 | A comparison of the performance metrics for the various networks

trained.

Acc. Non 0 Cosmic IoU Neutrino IoU Mean IoU

Multiplane UResNet 0.951 0.908 0.606 0.757

Concat. connections 0.947 0.898 0.609 0.753

Cross-plane blocked 0.942 0.898 0.571 0.734

Batch size × 2 0.956 0.914 0.698 0.806

Convolution upsample 0.938 0.898 0.539 0.718

Num. filters/2 0.930 0.887 0.457 0.672

No loss balance 0.913 0.882 0.544 0.713

Larger learning rate 0.896 0.852 0.447 0.649

Non residual 0.944 0.904 0.584 0.744

Adam optimizer 0.904 0.852 0.509 0.680

Full balance 0.940 0.720 0.339 0.530

The best result in each metric is highlighted. The “Mean IoU” is the mean of the cosmic

and neutrino IoU values. “Acc. Non 0” refers to the non-background accuracy.

To demonstrate the utility of this deep neural network in
a physics analysis, we perform a very elementary selection of
events. We perform inference on a selection of events from all
types of simulated interactions, including events where there is
no neutrino interaction.

There are two main objectives of this analysis. First, on an
event by event basis, decide if there is a neutrino interaction
present in the measured charge using TPC information only.

FIGURE 9 | Metric performance across neutrino interaction types, as a

function of neutrino energy. The solid lines are the Intersection over Union for

the neutrino predicted/labeled pixels, while the dashed lines are the

Intersection over Union for the cosmic predicted/labeled pixels. Each color in

this plot represents the IoU for all events containing that particular neutrino

interaction.

It is expected that any additional information from the light
collection or cosmic ray tagging systems will further enhance
these results. Second, within an interaction that has been selected
as a neutrino interaction, measure the accuracy with which the
interaction has been selected from the cosmic backgrounds.
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TABLE 3 | Selection efficiencies for sample cuts using the inference output of the

best network.

Category Efficiency (%)

νe CC 91.5

νµ CC 78.6

NC 37.3

Cosmics 91.1 cosmic-only event rejection

To demonstrate the performance in event-level identification,
we apply a simple set of metrics. We require a minimum
number of pixels, per image, to be classified as neutrino by
the network. Additionally, since the drift direction (Y-axis) of
all three images is shared in each event, we apply a matching
criterion. Specifically, we compute the mean Y location of all
neutrino-tagged pixels in each plane, and we require that the
difference in this mean location is small across all three planes.

Quantitatively, we find good results by requiring at least 100
neutrino-tagged pixels per plane, and a maximum separation of
mean Y location of 50 pixels across all three combinations of
images.With these basic cuts, we observe the selection efficiencies
of Table 3. We note that neither 100 pixels per plane, nor a
separation distance of 50 pixels, is a well-tuned cut. For some
analyses targeting low energy events in the Booster Neutrino
Beam, these cuts would be too aggressive. Instead, the desired
goal is to demonstrate that the predictive power of this network
can be leveraged in a basic event filtering workflow.

The selection efficiencies with these cuts, though not
aggressively tuned, do have variation from one type of
neutrino interaction to another. The muon-neutrino events are
distinguished by the presence of a long muon from the neutrino
interaction, while electron neutrino events have no muons and
instead an electro-magnetic shower. Since the cosmic particles
are primarily, though not entirely, composed of high energy
muons, it is not surprising that electron neutrino events are more
easily distinguished from cosmic-only events, as compared to
muon neutrino events. Additionally, the neutral current events
have an outgoing neutrino that carries away some fraction of
the energy of the event; on average, these events have much
less energy in the TPC and therefore fewer active pixels to
use for selection and discrimination of events. Consequently,
neutral current events are harder to reject compared to charged
current events.

As a comparison to classical techniques, we first note that the
metrics presented and used in this paper, which are the right
discriminating tools for this machine learning problem, are not
studied in the classical analysis. Therefore, a direct comparison
to classical results does not exist. We note that in Acciarri et al.
(2018), the traditional reconstruction applies a cosmic-muon
tagging algorithm in the MicroBooNE detector. This algorithm
groups pixels into “clusters” first, and then tags clusters—as a
whole—as either cosmic-ray induced or not cosmic-ray induced.
The algorithm in Acciarri et al. (2018) quotes a cosmic muon
rejection rate of 74%, on average.

While the detectors are different geometries, to first order
MicroBooNE and SBND have the same order-of-magnitude
flux of cosmic-ray muons. Further, since the cosmic muons
account for ∼90% of the non-zero pixels, we may speculate
that ∼26% of cosmic pixels are mislabeled, or ∼23% of all
non-zero pixels—with the assumption that all neutrino pixels
are correctly labeled. In short, though the same metrics are
not directly applied in Acciarri et al. (2018) and the detector
geometries are slightly different, a rough comparison may be
made in the non-zero accuracy metric of 95.6% (this work) to
77% (traditional reconstruction)—in other words, a reduction of
23–4.4% mis-classified pixels on average.

We do not speculate here on final purity for an analysis of
this kind on the BNB spectrum of neutrinos at SBND. The final
analysis will use both scintillation light and cosmic ray tagger
information in addition to the TPC data. However, it is notable
that a simple analysis can reduce the cosmic-only interactions by
a factor of 10x, and the remaining events have the correct pixels
labeled at a 95% non-background accuracy level. We believe this
is a promising technique for the SBN experiments.

9. CONCLUSIONS

In this paper, we have demonstrated a novel technique for pixel
level segmentation to remove cosmic backgrounds from LArTPC
images. We have shown how different deep neural networks can
be designed and trained for this task, and presented metrics
that can be used to select the best versions. The technique
developed is applicable to other LArTPC detectors running at
surface level, such as MicroBooNE, ICARUS, and ProtoDUNE.
We anticipate future publications studying the hyperparameters
of these networks, and an updated dataset with a more realistic
detector simulation prior to the application of this technique to
real neutrino data.
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