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Leukemia is the most common malignancy affecting children. The morphologic analysis

of bone marrow smears is an important initial step for diagnosis. Recent publications

demonstrated that artificial intelligence is able to classify blood cells but a long way

from clinical use. A total of 1,732 bone marrow images were used for the training of

a convolutional neural network (CNN). New techniques of deep learning were integrated

and an end-to-end leukemia diagnosis system was developed by using raw images

without pre-processing. The system creatively imitated the workflow of a hematologist

by detecting and excluding uncountable and crushed cells, then classifying and counting

the remain cells to make a diagnosis. The performance of the CNN in classifying WBCs

achieved an accuracy of 82.93%, precision of 86.07% and F1 score of 82.02%. And

the performance in diagnosing acute lymphoid leukemia achieved an accuracy of 89%,

sensitivity of 86% and specificity of 95%. The system also performs well at detecting

the bone marrow metastasis of lymphoma and neuroblastoma, achieving an average

accuracy of 82.93%. This is the first study which included a wider variety of cell types in

leukemia diagnosis, and achieved a relatively high performance in real clinical scenarios.
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INTRODUCTION

Leukemia, which results from the maturation arrest and differentiation block of nucleated
cells and can cripple the production of normal blood cells, may present at all ages,
from newborns to very old people, and it is the most common malignancy affecting
children, representing up to 30% of all pediatric cancers (1). Moreover, these immature
cells can spread into the blood and invade other organs, leading to the dysfunction
of multiple organs and eventual death. Because of the rapid proliferation and fast
dissemination of leukemia cells, early and accurate diagnosis is urgently needed.
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FIGURE 6 | The PR curves of the differential count of 20 types of cells. (A) Cell classes with an AP over 0.9. (B) Cell classes with an AP from 0.8 to 0.9. (C) Cell

classes with an AP under 0.8.

TABLE 3 | Comparison of the classification accuracy of different researches in WBC detection.

Literature Dataset Number of

candidate cells

No. of WBC

types

Diseases

involved

Technique used Accuracy achieved

MoradiAmin et al. (17) Real world 958 2 ALL Feature extraction, c-means >90% (disease level)

Bigorra et al. (18) Real world 916 3 ALL, AML Feature extraction >74% (cell level)

Choi et al. (4) Real world 2,174 10 ALL, AML CNN 97.06% (cell level)

Shafique et al. (19) ALL-IDB 108+260 2 ALL CNN >95% (disease level)

Moshavash et al. (20) ALL-IDB 108+260 2 ALL Segmentation, feature

extraction, SVM

89.81% (disease level)

Qin et al. (5) Real world 92,480 40 ALL, AML CNN 76.84% (cell level)

Rehman et al. (21) Real world / 2 ALL Segmentation, CNN 97.78% (disease level)

Boudu et al. (22) Real world 7,468 6 ALL, AML Feature extraction 85.8% (cell level)

Shahin et al. (23) ALL-IDB 108+260 2 ALL Feature extraction, CNN 96.1% (cell level)

Anwar et al. (24) ALL-IDB 108+260 2 ALL CNN 99.5% (disease level)

Gehlot et al. (25) TCIA 15,114 2 ALL CNN 94.8% (F1 score, cell level)

Zhang et al. (26) BCCD 5,000 6 / CNN, HOG, SVM >95% (cell level)

which the ALL diagnosis could be made when the percentage of
lymphoblasts among karyocytes was over 20%. Different from
previous studies which have not developed a counting function
and just judged single cells as benign or malignant or which have
used online database with pre-processed images as training set,
our system focused on clinical application in real world.

Because of the lack of sufficient cases of AML, we were not able
to realize the automatic diagnosis of myeloid leukemia. As shown
in the PR curve of the classification results.

The classification model achieved good performance
for the differentiation of promyelocytes, lymphoblasts, and
promegakaryocytes, implying that M3 and M7 types can be
diagnosed with high accuracy.

To assess the clinical application of the CNN, we tested its
performance on the detection of bone marrow metastasis for
two types of solid tumors, lymphoma and neuroblastoma. Bone
marrow is the most common site of infiltration in children with
neuroblastoma presenting with metastatic disease at the time of
diagnosis, is a frequent site of the disease’s recurrence and is
predictive of poor outcomes (30). In addition, for lymphoma,
bone marrow evaluation plays a critical role in staging and
predicting the prognoses in patients with this di and bone
marrow can be the initial detection site of lymphoma in patients

with unexplained symptoms or cytopenia (31). Therefore, it is of
great clinical significance to judge the bone marrow metastasis
of these two types of tumors. The results showed that our
CNN could work very well in the detection of bone marrow
involvement in patients with neuroblastoma and lymphoma,
and in addition to the diagnosis of leukemia, this CNN can be
trained to recognize more types of bone marrow metastasis for
solid tumors.

Despite the encouraging performance of the deep learning
model, this study has several limitations. (1) The presentedmodel
needs to be further validated by prospective studies. (2) The bone
marrow images were collected from a single medical center, and
the examples of some types of cells are limited; therefore, multi-
center studies are needed to further develop the diagnosis system
to diagnose more types of leukemia, especially AML. (3) The
diagnostic performance of the proposed automated diagnosis
system needs to be evaluated in clinical work.

CONCLUSION

Our findings suggest that artificial intelligence algorithms may
successfully assist hematologists in morphological diagnosis of
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leukemia in real clinical scenarios. In the future, we will collect
more cells and establish a larger leukemia database to train
the CNN and test its performance in leukemia diagnosis by
comparing it with the performance of hematologists who are
experts at morphological diagnosis.
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