1' frontiers ‘ Frontiers in Neuroinformatics

TECHNOLOGY AND CODE
published: 31 October 2022
doi: 10.3389/fninf.2022.883700

OPEN ACCESS

Edited by:
James Courtney Knight,
University of Sussex, United Kingdom

Reviewed by:
Jochen Martin Eppler,
Helmholtz Association of German
Research Centres (HZ), Germany
Felix Benjamin Kern,
International Research Center for
Neurointelligence (IRCN), Japan

*Correspondence:
Denis Alevi
denis.alevi@tu-berlin.de

Received: 25 February 2022
Accepted: 09 May 2022
Published: 31 October 2022

Citation:
Alevi D, Stimberg M, Sprekeler H,
Obermayer K and Augustin M (2022)
Brian2CUDA: Flexible and Ef cient
Simulation of Spiking Neural Network
Models on GPUs.
Front. Neuroinform. 16:883700.

Check for
updates

Brian2CUDA: Flexible and Ef cient
Simulation of Spiking Neural Network
Models on GPUs

Denis Alevi #, Marcel Stimberg 2, Henning Sprekeler 2, Klaus Obermayer 24 and
Moritz Augustin 24

* Technische Universitat Berlin, Chair of Modelling of Cogdinie Processes, Berlin, Germany? Bernstein Center for
Computational Neuroscience Berlin, Berlin, Germany,Sorbonne Université, INSERM, CNRS, Institut de la Vision, Rsr
France, * Technische Universitat Berlin, Chair of Neural InformatidProcessing, Berlin, Germany

Graphics processing units (GPUs) are widely available andabe been used with
great success to accelerate scienti c computing in the lastdecade. These advances,
however, are often not available to researchers interesteth simulating spiking neural
networks, but lacking the technical knowledge to write the ecessary low-level code.
Writing low-level code is not necessary when using the popat Brian simulator, which
provides a framework to generate ef cient CPU code from higHevel model de nitions
in Python. Here, we present Brian2CUDA, an open-source softare that extends the
Brian simulator with a GPU backend. Our implementation gemates ef cient code
for the numerical integration of neuronal states and for theropagation of synaptic
events on GPUs, making use of their massively parallel aritfetic capabilities. We
benchmark the performance improvements of our software foseveral model types and
nd that it can accelerate simulations by up to three orders & magnitude compared
to Brian's CPU backend. Currently, Brian2CUDA is the only pzkage that supports
Brian's full feature set on GPUs, including arbitrary neuroand synapse models, plasticity
rules, and heterogeneous delays. When comparing its perforemce with Brian2GeNN,
another GPU-based backend for the Brian simulator with fewefeatures, we nd that
Brian2CUDA gives comparable speedups, while being typiciyl slower for small and
faster for large networks. By combining the exibility of th Brian simulator with the
simulation speed of GPUs, Brian2CUDA enables researcherotef ciently simulate
spiking neural networks with minimal effort and thereby mads the advancements of
GPU computing available to a larger audience of neuroscieists.

Keywords: spiking neural networks, simulator, GPU, CUDA, Py thon, software, open-source, parallel algorithm

1. INTRODUCTION

In computational neuroscience, there is high demand for cotapanally e cient simulations
allowing for realtime applications or exhaustive parametepl@ations. E cient simulations
require both optimized simulation software and powerful haede. In practice, there is always
a trade-o between the performance of the hardware and itsgpaad accessibility. A promising

technology with a very bene cial performance—cost tradeaoe graphics processing units (GPUs)

doi: 10.3389/fninf.2022.883700 with their massively parallel arithmetic capabilities. Viétihey were initially designed for computer

Frontiers in Neuroinformatics | www.frontiersin.org 1 October 2022 | Volume 16 | Article 883700

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.883700
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.883700&domain=pdf&date_stamp=2022-10-31
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:denis.alevi@tu-berlin.de
https://doi.org/10.3389/fninf.2022.883700
https://www.frontiersin.org/articles/10.3389/fninf.2022.883700/full

Alevi et al. Brian2CUDA

graphics, they have since become commonly used for generédr GPUs are ANNarchy\(itay et al., 201} which specializes
purpose computing, leading to their designation as generain networks that mix rate and spike-based elements, and GeNN
purpose graphics processing units (GPGPUs). The most populévavuz et al., 20)pwhere model descriptions have to be speci ed
framework is the Compute Uni ed Device Architecture (CUDA,; in a variant of C++ (but note that the main simulation code can
NVIDIA Corporation, 2007-202R which allows users to be written as a Python scriptia the PyGeNN interfacenight
write parallel code for GPUs in an extension of the C/C++etal., 2021)
programming languages. To make ecient use of GPUs, The Briart simulator Stimberg et al., 201)is a widely used
simulation code has to perform computations in a highly patalleneural simulator that provides a user-friendly system for ralod
way. This parallelization is rather straightforward to implent descriptions based on mathematical equations, as well as an
for some aspects of neuronal models, e.g., the numericaktensible code generation framework. So far, this frannkewas
integration of neuronal state variables over a simulationet only capable of generating C++ code for multithreaded exeaut
step, but is non-trivial for other aspects, e.g., spike propagati on central processing units (CPUs). Recently, Brian's franiewo
with synaptic delays (cBrette and Goodman, 20).2 has been extended to generate code for the GeNN simulator
The earliest attempts at using the GPU (eBgrnhard and (Brian2GeNN;Stimberg et al., 2020bmaking it nally possible
Keriven, 2006; Nageswaran et al., 206%plored the general to run Brian simulations on the GPU. However, this approach
feasibility of accelerating simulations of spiking neuratworks, limits simulations to the common feature set provided by Bria
and described many of the challenges that are still releteataty. GeNN, and the Brian2GeNN interface: some of Brian's feature
To bene tfrom the capabilities of a GPU, a simulation needs¢o (e.g., multicompartmental models) are not supported by GeNN
parallelized e ciently, parallel memory access to shared mgm at all, and the support for other features (e.g., heterogeseou
has to be handled carefully, and synaptic connections habe to synaptic delays) was added after the creation of the Brian2ieN
stored in sparse data structures to t into the limited memory interface, and they are therefore also unsupported at this time.
of GPUs (Nageswaran et al., 200The earliest implementations ~ Here, we present a new approach to GPU code generation with
were typically technology demonstrations, but not releaaed the Brian simulator. This interface, named Brian2CUDA, ditg
software packages to be used by other researchers. Thisethangenerates CUDA code for the GPU, and supports the full set of
in the following years, as a number of general-purpose simtgato features that the Brian simulator o ers. It can therefore txed
such as NEMOKidjeland et al., 2009; Fidjeland and Shanaharas a drop-in replacement in all situations where multithreaded
2010, CNS (Mutch et al., 201)) CARLsim Richert et al., 2011; CPU code generation was used previously, including sinuriati
Chou et al., 2003 and NCS6floang et al., 201)3vere released. of detailed network models of neurons, synapses, and glia cells
While these simulators could be adapted to a researcherdsnee(Stimberg et al., 2019por when optimizing neuronal models
they typically only supported speci ¢ neuron models or networkwith the brian2model tting toolbox ([eska et al., 2030
structures: The NEMO, CARLsim, and NCS6 simulators were We describe how our approach exploits non-trivially
built to simulate networks of leaky integrate-and- re oradratic parallelizable simulation parts, in particular the data stues
integrate-and- re model izhikevich, 2008 neurons, and the and algorithms for the propagation of neuronal spikes through
CNS simulator was built to simulate networks structured ina network taking into account — potentially hetereogeneous
cortical layers. Extending these simulators to other models synaptic delays. For several relevant generic model classes,
requires a researcher to write CUDA code and is therefore nove compare the performance of Brian2CUDA with Brian's
accessible to many researchers without the necessaryi¢athn built-in multithreaded execution on CPUs and — where possible
background. — with the Brian2GeNN interface. The results show that
Most recent simulators (e.gA\bi Akar et al., 2019; Panagiotou Brian2CUDA strongly outperforms the multithreaded executio
etal., 2021; Ben-Shalom et al., 2J@@not come with prede ned on CPUs, sometimes by orders of magnitudes. Its performance
neuron models, but instead translate neuron model de nio is comparable to the performance of Brian2GeNN. For large
created for the NEURON simulato@rnevale and Hines, 2006 networks, Brian2CUDA is faster, while for smaller networks
or model de nitions exported to NeuroML@annon et al., 2004 slightly slower.
by a compatible simulator. An advantage of this approach is Our code is available as open source software under a free
that it makes it possible to immediately reuse a large numbdicense at GitHub: https://github.com/brian-team/brian®a.
of existing neuron models. On the other hand, this work ow is
not ideal for researchers that want to adapt and change egisti
models, or introduce completely new ones. For these use,casés METHOD
the fact that the model description and its simulation reeuir
more than one Software package can be a major hurdle Bl’lan2CUDA Implements a new Brian baCkend, Wh|Ch runs
A number of simulators addressed this issue by using cod@iking neural network simulations on NVIDIA graphics
generation Goodman, 2010; Blundell et al., 20181 such a processing units (GPUSs). It makes use of Brian's code geparati
framework, the model description in a convenient high-lewel System to generate C++/CUDA code based on a user's model
domain-speci ¢ language is an integral part of the simulatorde nitionin Python.
itself. When starting a simulation, these model descripgi@ne
translated into e cient low-level code, compiled, and exéail inote that while its Python package is named “brian2;” we will use tame
Two simulators that have used this approach to generate codgrian” in this paper for simplicity.

Frontiers in Neuroinformatics | www.frontiersin.org 2 October 2022 | Volume 16 | Article 883700

https://github.com/brian-team/brian2cuda
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

In the following, we provide in Section 2.1 backgroundthe GPU (sedrigure 2A). These functions are called CUDA
on the Brian simulator and describe how our proposedkernels When called, kernels execute their code in parallel by
CUDA backend can be used. In Section 2.2, we outline GPthultiple CUDA threadgseeFigure 2B), which are grouped into
programming essentials. Section 2.3 contains the algoathmCUDA blockgseeFigure 2C). The number of threads per block
implemented in Brian2CUDA including neuronal state updatesNireagsand the number of blockhlyocksin this thread hierarchy
spike propagation, and synaptic e ect application. Section 2.# set when calling the kernel (sEgures 2A,D.
summarizes the alternative CUDA-based simulator Brian28eN
and in Section 2.5 we specify the benchmark models ang.2.1.2. Memory Hierarchy

experimental procedure. Each GPU has its own memory, which is separate from the
)))) CPU's memory. GPU memory is split into dierent types,
2.1. Brian Simulation and Code Generation which are hierarchically organized (sE&ures 2B-D). Global

Brian is a simulator for spiking neural networks written in memory is large (several gigabytes depending on specic
Python Stimberg et al., 2014, 2009k is designed to be highly hardware) and accessible by all threads, but memory access
exible and easy to use by using its own domain language ti&s very slow.Shared memornyis accessible by all threads
de ne models. This allows users to de ne arbitrary di ereaki within the same thread block. This memory is much faster
equations in Python strings. As an example, consider the modeo access, but limited in size (up to a few megabytes split
(Brunel and Hakim, 19909 depicted inFigure 1A It consists across all blocks). And nally, each thread has its own
of a population ofN leaky integrate-and-re (LIF) neurons registerswith the fastest access time, but which are also
with sparse random recurrent inhibitory connections, whiate limited in number (up to a few megabytes split across all
driven by Gaussian white noise. This model can be describatireads). Threads use registers to store the intermedigalts
by the dierential equation depicted irFigure 1B Since the during their computations, shared memory to communicate
inhibitory feedback is strong enough, the model exhibitstfa intermediate results during kernel execution between dlleof
global oscillations in the population ring rate while the gjie the same block and global memory to communicate between
neuron ring rates remain small (séggure 1C). A Python script threads in di erent blocks and to store results between kérne
that implements this model in Brian is shown Figure 1D. By calls.
changing two lines of code, the simulation can be switchedhfr
Brian's C++ backend to our new Brian2CUDA backend. 2.2.2. Execution Control Logic
Both backends generate simulation code in their targeOn the hardware level, NVIDIA GPUs consist of multiple
language (C++ or CUDA) which is then compiled and streaming multiprocessors (SMs). During the execution of
executed. The generated code implements the simulation loo@UDA kernels, thread blocks are assigned to streaming
memory management, and all computations; it can be executedultiprocessors (SMs) (sdeigure 2). Each SM can execute a
independently of PythonFigure 1E illustrates the Brian C++ limited number of blocks concurrently, which are referrea t
backend, showing a simpli ed example of the generated C+-as active blocks. All remaining thread blocks are queued for
code for updating all neuronal states at a single time step @f thexecution on the next available slot on any of the SMs. The
simulation. In our example, one central processing unit (CPU)maximal number of active blocks per SM depends on the resource
thread sequentially updates the membrane voltsgdor each requirements of the executed kernel and resource limits pér S
neuron i. To speed up simulations, the Brian C++ backend(e.g., how many registers are required vs. available). Vilidock
can be con gured to use OpenMP to parallelize computationss executed on an SM, its threads are executed in groups of 32
over multiple CPU threads (not shown here). Our Brian2CUDAthreads, which are calledarps Each thread of a warp executes
backend extends the C++ backend to generate C++/CUDA codéhe same instructions at each clock cycle, which implemergs th
The simulation loop and memory management are implementedingle instruction multiple threads (SIMT) paradigm.
in C++ and executed on a single CPU thread, while most
computations are implemented in CUDA and are parallelized.2.3. Performance Considerations
on the GPU.Figure 1Fshows the same neuronal state update®.2.3.1. Occupancy
as before, but now implemented in CUDA. The voltages of alDccupancyper SM is de ned as the ratio of active warps on
neurons are updated in parallel by all available threads ond.GPan SM to the maximum number of active warps supported
by the SM. Given the number of threads and blocks of a
2.2. GPU Programming With CUDA kernel and its resource requirements, an upper occupancy
To implement software that runs on NVIDIA GPUs, the limit can be determined, theheoretical occupancirhere are
Compute Uni ed Device Architecture (CUDA) programming multiple hardware limits that determine how well a kernel
model is used. CUDA works with multiple programming can be parallelized on the GPU. Here, we will only introduce
languages, and here we use the CUDA APl implemented in C+#8 few of them which are relevant for our algorithms. Each
SM has a limit on the number of threads in all active
2.2.1. CUDA Programming Logic blocks, a limit on registers available to all threads in all
2.2.1.1. Thread Hierarchy active blocks, and a general limit on the number of active
A typical C++/CUDA program is executed on a single CPUblocks. If any of these limits is exceeded, the number of
thread, which calls special GPU functions that are executed cactive blocks per SM is automatically reduced such that the

Frontiers in Neuroinformatics | www.frontiersin.org 3 October 2022 | Volume 16 | Article 883700

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

FIGURE 1 | Brian model de nition and C++/CUDA code generation.(A) Population of leaky integrate-and- re (LIF) neurons with regrent inhibitory couplingJ,
average number of random synapses per neuroi€ and synaptic transmission delaysd;; between neuronsj and i. The neurons are driven by external Gaussian white
noise with mean ¢4 and standard deviation ey (model fromBrunel and Hakim, 1999. (B) Corresponding stochastic differential equation de ning tle dynamics of
the membrane potentialV; of a single LIF neuron [withi D 1,:::,N; membrane time constant ; unit Gaussian white noise process (t) that is uncorrelated across
neurons;j 2 pre() runs over all neurong that are presynaptic to neuroni; tj are all spike times of neurorj; Dirac delta function (x)]. When the voltageV; crosses
threshold 2 , the neuron spikes and is set to the reset voltage/, for a refractory period (er. (C) Network dynamics from simulating the model wittN D 5000 LIF
neurons in Brian. Top panel: voltage trace for one exemplanyeuroni. Middle panel: raster plot of the spike times for all neuroni the network. Bottom panel:
instantaneous mean ring rate across all neurons(D) A Python script implementing the model in Brian, either witits C++ backend (black blox) or with Brian2CUDAS
CUDA backend (red box). In this example, the synaptic transission delays are independently sampled from a uniform disbutiond; U(0, 4) ms. (E) Simpli ed
version of generated C++ code to update all neuronal states e ned by the voltages Vi when using the C++ backend in Brian.(F) The same for the CUDA backend in
Brian2CUDA. Here the CUDA kernejpu_stateupdater is launched withNpjocks ~ Nihreads parallel threads.

Frontiers in Neuroinformatics | www.frontiersin.org 4 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

FIGURE 2 | CUDA programming model.(A) A simpli ed, exemplary C++/CUDA program that is executed on a sigle CPU thread. The CPU manages memory on the|
GPU and calls CUDA kernels that are executed on the GPYB-D) GPU resources and CUDA execution and memory hierarchy whemnning CUDA kernels on the
GPU. (B) Each CUDA thread on a GPU has access to its own memory register (C) Each CUDA block groups together multiple CUDA threads. Alhteads of the
same block have access to the same shared memory(D) CUDA kernels can be executed with different numbers of blockNpjocks, threads per block Nipreags and
shared memory per block. The kernels called in (A) are exeed sequentially on the GPU, while multiple CUDA blocks are eguted in parallel on the streaming
multiprocessors (SMs) of the GPU. The example program in (&3lls kernel 0 without any shared memory and kernel 1 with engh shared memory to store one
oating point number per thread. This memory could e.g., be ugd to calculate the sum of a variable over all threads in a blég using fast shared memory instead of
slow global memory.

limits are ful lled, reducing the theoretical occupancy dfet by all threads. This is called aoalescednemory access,
kernel. Table 1 lists these limits for the GPUs used in this which reduces latencies (i.e., waiting time) for global mgmo

work. accesses signi cantly. Hence, it is crucial to layout data
structures such that as many memory accesses as possible are
coalesced.

2.2.3.2. Coalesced Memory Access
Memory accesses are issued in warps or half-warps (depending

on the GPU and the memory request). When accessing

global memory, always chunks of 32, 64 or 128 byte2.3. Brian2CUDA Algorithms

are transferred — even if less memory was requested. ThBtian is a clock-driven simulator, which performs the same
means, if a single thread wants to read 4 byte from globadet of computations after each discrete time step of a
memory, a 32 byte transfer will be issued (the smallestimulation. In this section, we will explain the algorithmsda
transfer possible). If multiple threads read 4 byte fromdata structures used in Brian2CUDA by going through the
di erent non-contiguous memory addresses in global memorydi erent simulation steps necessary to simulate one time step
there will be one 32 byte transfer per thread. But if allof the recurrent LIF network fronFigure 1 All data structures
threads in a warp request 4 byte memory from contiguousntroduced in the following reside in global GPU memory
memory addresses, a single 32 4byte D 128byte and all kernels introduced are executed sequentially on the
transfer will be issued to transfer all memory requestedsPU.

Frontiers in Neuroinformatics | www.frontiersin.org 5 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

TABLE 1 | Hardware limits relevant to determine theoretical occupasy of GPU kernels.

GPU (cc) Active threads Threads Active blocks Registers Reg isters per thread
per SM per block per SM per SM for 100% occupancy

A100 (8.0) 2,048 1,024 32 65,536 32

RTX2080 Ti (7.5) 1,024 1,024 16 65,536 64

The values are the same for all GPUs with the same compute capability (cand represent upper limits. To get the maximal registers per thread for 13@ occupancy, we divided the
maximal registers per SM by the maximally active threads per SM. Only @GR used in our experiments are listed.

2.3.1. Neurons 2.3.2. Synapses

In Brian, neurons are de ned in populations, where eachA population of synapses in Brian is de ned between a pre- and
neuron is described by the same set of dynamical equatiods am postsynaptic population of neurons (for the recurrent synapses
hence the same set of state variables (&gin Figure 1B. de ned in Figure 1D, pre- and postsynaptic populations are the
In Brian2CUDA, for each neuronal population typically three same). The simulation of synapses can generally be sepantded i
separate CUDA kernels are de ned: one for integrating thesynapse generation, synaptic state updates, spike propagation
neuronal states (sed-igure 1F, one for detecting spikes and synaptic e ect application. The synapse generation in
and one for resetting state variables of spiking neufons Brian2CUDA is performed on the CPU, using the same algorithm
Since these computations are independent for all neurongs Brian's C++ backend and thereby supporting all of Brian's
parallelization on the GPU is trivial: Each thread performk alconnection methods. Synaptic state updates in Brian can be
computations for a single neuron. Nevertheless, it is imparta clock-driveror event-drivenClock-driven updates are performed
to coalesce global memory access (see Section 2.2.3.8). H®iievery time step and are implemented in Brian2CUDA in
is ensured in the integration kernel by storing neuronaltsta a separate kernel in the same way as neuronal state updates.
variables in contiguous global memory arrays (one entry peEvent-driven updates are performed only when the pre- or
neuron) and accessing those such that consecutive threapestsynaptic neuron of a synapse spikes. These are performed
access consecutive entries of the state variable arraytheln during the synaptic e ect application of the corresponding
spike detection kernel, the threshold crossing (typicallthef spike. With spike propagation, we refer to the processing of
membrane voltage) can be detected e ciently in parallel insynaptic delays, which can be eith@mogeneoushe same for
the same way as in the integration kernel. The challengall synapses) oheterogeneousarying across synapses). With
here is to select and count the spiking neurons of thesynaptic e ect applications, we refer to the modi cations of
current timestep which naturally involves serializatiohhe synaptic target variables based on spikes (e.g., the reductio
implemented solution relies on a method from the CUDA of the postsynaptic voltage potential Byfor each presynaptic
programming API: threads that detect a spike perform amspike in the model fromFigure 1). In Brian, both the pre-
atomic increment of a population spike counter and useand postsynaptic spikes can have synaptic e ects on pre- and
the counter value to store their neuron ID in a spiking postsynaptic neurons and the synapse itself. In the followirgg, w
neuron array. An atomic operation is an operation on awill illustrate how Brian2CUDA implements spike propagation
single variable that can be safely called by multiple threadand synaptic e ect application for di erent delay types and
guaranteeing that all updates get applied correctly. Thesmiato for the case of presynaptic neurons that modify postsynaptic
increments limit the parallelization in the spike detectionvariables, butthe algorithms generalize to all other syicapéct
kernel when multiple threads try to increment the countertypes. For both, spike propagation and e ect application, kernels
at the same time, and the writing of spiking neuron IDs are parallelized over synapses in Brian2CUDA.

into the spiking neuron array is generally not coalesced.

The reset kernel is parallelized over spiking neurons and o]

therefore the reading of spiking neuron IDs is coalesced?-3-2-1. Connectivity Information

but the reset updates of the neuronal state variables afeOnsiderthe example connectivity for our recurrent LIF netiv
generally not. Since for the majority of models in computatibn Shown in Figure 3A, where synaptic e ects are triggered by
neuroscience, the number of spikes per time step is much low&f€Synaptic spikes. The (sparse) connectivity matrix of synapse
than the number of neurons per population, the potentially!DS sorted by presynaptic neuron ID is stored in YALE format
ine cient computations in the spike detection and reset (Figure 3B Eisenstat et al. 1982This connectivity matrix can

kernels often contribute only litle to the total computatio optionally (via a Brian2CUDA preference) be split into multiple
time3. partitions of postsynaptic neurons, in which case synapses

per presynaptic neuron are sorted by partitiofigure 30).
This createssynapse groupde ned by presynaptic neuron
5 - o and postsynaptic partition (di erent colors irFigure 30). If
Note that using separate kernels allows us to support Brian's exibleutios
scheduling, e.g., synaptic e ect application between threshdkttien and reset. synaptic e ects are trlggered by postsynaptic splkes, e.g., for

3In a population of neurons ring at 1& and a simulation time step of t D models with spike-timing dependent plasticity (STDP), a sejgarat
0.1ms, on average only 0.01 % of the neurons spike at each time step. connectivity matrix is created, sorted by postsynaptic nesron

Frontiers in Neuroinformatics | www.frontiersin.org 6 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

and partitioned by presynaptic neurons (not shown here). Tcelements that need to be inserted into spike queues, the sgaaps
access the neurons connected by a synapse, two additioagkarrwith the same delay that would be propagated together, are
store the pre- and postsynaptic neuron IDs for all synapsesdort grouped into synapse bundleend those bundles are inserted

by synapse IDKigure 3D). into the spike queues instead of synapsegure 4A shows the
example network fromFigure 3 but now with heterogeneous
2.3.2.2. Synapses Without Delays delays and additionally with synapse bundle IDs (instead of

When synapses have no transmission delay, there is no negt synapse IDs)igure 4B shows how the spike propagation
for a separate spike propagation phase, and synaptic e ecédgorithm sorts bundle IDs into spike queues. Since the makim
can be applied directly after spike detection. E ect applicatiomumber of synapse bundles that will be stored in any of the
is parallelized over all synapses of all spiking neurons, whespike queues is generally not known before a simulation, a
each CUDA block processes the synapses of one synamzestom dynamic vector implementation is used, which allows
group (Figure 3B. Each thread reads one synapse ID from thencreasing spike queue sizes in GPU kernels on demand. This
connectivity matrix, uses it as an index to read the postsyinaptresizing requires reallocating spike queue contents in globa
neuron ID of that synapse, which is then used to index theGPU memory. While this is generally very expensive, it only
postsynaptic membrane voltage. The synaptic e ect (decreasirf@ppens at the beginning of a simulation until the spike queues
Vpost by Jin our inhibitory LIF network example) is performed are large enough and hence has an overall negligible e ect on
using atomic operations to avoid race conditions from mukipl performance.

threads writing to the same memory location, €igure 3E During spike propagation, parallelization is over synapse
Reading synapse IDs from the connectivity matrix is coalescebundles, where each CUDA block operates on a dierent
while reading the corresponding postsynaptic neuron IDs andbundle group(di erent colors in Figure 4B analogous to
membrane voltages is generally not. Partitioning the catingy ~ the synapse groups ifrigure 3Q). All CUDA blocks for the
matrix can increase occupancy for networks with homogeneousame postsynaptic partition and for di erent spiking neurons
delays if the overall number of spikes per time step is smadiollect synapse bundles in the same spike queues. To avoid
enough (less than the limit on maximally active CUDA blocks;yrace conditions from potential memory reallocation, a @i
seeTable 1) and the number of synapses per neuron is largesection code allows only one CUDA block per partition to
enough (more than there are threads in each CUDA block)add bundle IDs into the spike queues at any time. All
Under such conditions and without partitioning, there are threads of this block can parallelize the pushing of synapse
too few active blocks with too many threads to parallelize albundle IDs into the spike queues over threads, since each
synaptic e ects. Partitioning the connectivity matrix theroves bundle with a dierent delay will be added to a dierent
threads from too full blocks into new active blocks, incieags queue. Note that CUDA blocks from dierent postsynaptic

parallelization. partitions operate on dierent spike queues and can be
executed concurrently. Therefore, increasing the number of
2.3.2.3. Synapses With Homogeneous Delays partitions decreases the amount of serialization during spike

When synapses have homogeneous dedaipskl t, the spiking propagation of heterogeneous delays. This can lead to better
neuron array is stored fok time steps before the synaptic performance as long as the additional CUDA blocks don't
e ects are applied. This results in a circular list & C 1 exceed the maximal number of active CUDA blocks on the GPU
spiking neuron arraysFigure 3F shows an example fok D (se€eTable 1).

2. The synaptic e ect application algorithm is the same as During synaptic e ect application, the synaptic e ects of all
for the no delay case (sdegure 3B, but using the neurons synapses in the bundles in th& 0 spike queue are applied. In
that spikedk time steps ago. Spike propagation for networksour toy example, where we only consider a single time step, these
with homogeneous delays amounts to incrementing the cancul are all synapses without delaysdure 4C). In general, multiple

list index referencing the spiking neuron array that is duedi erent synapses from neurons that spiked at di erent times
for synaptic e ect application. Therefore, adding homogeneousire collected in each spike queudgure 4D shows how the
delays to a network comes at close to no computational cost aiynaptic e ect application parallelizes over synapses. The numbe
each time step, but increases memory requirements for gjorinof CUDA blocks during e ect application equals the number of

multiple spiking neuron arrays. partitions. A xed number of CUDA threads per synapse bundle
performs the e ect application for all synapses of each bundle. In
2.3.2.4. Synapses With Heterogeneous Delays the present work, the largest bundle size is used as the number

In networks with heterogeneous synaptic delays, synapses$ threads per bundle, but this can be set by the user. Bundle
connected to spiking neurons are sorted irgpike queudsased sizes depend on the delay distribution and number of synapses
on their synaptic delay. Analogously to the spiking neuroragile per neuron in the network. If all bundles have the same size,
used in the homogeneous delays casdHiglure 3P, k C 1 spike each thread applies the synaptic e ects of one synapse. The more
queues are created, which are arranged in a circular list antsndle sizes vary, the less e cient is the parallelizatiovegi a
wherek is the number of time steps in the highest delay in the xed number of threads per bundle. In general, spike propagation
network max@j) D klt. As before, the connectivity matrix performance bene ts from partitioning the connectivity matr

can be partitioned by postsynaptic neurons, in which case ea@s long as the typical size of the spike queue is larger than the
partition gets its own spike queues. To reduce the number afiumber of threads per CUDA block.

Frontiers in Neuroinformatics | www.frontiersin.org 7 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

FIGURE 3 | Synaptic algorithm for networks with no or homogeneous delgs. (A) Example connectivity for the recurrent network fronfrigure 1, restricted to
homogeneous synaptic transmission delaysl and N D 5 neurons. Colored neurons 1 and 4 are spiking in the currenirne step. Color of their synapse IDs correspond
to the parallelization over CUDA blocks in (EJB) Connectivity stored in compressed form (YALE format) in gh@l GPU memory as one concatenated array of synapse
IDs sorted by presynaptic neuron ID (bottom view). Top view shs this array split by presynaptic neurons for visualizatio Two additional arrays (not shown) store the
start indices and number of synapses in the synapse array farach presynaptic neuron. Coloring correspond to the paradlization over CUDA blocks in (EXC)
Connectivity matrix for two postsynaptic neuron partitios, visualized as in (B). Each color shows one synapse groupeched by presynaptic neuron (red or blue) and
postsynaptic partition (bright or dark). The synapse arraig sorted in memory rst by presynaptic neuron ID and then by paition (bottom view).(D) Pre- and
postsynaptic neuron IDs for all synapses are stored in two aays, sorted by synapses IDs(E) Fully parallelized synaptic effect application for the nebrk from (A)
without delays ¢ D 01 t) and with the partitioned connectivity matrix from (C). Edcof the 4 CUDA blocks (cf. colors) applies synaptic effectof all synapses of its
respective synapse group. Membrane voltage updates are péormed using CUDA's atomic operations to avoid race conditins. Potential atomic con icts at the same
memory location are marked in green. Without connectivity @trix partionioning (B), only two CUDA blocks (one per spiki neuron) would process the synapses (not
shown). (F) Circular list of spiking neuron arrays for the network fromA) with homogeneous delaysd D 21 t. Spiking neuron arrays are labeled with the time in which
their synaptic effects are due for application. Spiking newns of the current time step are stored in the array labeled ith d D 21 t. Synaptic effects are applied for the
neurons in the array labeled with @ t. After each time step, all array labels are rotated clockwesand the applied spiking neuron array will be overwritten bthe new
spikes of the next time step.

2.4. CUDA Code Generation With (Stimberg et al., 202)1Since both are implemented as backends
Brian2GeNN for the Brian 2 simulator, the exact same models can be run
Our benchmarks compare Brian2CUDASs performance with theand easily compared. Note that the Brian2GeNN interface
performance obtained when using the Brian2GeNN interfaceloes not support synaptic connections with heterogeneous

Frontiers in Neuroinformatics | www.frontiersin.org 8 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

FIGURE 4 | Spike propagation and synaptic effect application for synpses with heterogeneous delays(A) Same connectivity as shown inFigure 3A , but with
heterogeneous delaysd;; from neuronj to i. Neurons spiking in the current time step and their outgoingynapses are colored. Colors of synapse labels correspondbt
the parallelization over CUDA blocks during spike propagain in (B). Bundles group together synapses with same presyptic neuron, postsynaptic partition as
shown in (B) and delay value. All bundles for the same presyptic neuron and postsynaptic partition de ne a bundle group $ame color), each with a different delay. In
this toy example, only bundle 0 has two synapses (0 and 5), thether bundles contain only one synapse. Additionally onlyhe bright red bundle group consists of two
bundles (2 and 4), while the other bundle groups contain onlgne bundle. (B) Spike propagation step. Bundles for all spiking neurons arsorted into spike queues
based on their delay value and postsynaptic partition. Marial delay in (A) iglp 4 D 31 t, requiring 4 spike queues per partition. Each of the 4 CUDA btks
propagates all bundles of its respective bundle group. A dical section code ensures that only one CUDA block per patibn (red or blue) has access to the spike
queues of its partition at any time. Two CUDA blocks of diffent partitions (dark and light) can operate concurrently oseparate spike queues. For each partition,
delay queues are constructed as a circular list of arrays antheir labels are rotated at the end of each time step [after (panalogously to the circular list of spiking
neuron arrays in the case of homogeneous delays ifigure 3F . (C) Synaptic effect application. Same connectivity as in (A).dlors now indicate neurons receiving
synaptic effects in the current time step (yellow) and theincoming synapses (red and blue, these are the synapses froiA) without delay). Colors of synapse labels
correspond to the parallelization over CUDA blocks duringféect application in (D)(D) Effect application step. Synaptic effects of all synapsesiall bundles in the @ t
spike queues are applied to their targets. One CUDA block pepartition processes all bundles of its partition. Bundlesi@ unpacked and each thread applies the effect
on one synapse (e.g, two threads are processing the two synages in bundle 0).

delays, therefore the corresponding benchmarks only compaegjuations. In the next step, the interface converts synaptia d
Brian2CUDA to CPU performance. structures and model descriptions to the GeNN format, and
The Brian2GeNN interface uses Brian's C++ frameworkuns GeNN's own code generation process. Finally, the gésabra
to generate synaptic connections, initialize variableg) &m code gets integrated into a run loop running on the CPU that
generate the numerical update steps based on the given modgéo takes care of exchanging memory between CPU and GPU

Frontiers in Neuroinformatics | www.frontiersin.org 9 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

when necessary (for details s&&mberg et al.,, 2020bThe 1,000 synapses per neuron and with random synaptic weights
internally used data structures and algorithms are idaaitio uniformly sampled fromweg, w U(0,Wmax) With Wmpax D
running a simulation with the GeNN simulator (for details 10 1S. The weights are chosen small enough to have no
seeYavuz et al., 20)6 GeNN allows the user to choose datasubstantial e ect on postsynaptic conductances such that the
structures and algorithms most adapted to their model, andetwork activity does not change when increasing the poputati
many of these choices are exposed in the Brian2GeNN interfacgize, but synaptic propagation and e ect application is still
All benchmarks presented in this paper use GeNN's sparggerformed during the simulation (same procedure aStimberg
connectivity method, and chose the—for the respective modedt al., 2020p

con guration—faster of its two parallelization modgse mode

i.e., parallelization over pre-synaptic sources and secaidatips 2.5.1.2. LIF Benchmark: Noisy Integrate-and-Fire Neurons
over post-synaptic targets, post modei.e., parallelization over With Synaptic Transmission Delays

post-synaptic targets and sequential loops over pre-synaptithe LIF benchmark consists of a populationfnoise-driven

sources. LIF neurons with recurrent inhibitory connections (based o
Brunel and Hakim, 1990 This is the same model we introduced

2.5. Benchmarks in Figure 1 The dynamics of each neuron are described by a

2.5.1. Benchmark Models single ordinary di erential equation for the membrane voleag

To assess the runtime performance of Brian2CUDA inshown inFigure 1B For all benchmark results, we simulated
comparison to Brian2 on CPU and Brian2GeNN we use aghe model with spike threshol@ D 20mV, reset potential
benchmarks di erent models that cover popular types used iV D 10 mV, membrane time constantD 20 ms and inhibitory
computational neuroscience. Here, we give an overview of theouplingd D 0.1 mV. Neurons have a refractory period f; D
model characteristics and behaviors. The simulation coitteall 2 ms. Recurrent random connectivity is implemented in the same
model implementations, parameters and benchmark proceduregay as in the HH benchmark, with connection probabiltp &

that were used to generate the results of this paper are alesitab With the same average number of synapses per ne@ront,000.

our Brian2CUDA GitHub repositor§and archived aglevietal. ~Synapses from spiking presynaptic neurons modify postsynaptic
(2022) membrane voltages.

For the benchmark version with homogeneous delays
2.5.1.1. HH Benchmark: Hodgkin-Huxley Type Neurons (Figures 5G 7A), the synaptic transmission delay wasD 2 ms
With Static Synapses for each synapse from neurgnto neuroni. The parameters
For the rst benchmark, we use a model of excitatoryof the external drive (Gaussian white noise) were chosen
and inhibitory conductance-based Hodgkin-Huxley (HH) typea@s ext D 25mV and ex D 1mV. For the benchmark
neurons (also used iBrette et al. 2007; Stimberg et al. 2020p/ersion with heterogeneous delajsgures 6A 7C), the synaptic
and based ofiraub and Miles 1991 This neuron model consists transmission delays were uniformly sampled from a uniform
of six coupled ordinary dierential equations describing the distribution dj U(0, 4) ms. Resolved on the integration time
dynamics of the membrane voltage, three gating variables, a grid with 1t D 0.1 ms, this resulted in up to 41 di erent delay
excitatory and inhibitory synaptic conductances. We iditiead ~ values. The external drive parameters were chosenegs D
membrane voltages and synaptic conductances independenfly MV and ex D 0.33mV. These parameters ensured that
from Gaussian distributions, such that all neurons hadhtlig both benchmark versions had the same mean synaptic delay and
di erent initial conditions (for details se&timberg et al., 2029b that network activities showed qualitatively similar slgiobal
We simulated populations o neurons (80% excitatory and oscillations (se&runel and Hakim 199%xample activity for the
20% inhibitory) with random recurrent synapses. Synapses fro heterogeneous version with D 5,000 shown irFigure 10).
spiking presynaptic excitatory and inhibitory neurons modify
postsynaptic excitatory and inhibitory conductances based 02-5.1.3. STDP Benchmark: Dynamic Synapses With
their synaptic weightse andw;, respectively. Connectivity was Spike-Timing Dependent Plasticity
randomly Bernoulli-sampled for each pair of neurons (inclgli The spike-timing dependent plasticity (STDP) benchmark
self-connections) with xed probabilitp D C whereC D consists ofN Poisson generators with dynamic feedforward
1,000 is the average number of synapses per neuronNFer ~ Synapses to a population gy, LIF neurons (for an example of
1,000, all neuron pairs were connected. The model is identic&he activity in the network, seBupplementary Figure SB The
to the COBAHH benchmarin Stimberg et al(20201), where a Poisson generators have no dynamics that need to be intgjrat
mathematical description of the model and a list of parameter§ut produce random Poisson spike trains with a mean ring rate
can be found. of 158t (each generator performs one independent Bernoulli

ForFigure 5A, we simulated neurons without any synapses, trial per time step). The dynamics of the LIF neurons are
i.e., an uncoupled HH-type population. For an example ofdescribed by two di erential equations, one for the membrane
the activity in this network, seSupplementary Figure S2For ~ Vvoltage and one for an excitatory synaptic conductance. The
Figure 58 we simulated the model with an average®fD connection probability isp D §&, whereC D 1,000 is the

average number of incoming synapses per LIF neuron (while each

4https://github.com/brian-team/brian2cuda/tree/paper2022/bBanda/tools/ Poisson generator has on ave.rage Pnly One. outgoing synapse).
benchmarking. Each synapse has a dynamic weight, which determines the

Frontiers in Neuroinformatics | www.frontiersin.org 10 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

synaptic e ect that a presynaptic spike has on the postsynapti@:o,'\]ﬁ0 (with all-to-all connectivity forN < 10,000). These
neuron. The dynamics of the weights implement an all-to-allconnections are plastic, following the STDP rule presented in
additive STDP rule $ong et al., 2000; Morrison et al., 2008 the STDP benchmark. Finally, the third population has recatre
Each pre- and postsynaptic spike increases a correspondisgnapses to itself with all-to-all connectivity and statikibitory
trace variable, stored for each synapse (necessary to suppsynapses. For more details and parameters of this model, see
heterogeneous delays). In the absence of spikes, these tréeeuz et al. (201@ndStimberg et al. (2020b)
variables decay exponentially, which is implemented throagh
event-driven update (see Section 2.3.2), and is therefolg or2.5.2. Benchmark Procedure
calculated when necessary. When a presynaptic spike artiees, All our benchmarks running on GPUs were executed on a single
current postsynaptic trace is used to decrease the synaptihtyei A100 data-center GPU (40 GB global memory), except for some
and conversely a postsynaptic spike triggers an increase in thesults inFigure 9, which were executed on a single consumer-
synaptic weight based on the current presynaptic trace. Tegeth level GeForce RTX2080 Ti GPU (11 GB global memory). Brian's
these changes implement the observed asymmetry of the STR+ backend was executed on an Intel Xeon Gold 6226R CPU
rule, where a presynaptic spike followed by a postsynaptic spikeith 16 physical cores, using 16 threads. Benchmarks were run
leads to synaptic facilitation, and the inverted sequenaglde on Brian2CUDA commit-tagpaper2022 > (Alevi et al., 2028
to synaptic depressionB{ and Poo, 2001 The technically Brian version 2.4.25timberg et al., 202)aGeNN version 4.5.1
challenging aspect of this model is that there are multiplegyic ~ (Knight etal., 202Jzand Brian2GeNN commi5f844d0 (based
e ects triggered by pre- and postsynaptic spikes: synaption version 1.6;Stimberg et al., 2031We modi ed the Brian
trace variables are bidirectionally aected and additidpal and Brian2GeNN versions with custom patches to execute our
presynaptic spikes in uence postsynaptic neuretsincreasing benchmarks and to get more detailed pro ling information tha
the excitatory synaptic conductance. In Brian2CUDA, for thisavailable in the original implementations. Note that we eesu
model, two separate connectivity matrices are generateglfan thatthese modi cations had no signi cantimpact on the runie
pre- and one for postsynaptically triggered synaptic e ectshBotdurations. The correct versions of these packages are stwred
matrices are sorted di erently, the former one by pre- and theGit submodules in our GitHub repository, together with the
latter one by postsynaptic neurons (see Section 2.3.2.1). necessary patch les and instructions on how to apply them.

We use two versions of this model for benchmarking: withC++ code was compiled with gcc version 9.3.0 and CUDA code
homogeneous delay&igures 5D, 7B) and with heterogeneous was compiled with nvcc version 11.2 based on CUDA toolkit
delays Figures 68 7D). The delays are the same as in the LIFversion 11.2. The operating system on the computers with the
benchmarks with the corresponding delay type. Note that thé\100 GPUs and Intel Xeon Gold 6226R CPUs was CentOS Linux
transmission delays are implemented as axonal delays hiey., t release 7.4.1708 and on the computers with RTX2080 GPUs it was
only apply to synaptic e ects triggered by the presynaptidJbuntu Linux version 20.04.3 LTS.
population, while the synaptic e ects from the postsynaptic For all benchmarks, we rst recorded network activities for
population have no delays. di erent network sizes and inspected that network activitieere

as expected. Additionally, we compared the results of Brian's

2.5.1.4. Mushroom Body Benchmark: Complex Model With C++ backend with the results of the Brian2CUDA backend for
Multiple Neuronal Populations, Spike-Timing Dependent validation. For the nal computation time measurements, we
Plasticity and Noise disabled the recording of any network activities. All bematrks
As the nal benchmark (forFigure 5B, we consider a more were simulated once for 10 s biological time (excepHigure 8)
“realistic,’ complex model with multiple neuronal populations with a simulation time step of t D 0.1 ms, and the computation
and synapse types, that combines several of the features of tiraes were divided by 10 to produce computation times relative
previous benchmarks. For an example of the activity in théo biological time (referred to agime [comp / bio]in our
network, seeSupplementary Figure SAThis model is inspired gures). Simulations that exceeded 1,000's of total compamati
by the mushroom body of insects, based on the model bjime were interrupted before the end of the simulation (except
Nowotny et al. (2005)and used as a benchmark in earlierfor Figure 8). The computation time for the entire simulation
studies Yavuz et al., 2016; Stimberg et al., 202(riey, was then linearly extrapolated based on the fraction of bicklg
this model consists of three populations: the rst populationtime that was simulated (data points marked in all gures).
consists of 100 pattern generators (i.e., does not simulage aAll gures except for Figure 8 show the computation time
dynamics but replays a pre-de ned spike pattern), connecting tenly for the main simulation loop, which consists of all
N HH-type neurons in the second population with a connectionsimulation kernels that are executed at each time step of a
probability ofp D 0.15 for each possible connection (Bernoullisimulation. This time does therefore not include compilatio
sample). These connections are modeled as static, exgitatdretwork initialization, synapse generation, or result age.
synapses. The neurons of the second population are modelédr the Brian2CUDA pro ling simulations inFigure 7, the
with the same equations (but di erent parameters) as in the HHCPU and GPU were synchronized after each kernel launch
benchmark presented earlier, except that they have no irdnipit (forcing the CPU to wait for the kernel to terminate before
conductance, which is not required without inhibitory sysses. continuing execution, which results in increased computati
This second population connects further to a third population
of 100 HH-type neurons, with a connection probability @fD Shttps:/github.com/brian-team/brian2cuda/tree/paper2022

Frontiers in Neuroinformatics | www.frontiersin.org 11 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

time) and kernel times were measured using timing functionspeedup of the GPU backend implemented in Brian2GeNN
in C++ code. For the Brian2GeNN proling experiments, is comparable to the speedup of Brian2CUDA. With single-
Brian2GeNN's own kernel timing preference was enabled, vhicprecision oats as shown here, Brian2CUDA performs slightly
records kernel times with CUDA events and without additionalbetter than Brian2GeNN for large network sizésgure 5A),
CPU/GPU synchronization. All Brian2CUDA simulations of while for double-precision oats this di erence is negligible
benchmarks with no or homogeneous delays were executddhown in Supplementary Figure S1F Both backends also
without partitioning the connectivity matrix. For benchmks have comparable memory requirements, but Brian2GeNN is
with heterogeneous delays, the number of connectivity matr slightly more e cient. For example, on an RTX2080 Ti with
partitions is shown in the gure labels or captions. In all 11 GB memory, Brian2GeNN can simulate a network that has
benchmarks with heterogeneous delays, synapse bundlesaate uabout 1.4 times the size of the biggest network that can be
(and not individual synapses as Brian2CUDA can be con guredsimulated with Brian2CUDA (about 2.8 10° vs. 2.0 1C°

to do). ForFigure 8 the STDP benchmark with homogeneousneurons).

delays was simulated for the biological times and network Nextwe turnto networks with synapses, where the application
sizes shown in the gure legends and simulations were notf postsynaptic e ects is less trivial to parallelize, sinceetleets
interrupted after 1,000 s computation time. Code generatioth a of multiple spikes at the same target neuron cannot be applied at
compilation times were recorded from within the Brian packagethe same time in GPU memory (see Section 2.3.2.2). We therefo
To measure the initialization and nalization times, we cpoted extend our benchmark model to a network of recurrently couaple
the di erence between the time spent within the main loop of HH-type neurons with conductance-based synapses without
the generated code and the total execution time of the compiletransmission delayd-{gure 5B). In this model, each neuron has
binary. on average 1,000 synapses. To analyze the particular e eat of th
added recurrent synapses, we ensured that they do not chhage t
network activity. In this benchmark, Brian2CUDA still aches/

a speedup of 3 orders of magnitude compared to Brian's single-

To illustrate how di erent model features aect simulation threaded C++ backend for large enough network sizés X

performance on GPUs in Brian2CUDA and what speedup Ievel%os; Figure SB?' Notably, Brian2CUDA p(.erform.s roughly 5 t!mes
. - . . faster than Brian2GeNN for the largest investigated nekvgize
are typical, we consider multiple benchmark models coverin

. - . - ZN D 1(F), while being 2—-3 times slower for smaller network
various model types often used in computational neuroscience.

In Sections 3.1-3.4, we focus on the computation time needesdzesl\I < 104)' The performance di erences for small networks

o h L . .~~can be explained by the sequential execution from multiple kmal
for the main simulation loop, which is the part of the simulatio : . .
. . . : - kernels in Brian2CUDA compared to the execution of fewer
that is executed at every simulation time step. In particular ; . : .
.) : . merged kernels in Brian2GeNN, see Section 4 for more details
we summarize simulation performance for models without . .
. . . . In comparison to the network without synapses, the speedups
synaptic delays or with homogeneous delays in Section 3.1 .

. : - ained through parallel computations in the multithreadedC+
and for models with heterogeneous delays in Section 3.2. |
. o . .~ backend and the GPU backends are reduced by a factor of 2-5
Section 3.3, we analyze the contributions of di erent algon .) : -
. . . - when including synapses (segures 5Avs.5B). This illustrates
parts to the runtime and in Section 3.4, we illustrate how !))
. . ! . that synaptic computations are generally less parallelizhble
recording of network activity and state variables in uesce

runtimes. Section 3.5 then quanti es the overhead of pregarin neuronal computations.
a simulation in terms of compilation and synapse initialipati 3.1.2. Leaky Integrate-and-Fire Benchmark

runtlmg beyond the main simulation loop. Finally, we S.hOWT e speedups of the GPU backends for the HH benchmarks
in Section 3.6 how the performance depends on the choice g .
emonstrate that neuronal computations bene t much more

oating point precision (single vs. double) and speci ¢ GPUfrom parallelizations on the GPU than synaptic computations.

3. RESULTS

hardware. Consequently, models for which the single-threaded C++
. backend spends relatively less time for neuronal computation
31 Benchmark Models W|t_h0Ut Delays or should bene t less from computations on the GPU. To illustrate
With Homogeneous Synaptic Delays this e ect, we next consider a population of noise-driven
3.1.1. Hodgkin-Huxley Benchmark recurrently connected leaky integrate-and-re (LIF) neus

To make e cient use of GPUs, simulation code has to performwith homogeneous synaptic transmission delays (based on
highly parallel computations. The independent integrationBrunel and Hakim, 19909 This benchmark has the same number
of neuronal state variables performed at each simulationf synapses per neuron as the HH benchmark, but its neurons
time step for all neurons is trivial to parallelize on aare described by only one dynamic state variable, compared
GPU. In Brian2CUDA, each GPU thread computes the fullto six state variables in the HH neuron model. Therefore, the
state update for a single neuron (see Section 2.3.1). Femngle-threaded C++ backend spends relatively less of thalbve
a network of Hodgkin-Huxley (HH) type neurons without computation time for neuronal computations when using LIF
synapses, Brian2CUDA achieves a speedup of 3 orders mdurons. While Brian2CUDA still achieves a speedup of almost
magnitude compared to Brian's single-threaded C++ backen@ orders of magnitude compared to Brian's single-threaded C+
for large enough network sizeN(> 1CP; Figure 5A). The backend for large enough network sizé6 ¢ 1CP; Figure 50),

Frontiers in Neuroinformatics | www.frontiersin.org 12 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

FIGURE 5 | Benchmark results for networks without delays or with homogneous delays.(A) Hodgkin-Huxley (HH) population without synapses(B) Sparsely
coupled recurrent HH network with 8@ excitatory and 20% inhibitory neurons, without synaptic delays(C) Leaky integrate-and- re (LIF) network with sparse
random connectivity and homogeneous synaptic delaysl; d D 2ms for all synapses.(D) Spike-timing dependent plasticity (STDP) benchmark withdmogeneous
delaysdj d D 2ms. (E) Mushroom body benchmark with non-plastic synapses in the rs$layer and synapses with STDP in the second layer, both randuoly
connected and without delays. For all panels: The text annations on the right of the axes show the factor by which each siulation was faster than Brian's
single-threaded C++ backend (i.e., obtained speedup) at th largest displayedN. Brian2CUDA was simulated without partitioning the connetivity matrix in all
simulations (corresponding toFigure 3B). Brian2GeNN was simulated using itpost parallelization strategy fo{A—C) (dark blue) andpre parallelization strategy for
(D,E) (light blue), which was the respective faster simulation nute compared to the other (not shown). All simulations were rnuonce for 10 s biological time. All times
shown are computation times for the main time loop (i.e., witout code generation, compilation, synapse generation or etwork initialization/ nalization) and are
relative to the simulated biological time. All simulationsere interrupted if the main time loop took longer than 1,008 and the total computation time was extrapolated
based on the fraction of biological time that was simulatedsfmulations for which this was done are indicated by small mular markers). All simulations were
performed with Brian's single-precision preference for o#ing point numbers, i.e., 32-bit arithmetic, on A100 GPUs.

the speedup is approximately halved compared to that of th&8.1.3. Spike-Timing Dependent Plasticity Benchmark
recurrent HH benchmark Eigures 5Bvs. 5C). Note that the The benchmarks presented so far are based on static synapses,
addition of homogeneous synaptic transmission delays comeashich do not change over the course of the simulation.
at almost no additional computational cost in Brian2CUDA However, an important sub eld of computational neuroscience
(see Section 2.3.2.3). In relation to Brian2GeNN, Brian2@UD is interested in synaptic plasticity, where synaptic weights
performs 3 4 times better for the largest network sizéé (continuously adapt. Of particular interest in spiking neural
10P), while being 2 3 times slower for smaller network sizes networks are spike-timing dependent plasticity (STDP) rules,
(N < 10%. As observed previously, Brian2GeNN is morewhere the change in synaptic weight depends on the precise
memory-e cient than Brian2CUDA. It is able to simulate this timing of pre- and post-synaptic spikeSi(and Poo, 2001
benchmark on an RTX2080 Ti for a network with more thanSuch plasticity rules present particular challenges for GPU
2.0 1P neurons, about 2.3 times the size supported byacceleration, since they require more complex memory access
Brian2CUDA (about 8.6 1(° neurons). patterns during the spike e ect application phase than common

Frontiers in Neuroinformatics | www.frontiersin.org 13 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

static synapse models (cBrette and Goodman, 20).2To Brian2GeNN inpostparallelization mode performs slightly better
investigate the acceleration of models with STDP, we neXtseeSupplementary Figure S1E

examine a network with dynamic feedforward synapses from All results in Figure5 are from simulations with

a large population ofN Poisson generators to a much smallersingle-precision oats and with preferences that gave the
population of 1,%0 LIF neurons Figure 5D). The synapses in best performance. Results for additional preferences and
this network have (again) homogeneous transmission delaysimulations with double-precision oats are shown in
Brian2CUDA achieves here 2 orders of magnitude speedupupplementary Figure S1

compared to Brian's single-threaded C++ backend for large

enough network sizes\N(> 1(P), but the speedup is reduced 3. 2. Benchmark Models With

by a factor of 3 compared to the LIF benchmark. This is duei_le,[erogeneouS Synaptic Delays

to the increased relative computation time required for gyta
computations from the STDP learning rule (as will be shownB”an supports the simulation of networks with heterogenepusl

in more detail below). Compared to Brian2GeNN, Brian2CU DAd'rit:brllJ;egc gy:?(aezt'ﬁavietlgy;é s-tln—?tedS? u(ljaet; SaL:lcélhstgrzt\évct))g(]%re
is again slower for small network sizes$ (10°) while being presynap P y y

. - their synaptic e ects are applied. This spike propagation is
Y
slightly faster for the largest network si2¢ D 10/). challenging to parallelize e ciently on GPUs and additiohal
in uences the parallelization of the synaptic e ect application
. . . . (Brette and Goodman 20iZ%Section 2.3.2.4). To evaluate the
In the nal benchmark on simulations without or with

. . g{erformance of Brian2CUDAs spike propagation and e ect
homogeneous delays, we consider a model of an NS€bplication algorithms, we include heterogeneously distébut
mushroom body based orNowotny et al. (2005) in an bp 9 ' g Y

implementation already used iftimberg et al. (2020b)t is a synaptic delays in our LIF and STDP benchmarks, without

three-layer network with HH-type neurons and STDP in Somequalita‘tively changing their network dynamics. We further

of its synapsesHgure 5B). Since this model includes HH-type evaluatg _BrlanZ_CUDAs performance when partitioning its
; . . __connectivity matrix (see Section 2.3.2.1).
neurons with relatively few synapses, most of the computation . .
. . : . Note that while the GeNN simulator has recently added
e ort is spent on the integration of the neuronal state varisl

More precisely, there are two operational regimes: For small srupport for heterogeneously distributed synaptic delays, this

- : eature is currently not available in the Brian2GeNN ingaxé.
network sizesN 10, the number of synapses is 2 orders of .)
. ; - We therefore compare Brian2CUDAs performance only to
magnitude higher than the number of neurons in the network

. .. Brian's C++ backends.
and the performance is comparable to the HH benchmark with Figures 6A,B show the results for the LIF and STDP

synapses (cfigure 58). qu larger network SlzeSN(. 105).’ benchmarks, respectively. The performance of Brian's single-
the number of synapses is only 1 order of magnitude h'ghe{hreaded C++ backend is not signicantly aected by the
than the number of neurons and the performance is closer tg resence of heterogeneous delavs. while Brian2CUDAS
that of the HH benchmark without synapses (&figure 5A). P 9 ys,

Surprisingly, Brian2CUDAs speedup for large network sizes igerformance drops by an order of magnitude for the .LIF
i benchmark and between one and three orders of magnitude
the mushroom body model is even larger than for the HH

. . L for the STDP benchmark (cfFigures 5C,D, depending on
?oe':nhn;itrrka Vé'tzzl;;isyir;‘?‘?;f; T:; d?i?::g \I/Zr?aiglt; ati)rlly tggﬁw partitioning of the connectivity matrix. Note that Bri&n

y y . . . multithreaded C++ backend does not e ciently parallelize lspi
neuron model of the HH benchmark, which requires additional

registers during the neuronal integration. Due to hardwiamats propagation or th? _computat_|ons_ for Poisson generators_, and
hence performs similarly as its single-threaded backendén t

of available registers on the GPU, this decreases the m‘B‘Xir’ﬁé‘TDP benchmark. Partitioning the connectivity matrix hatd

theoretical occupancy of the neuronal integration kernel toe ect on overall runtime for the LIF benchmark, but increases

62.5% for the HH benchmark compared to 100% in the . .
mushroom body benchmark (48 registers per thread vs 3gerformance by up to two orders of magnitude in the STDP
y 9 P * “benchmark. This strongly depends on the number of partitions

:]igr:]stt)t;sopf)er;tf;::i; ﬁgesdz?gn izk.e?,r.:e?i?ﬁo]t).egcs)he thf‘et(;h?ab and best performance was reached for 64 partitidrigure 6C).
9 y y predilab o hderstand the e ects of partitioning the connectivity

and does not directly re ect the number of state variables,
. ; . : matrix, we next consider pro ling experiments to analyze the

The number of intermediate computation steps in the chosen - . . .

. . " . . contribution of di erent parts of the simulation to the ovetal

integration method, additional temporary variables intraskd untime

by Brian's code generation process, but also the CUDA compu{e ’

capability of the GPU and even seemingly irrelevant detait s . . .

as the order of variable declarations, all a ect registeges@his ~ 3-3- F_)U”t'me Decomposition Into Different

demonstrates that minor di erences in a model can have larglgorithm Parts

e ects on performance. We examine the contributions of the dierent algorithm
Note that for Brian2GeNN, which performs about 5x slowerparts by proling the simulation. The following individual

for the largest network size, we again show the performanceintimes are available: the computation times for (1) perforgn

of its pre parallelization mode, for which the performance neuron related computations (integration of dynamics and

is better at larger network sizes. For smaller network sizespike detection), (2) spike propagation and (3) synaptic e ect

3.1.4. Mushroom Body Benchmark

Frontiers in Neuroinformatics | www.frontiersin.org 14 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

of synapses to neurons (including Poisson generators) is
much lower in the STDP benchmark compared to the LIF
benchmark. The speedup of the GPU backends compared to the
multithreaded C++ backend comes mostly from parallelizing t
neuronal state updates and Poisson spike generation (ingdudi
random number generation) on the GPU. When comparing
Brian2CUDA and Brian2GeNN, both require similar times for
the neuronal state updates and Poisson spike generation, but
their e ciency for the synaptic e ect applications diers for
both benchmarks with homogeneous delayg(res 7A,B. For

the LIF benchmark, Brian2CUDAs synaptic e ect application
is more e cient compared to Brian2GeNN since the former
parallelizes CUDA threads over all synapses while the latter
parallelizes over postsynaptic neurons, requiring sequential
looping over presynaptic spikes (using thestparallelization
strategy of Brian2GeNN). In the STDP benchmark on the other
hand, Brian2CUDA is only slightly more e cient in the synaptic

e ect application because Brian2GeNNwe parallelization
strategy is particularly suited to the case of many spikingoes

and few postsynaptic partners as explained above.

For heterogeneous delays, Brian2CUDA spends most of the
computation time on spike propagation and synaptic e ect
application relative to neuronal state updatdsglres 7C,D.

For the LIF benchmark with heterogeneous delays, incrgasin
the number of partitions increases spike propagation times but
decreases synaptic e ect application timésg(re 7C). Each
neuron in this benchmark has on average 1,000 synapses grouped
into 41 synapse bundles per partition (see Section 2.3.2.4).
Without partitioning the connectivity matrix, each CUDA blic
sorts all synapse bundles of one spiking neuron into spike qgieue
using one CUDA thread per bundle. This results in small CUDA
blocks with only 41 active threads during spike propagation. Fo
the large network size here, the number of spikes per time step

FIGURE 6 | Benchmark results for networks with heterogeneous delays.

(A) LIF benchmark model fromFigure 5C but with heterogeneous delays.
(B) STDP benchmark fromFigure 5D but with heterogeneous delays. Delays
for all synapses in both models(A,B) were uniformly sampledd; U(O, 4)ms.
The external drive for the LIF benchmark was additionally moed to maintain
the same regime of network activity as in the case of homogermus delays
(see Section 2.5.1.2).(C) Computation times for LIF (blue line) and STDP
(green line) benchmarks for different numbers of connecity matrix partitions
in Brian2CUDA, for the maximal network sizes fronfA,B) [indicated with blue
and red triangular markers in(A,B)]. Triangular markers in(C) indicate the
number of partitions plotted in(A,B) in the corresponding colors. All
simulations were performed as described irFigure 5.

is of the same order as the maximal number of active CUDA
blocks on the GPU (se@able 1). Partitioning the connectivity
matrix under these conditions reduces the size and incretise
number of the already small CUDA blocks without being able
to execute them concurrently. Consequently, spike propagatio
times increase with partition numberF{gure 7C red). On

the other hand, the synaptic e ect application prots from
partitioning the connectivity matrix. Without partitioningonly a
single CUDA block applies all synaptic e ects of the spike queue
for the current time step. For large networks with large spike

queues, partitioning distributes synapses across multiple CUDA
blocks, signi cantly increasing e ect application performance
(Figure 7C vyellow). Note that partitioning also has a small
application (including the event-driven integration of sysiiz impact on the memory usage: on an RTX2080 Ti, Brian2CUDA
dynamics in the STDP benchmark). The decomposed runtimesan simulate a LIF network with heterogeneous synapses with
for the LIF and STDP benchmarks with homogeneous delayaround 5.6 10° neurons when using a single partition, but with
are shown inFigures 7A,B those for heterogeneous delays areonly about 0.77 times the size (around 4.B%® neurons) when
contained inFigures 7C,D using 68 partitions.

Brian's multithreaded C++ backend spends around half For the STDP benchmark with heterogeneous delays,
the computation time for spike propagation and synapticincreasing the number of partitions decreases both, the spike
eect application in the LIF benchmarks F{gures 7A,C propagation and the e ect application times up to an optimal
yellow), while spending almost all time in the neuronalnumber of 64 partitions Figure 7D). Without partitioning, the
state updates and Poisson spike generation in the STDs$pike propagation is so ine cient that the total runtime exceed
benchmarks Figures 7B,D blue). This is because the ratio that of the single-threaded C++ simulation (&figure 6B). For

Frontiers in Neuroinformatics | www.frontiersin.org 15 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

FIGURE 7 | Pro ling results for benchmarks with homogeneous and hetergeneous delays.(A,B) Pro ling results for LIF(A) and STDP(B) benchmarks with
homogeneous delays for the respectively largest populatioof Figures 5C,D . (C,D) Pro ling results for LIF(C) and STDP (D) benchmarks with heterogeneous delays
for the largest population size ofFigures 6A,B . For the STDP benchmarks inB,D), the Poisson spike generators are included in the neuronalaenputation times
(blue). The gray shaded areas in the lower part gA—D) contain zooms of the respective GPU simulations in the midedl(indicated by the magnifying glass symbol)Q,
left) and D, right) show pro ling results for different numbers of partions of the connectivity matrix in Brian2CUDA. Black lineare the total computation times for the
main time loop (cf.Figure 6C). In all panels, Brian C++ was simulated with 16 threads, B2 CUDA was simulated without connectivity matrix partitioing if not
stated otherwise and Brian2GeNN was simulated ipost mode for (A) and in pre mode for (B). For Brian2GeNN, only the combined time of spike propagatio and
effect application (striped bars) was recorded since both @ combined into a single CUDA kernel. All simulations wereepformed as described inFigure 5, but with
enabled pro ling measurements leading to slightly higher tial computation times.

this benchmark, every Poisson neuron has on average onlyldrge neuronal populations with extremely sparse synapses (here
synapse. This is the worst-case scenario for Brian2CUDA® spilonly 1 synapse per neuron), Brian2CUDAS connectivity matrix
propagation algorithm, since all CUDA blocks have only a singlgartitioning can have drastic bene ts on performance.

thread and the hardware limit on maximally active blocks pdr S

strongly limits the number of synapse bundles that can be ddde3.4. Runtime Contribution of Network

to the spike queues concurrently. Additionally, the resigti Activity and State Variable Recordings

small workload per SM leads to a low parallelization acrossect To analyze a spiking network model, Brian allows recording
CUDA blocks since only one CUDA block can access all spikepike times, state variables and population ring rates. In
queues at any time. Increasing the number of partitions als@rian2CUDA, recorded variables are stored in GPU memory
partitions the spike queues. Since concurrent access of ditere during a simulation and are transferred to CPU memory and
CUDA blocks to di erent spike queues is possible, this increasesritten to disk at the end of a simulation. The contributiop t
spike propagation performance. This benchmark shows that fasverall computation time of such recordings strongly depeoils

Frontiers in Neuroinformatics | www.frontiersin.org 16 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

of recorded neurons. This results in up to 2 orders of magihéu
longer computation times when recording a single voltagedra
in the HH benchmark example above.

Compared to Brian's C++ backends, absolute network
recording runtimes in Brian2CUDA are comparable for large
recordings (e.g., for the HH benchmark example), and can
be slower for smaller recordings (around 5 times slower for
LIF benchmark example). This is because memory copies in
GPU memory are slow, and Brian2CUDA bene ts more from
parallelizing the copy process for larger recordings. Given th
large speedups for other computations in Brian2CUDA, network
activity and state variable recordings contribute relelvmuch
more to total computation times than in Brian's C++ backends.

3.5. Additional Computation Time Factors:
FIGURE 8 | Additional time required during a simulation with Brian2CDA for COde Generatlon’ Compllatlon’

the STDP benchmark with homogeneous delaysHigure 5D). Code Initialization, and Finalization
generation and compilation times (yellow) are independeraif network size and So far we have been analyzing the computation time needed for
bﬁological time. Netwgrk inlitializa-tion arlld nalization‘ahg) depend on network the main simulation Ioop, ie., onIy that part of the simulatio
size but not on biological time. Simulation of the main timeobp (red) scales
with both, biological time (linearly) and with network size&Compilation was that is executed at every simulation time step. For Iong ragni
performed in parallel on 16 CPU threads. simulations of large networks or for real-time applicatiorigstis
the most relevant performance measure. But in order to gehfro
a Brian model script to the results, the Python code needs to be
translated into the target language, which needs to be cadpil
the details of a model (e.g., neuronal ring rates) and thember and executed and nally, the results need to be transferrackb
of recorded variables. into the Python environment. Furthermore, at the beginning
Consider for exampl&igure 1C which shows the results for of the simulation, the model needs to be initialized, which
a simulation of the LIF benchmark with heterogeneous delaysncludes generating synapses, setting up connectivity iogetr
To record this data, a spike recorder records all spikes in tha the necessary format and for GPU backends, transferring
network, a state variable recorder records the voltage ofgles data to GPU memoryFigure 8 shows how compilation and
neuron for all time steps of the simulation and a population ratenetwork initialization contribute to the overall executidime
recorder records the fraction of spiking neurons at each timédor the STDP benchmark with homogeneous delays simulated
step. When adding these recorders to the largest LIF netwonkith Brian2CUDA (cf. Figure 5D). The time spent in the
with heterogeneous delays shownFigure 6A(N D 3.2 10°), simulation loop is proportional to the simulated biologicéhie
they require around 6 % of the computation time in the mainand also depends on the population sike of the network.
simulation loop. Half of this additional time is spent on the The initialization time during the simulation is independeaf
spike recordings. For networks with overall less computatiothe simulated biological time and increases with networle siz
time per recorded unit, the contribution of recordings to &t And nally, the compilation time is independent of both, the
computation time naturally increases. For the extreme cdse simulated biological time and the network size.
the HH benchmark without synapseBigure 5A; recorded data Generally, for smaller networks (hehe 10F) with shorter
shown in Supplementary Figure SR the same recordings as biological times (herd < 200 s), most of the computation time
above require around 40 % of the computation timefbD 10° is spent on compilation, while this becomes negligible for large
neurons. Of this additional time around=3 is spent on spike networks simulating longer biological times. The compdati
recordings. time for Brian's C++ backends Brian2GeNN and Brian2CUDA
While Brian2CUDA stores recordings in GPU memory until is mostly comparable, but can di er for some models. Brian's
the end of a simulation, Brian2GeNN copies them at each tim€++ backends and Brian2CUDA generate separate (CUDA C++)
step from GPU to CPU memory. Therefore, GPU memory carsource les for each neuronal population object or synapse ¢bjec
be a limiting factor for recordings in Brian2CUDA, whereasThis can increase compilation times for networks with many
Brian2GeNN requires very little GPU memory. For the HH objects, in particular for Brian2CUDA, which su ers from slowe
benchmark above, spike and population rate recordings I€UDA code compilation. The mushroom body benchmark for
Brian2GeNN perform similarly to those in Brian2CUDA, while example requires almost twice the time for compilation as the
state variable recordings perform signi cantly worse. Tiés STDP benchmark shown here because it consists of twice as many
because of an ine cient implementation of the state variableneuronal populations and synapse groups. While Brian2GeNN
recorder in Brian2GeNN, which copies at each time step alstarequires additional time for rst generating GeNN code fraimre
variables of all neurons to the CPU, independent of the numbeBrian model, it can compile the nal CUDA code faster because

Frontiers in Neuroinformatics | www.frontiersin.org 17 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

FIGURE 9 | Benchmark results for single- vs. double precision on consmer-grade vs. data-center GPUs.(A—E) Same benchmarks as shown inFigure 5. Simulated
without connectivity matrix partitioning in Brian2CUDA, ith single-precision oats (dark colors) and double-preci®n oats (bright colors) and on A100 data-center
GPUs (red colors) and GeForce RTX2080 Ti consumer-grade GBUblue colors). Dark red lines show same data as iRigure 5.

it merges multiple computations into fewer CUDA kernels andthe RTX2080 Ti Figure 9E bright blue vs. dark blue) is

source les. much higher than in the other benchmarks. This is not only
because of the increased processing power, but also because for
3.6. Dependence on Floating Point Number double-precision simulation the extended memory requireise

reach the hardware limits on available registers (Gaiele 1),
forcing the simulation to run with less active threads. With
single-precision oats, the reduced memory requirementevall
higher GPU occupancy on top of the higher processing
%ower for single-precision oats. Additionally, only computatio
S_lbound simulations will show strong performance di erences
between oating point precisions and GPUs (e.g., in the HH
benchmarkskigures 9A,B. For simulations which are bound by

Precision and GPU Hardware Choice

The results above stem from simulations using single-precisi
oating point arithmetics on A100 data center GPUs. Here
we compare those results with Brian2CUDAs performanc
for simulations with double-precision oats on A100 GPU
and using a more aordable hardware GeForce RTX2080
consumer-grade GPUHgure 9. Consumer-grade GPUs are

gfécsginoﬁz\ng;yf?é; |S§c:§é2;<ai§§,.g Swe;rrltg?zgi b?g%r;tssioﬁommunication tasks such as spike propagation, the performance
- vl i erences are much lower (e.g., in the STDP benchmark;
oats. The processing power of the RTX2080 Ti for double-, ! u wer (e.g., i

s . - . -~~~ Figure 9D).
preC|S|on_oats Is 32 t|me§ Iqwer than f(_)r single-precision In summary, these results show that one does not need
oats, while for the A100 it is only 2 times lower. The

processing power of single-precision oats on the A100 iSextremely expensive data-center GPUs to benet from GPU
. i . computations in spiking neural networks, since much cheaper
1.66 times larger than on the RTX2080 Ti. However, th P piing P

.) onsumer-grade GPUs can perform comparably for many model
performance dierences between GPUs and between singl g P P y y

precision and double-precision simulations don't necesgari ?ypes atleastfor simulations with single-precision oats.

re ect the dierence in processing power. Additional factors

play a role, such as hardware limits on memory per SM o#4. DISCUSSION

available data transfer bandwidths. Speci cally, the hanew

limits can have double e ect when comparing single- to doubleBuilding on the user-friendly simulator Brian and its code
precision simulations. For the mushroom body benchmarkgeneration framework, the Brian2CUDA package presented here
the speedup from double- to single-precision simulations orallows users with little technical expertise to simulate taaloy

Frontiers in Neuroinformatics | www.frontiersin.org 18 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

neural and synaptic models on GPUs. As we have shown, thiernel, and all kernels are executed sequentially. Foreétgern
can lead to an important acceleration of a wide range of modehat don't utilize all resources (e.g., small populations of
simulations. The achievable speedup depends on the details syfnapses/neurons), this leads to performance degradation. |
the model and the size of the network. For a small networkcontrast, Brian2GeNN merges all calculations related tooes

or a model with challenging features for parallelizationtsas into one kernel and all updates of synapses in another kernel.
heterogeneous transmission delays, only a several-fol@¢ése We are currently working on two features that are promising
in simulation speed might be possible. On the other handto increase performance for smaller networks: (1) Using CYDA
for models that are more favorable to parallelization, sush aconcurrent kernel execution capabilities, kernels for sefar
unconnected networks or networks with homogeneous delayseuron and synapse objects can be executed in parallel while
and complex neuron models, the simulation speed can increaseeping Brian's modular approach. (2) Convenience functions
dramatically by several orders of magnitude. Our detailedn Brian's Python interface can be implemented that allow sser
benchmarking has shown a number of possible routes to furtheto easily merge multiple versions of the same (potentiallyldma
optimize the simulation speed for the challenging situationsmodel into a single large model. This would not only allow

which we will discuss in the following section. much easier parameter explorations of networks on a single
o GPU but also bene t from Brian2CUDAS optimizations for large
4.1. Limitations and Future Work networks.

E ciently simulating dierent types of synaptic models on Brian2CUDAS main focus is on optimizing the simulation
GPUs is challenging because there is no single algorithm thahase, since this typically dominates the overall time fogdar
is best for all situationsHrette and Goodman, 2012; Kasapnetworks. To run smaller networks or simpler simulations,
and van Opstal, 20)8Through partitioning the connectivity however, the long code generation and compilation phase in the
matrix, Brian2CUDA can counteract performance degradatiorbeginning (cfFigure 8), can be a major inconvenience. The long
for some cases where the default parallelization strategyydvo compilation times partly stem from Brian's modular approach
be ine cient. For models with homogeneous transmission gsla mentioned above. Each component of the simulation is cordin
and without partitioning the connectivity matrix, the e ect in a separate code le that needs to be compiled individually.
application of individual spiking neurons is parallelized overTo reduce compile times, multiple code les could be combined
CUDA blocks. Partitioning the connectivity matrix distribes during code generation. It should be noted, however, that th
the synapses for each spiking neuron over additional CUDAeported compilation times are the full compilation times for a
blocks. However, this increases performance only when theew simulation. If a user re-runs an existing simulation amiyo
number of synapses per spiking neuron is larger than thehanges some aspects of it, only the changed source codewill b
maximal number of threads per CUDA block (1,024;%#ble). re-compiled.
For all benchmark models here, the average number of Another major future optimization for network simulations
synapses per neuron is1,000, for which partitioning does that run for a short biological time, is the synapse generaiion
not increase parallelization. For models with more synapsethe initialization phase of the simulation. At the momentnsyse
however, partitioning is expected to be bene cial as longyeneration uses Brian's C++ mechanism and therefore does no
as the number of spiking neurons per time step is smalbene t from the GPU at all.
enough in order to keep the total number of CUDA blocks Current data structures and algorithms for simulating
below the hardware limit on active blocks on all SMs ofsynapses are designed to handle all synaptic models and
a GPU. For models with heterogeneous delays, partitioningonnection structures supported by Brian. But they perform
the connectivity matrix has a non-trivial e ect on spike better on some model types than on others. For example, for
propagation and synaptic e ect application algorithms (seehomogeneous delays, our synaptic e ect application algorithm
Figure 7). For example, without partitioning, spike propagation performs best when the number of connections is equally
is very e cient while e ect application is ine cient due to distributed across neurons. For structured connectiwgriable
only one CUDA block applying all synaptic e ects. Future synapse group sizes can lead to unbalanced workloads across
work can further accelerate the simulation of models withCUDA blocks during e ect application (cfFigure 3B, which
heterogeneous delays by parallelizing the e ect applicatiar ov can a ect performance. Similarly, for heterogeneous delays,
more CUDA blocks instead of using only one CUDA block perour synaptic e ect application algorithm for synapse bundles
partition. performs best when bundle sizes are uniformly distributed
The current implementation of Brian2CUDA is optimized within each synapse group because the same number of threads
for large networks, where its speedups compared to Brianis assigned to each bundle (¢figure 4D). Strong variability
C++ backends are the largest and where it outperformacross bundle sizes would lead to unbalanced workloadsscro
Brian2GeNN in simulating the benchmark models employedyroups of threads processing synapses of di erent bundles. In
here. For smaller network sizes, however, Brian2CUDA ishofteorder to avoid these unbalanced workloads, one future tiwac
outperformed by Brian2GeNN (see for exampigures 5B-0. could be to optimize our connectivity matrix scheme based
This can be at least partly explained by Brian's modulaon connectivity details. This could allow distributing wooklds
approach, inherited by Brian2CUDA. Each individual modelmore evenly or exploiting local connectivity structures iaro
component—e.g., the numerical integration, the threshaidi algorithms (as has been done before Hyljeland et al., 2009;
the resetting (cf. Section 2.3)—is contained in an indigldu Fidjeland and Shanahan, 2910

Frontiers in Neuroinformatics | www.frontiersin.org 19 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

The presented work mostly focussed on optimizing simulatiorperformance. To give a few recent examples: the Spike simulator
performance and less on memory usage. However, availallehmad et al., 20)8has been optimized for speed, but is
memory can be a major constraint, in particular on consumerimplemented as a C++ library and therefore not easily useable f
grade GPUs. This is especially true when recording spikenany researchers; the EDEN simulat&afagiotou et al., 20p1
times and state variables from many neurons or synapsesyns arbitrary NeuroML v2 modelsdannon et al., 20)4which
which Brian2CUDA stores in GPU memory (see Section 3.4means it inherits NeuroMLs focus on multi-compartmental
In future versions, we plan a recorder implementation thatmodels but also its limitations with regard to networks of spik
allows transferring data in regular intervals from GPU tolCP neurons; the NeuronGPU simulato6&losio et al., 209IXcomes
memory, and we will focus on optimizing further unnecessarywith a convenient Python interface, but implementing new
redundancies and memory ine ciencies. This should close th models requires editing the C++ source code of the simulator.
gap to Brian2GeNN, which is currently more memory-e cient. The Brian2CUDA interface and its general approach is

Brian2CUDA is designed to support all features of Brian2 thatomparable to the ANNarchy simulatok/{tay et al., 201pand
are currently supported by its C++ backend and builds on thehe GeNN simulator {avuz et al., 20)6when used together
same code generation framework. It is therefore considgrabwith its PyGeNN interface Knight and Nowotny, 202l By
less limited than the Brian2GeNN backend (discussed beloweing a fully-featured backend for the Brian simulator, hoere
and supports a large variety of models. We have focuseBrian2CUDA provides additional bene ts for researchers that
the development on spiking networks of single-compartmenbther simulators lack, such as a system of physical units, support
models, since they are most likely to benet from GPUfor multi-compartmental models, and the possibility to precysel
acceleration. Nevertheless, Brian2CUDA has support for otherustomize execution schedules. As we have shown in thdegrti
types of models supported by Brian, such as multi-compartmerBrian2CUDA not only provides exibility and convenience, but
models, or rate-based models. This support is preliminaryalso shows competitive performance for a wide range of network
though, and using Brian2CUDA might not give any performancemodels.
bene ts prior to improving the respective parallel algorithms. The most similar approach to the Brian2CUDA package

As a general note on the limitations above, we would likgpresented here is obviously the Brian2GeNN package, which
to again emphasize that due to Brian2CUDASs implementatioris also implemented as a backend for the Brian simulator.
as a backend for the Brian simulator, a researcher does néistead of generating CUDA code directly, the Brian2GeNN
need to invest any additional time or e ort to port a model backend generates code for the GeNN simulator, which then in
to Brian2CUDA. In contrast, porting a model to a simulator turn generates CUDA code. This approach has its advantages—
that only targets the GPU carries the risk that the e ort is note.g., Brian2GeNN will automatically bene t from performance
worth the bene t. Due to the backend approach, researchers casptimizations in the GeNN package—but it also leads to a much
also easily switch between the CPU and GPU-based approachmere restricted set of Brian features that are supported. &thié
during development of a new model. For example, a research&eNN simulator provides a large amount of exibility, it does
can do the initial development and testing on a small-scaldeho not go as a far as Brian and Brian2CUDA, for example it does
with the CPU, without having to pay the additional cost for the not allow for a customized execution order for all the eletsen
CUDA compilation, and then switch to the GPU for the nal of a simulation. The Brian2GeNN interface adds a number
model, where the slower compilation is more than compensatedf additional restrictions. As a result, less common synapse
by the faster computation time. implementations, in particular those that need access to and

The Brian2CUDA backend is currently only supported for change variables both on the pre- and post-synaptic side, might
Linux operating systems (in contrast to Brian which supportsnot be supported. Brian2GeNN is also behind in enabling feature
Windows, Linux, and OS X), but this limitation will be removed added in newer versions of GeNN. Most importantly, GeNN

in the future. added support for heterogeneous synaptic delays with itsarersi
3.2, but this support is not yet availabléa the Brian2GeNN
4.2. Comparison to Existing Approaches interface. The benchmark results for Brian2GeNN presented i

Accelerating neural network simulations with the paraflation this study should therefore be interpreted with caution anat n

capabilities of GPUs has been a promising approach for moreecessarily be taken as indicative of GeNN's performance. Fo

than a decade. The Brian2CUDA simulator presented here, buildaample, it appears as if the Brian2GeNN performance does

on the foundations laid by these earlier simulators. Fomepde, not improve as much as expected when switching from double

Brian2CUDAs spike propagation algorithm groups synapseto single precision oats Supplementary Figure SJ but that

based on their pre- and postsynaptic targets, as well as theitight be due to a suboptimal conversion of the model by

delays into synapsmindlessimilar to the approach of the NEMO Brian2GeNN.

simulator (Fidjeland et al., 2009; Fidjeland and Shanahan, 2010

in the case of homogeneous delays, Brian2CUDAs postsynapz CONCLUSION

update algorithm results in a similar parallelization ovenagses

as in the dynamic parallelism approach describedasap and By combining the exibility of the Brian simulator with the

van Opstal (2018) simulation speed of GPUs, Brian2CUDA enables researchers
In recent years, several new, general-purpose simulatoes hato e ciently simulate spiking neural networks with minimal

seen the light of day, with each of them making dierente ort and thereby makes the advancements of GPU computing

tradeo s between the requirements of ease-of-use, eitjpiind available to a larger audience of neuroscientists.

Frontiers in Neuroinformatics | www.frontiersin.org 20 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

DATA AVAILABILITY STATEMENT FUNDING

Publicly available datasets were analyzed in this study ThHhis work was supported by the Deutsche
Brian2CUDA software package is publicly available on GitHubForschungsgemeinschaft (DFG) in the framework of
https://github.com/brian-team/brian2cuda. The softwarecollaborative research centers SFB910 and SFB1315 (project
version to reproduce the simulations in this study can be fdun number 327654276), the Open Access Publication Fund of
at https://github.com/brian-team/brian2cuda/tree/pap@22 TU Berlin and by Programme Investissements d'Avenir IHU
and instructions on how to run them can be found at https:// FOReSIGHT (ANR-18-IAHU-01).
github.com/brian-team/brian2cuda/tree/paper2022/b&anda/

tools/benchmarking. ACKNOWLEDGMENTS

We thank Sudeshna Bora for assistance during the preparation of
AUTHOR CONTRIBUTIONS the rst Brian2CUDA release, with benchmark simulations and
analysis, as well as with manuscript formatting and visutibna

MA conceptualized and supervised the project. DA andve additionally thank Laura Naumann and Gregory Knoll for
MA designed the Brian2CUDA algorithms and designedhelping with visualizations and Konrad Wartke for an early
the benchmarks. DA developed the Brian2CUDA softwardmPlementation of some of the Brian2CUDA algorithms.

and performed and analyzed the benchmarks, and wrote

the initial draft of the manuscript. MS supervised the SUPPLEMENTARY MATERIAL

integration with Brian and contributed necessary features)))

to Brian itself. DA, MS, and MA revised the manuscript.The Supplementary Material for this article can be found
All authors contributed to the article and approved theOnline at: https://www.frontiersin.org/articles/10.388inf.

submitted version. 2022.883700/full#supplementary-material
REFERENCES models in concise and hierarchical form and its use in underpinning
NeuroML 2. Front Neuroinform 8, 79. doi: 10.3389/fninf.2014.
Abi Akar, N., Cumming, B., Karakasis, V., Kusters, A., Klijn, Reyser, A., et al. 00079
(2019). “Arbor- A morphologically-detailed neural network simulatilorary Carnevale, N. T., and Hines, M. L. (2008)he NEURON BookCambridge:
for contemporary high-performance computing architectures,”2@19 27th Cambridge University Press.
Euromicro International Conference on Parallel, Distebend Network-Based Chou, T.-S., Kashyap, H. J., Xing, J., Listopad, S., Rounds, Beyeler, M., et
Processing (PDF)avia, 274-282. al. (2018). “CARLsim 4: an open source library for large scale, hiaallhg
Ahmad, N., Isbister, J. B., Smithe, T. S. C., and Stringer, S. 2018]. detailed spiking neural network simulation using heterogeneoustets,” in
Spike: a GPU optimised spiking neural network simulatoioRxiy 461160. 2018 International Joint Conference on Neural Networks (IJQRi) de
doi: 10.1101/461160 Janeiro: IEEE), 1-8.
Alevi, D., Augustin, M., and Stimberg, M. (2022). Brian2CUDA (&ien Eisenstat, S. C., Gursky, M. C., Schultz, M. H., and Sherman, A. H.
paper2022)Zenododoi: 10.5281/zenodo.6406656 (1982). Yale sparse matrix package |: The symmetric codes.
Ben-Shalom, R., Ladd, A., Artherya, N. S., Cross, C., Kim, K. Ggh8an J Numer Methods Eng 18, 1145-1151. doi: 10.1002/nme.16201

H., et al. (2022). NeuroGPU: accelerating multi-compartment, biophigica 80804

detailed neuron simulations on GPUS. Neurosci. Method366, 109400. Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and Luk, 0@9]j2“NeMo: a

doi: 10.1016/j.jneumeth.2021.109400 platform for neural modelling of spiking neurons using GPUs,"2609 20th
Bernhard, F., and Keriven, R. (2006). “Spiking neurons on GPUs’ i IEEE International Conference on Application-specic Bstérchitectures

Computational SciencelCCS 2006, Vol. 3994ds D. Hutchison, T. Kanade, and Processo(Boston, MA: IEEE), 137-144.

J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. NaorNierstrasz, C. Fidjeland, A. K., and Shanahan, M. P. (2010). “Accelerated stionlaf spiking

Pandu Rangan, B. Ste en, M. Sudan, D. Terzopoulos, D. Tygar, Maii, G. neural networks using GPUs,” ilthe 2010 International Joint Conference on

Weikum, V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. dzora Neural Networks (IJCNNBarcelona, 1-8.

(Berlin; Heidelberg: Springer Berlin Heidelberg), 236—-243. Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, B.Paolucci, P.
Bi, G.-,g. and Poo, M.-m. (2001). Synaptic modication by corneda S. (2021). Fast Simulations of highly-connected spiking cénicalels using

activity: Hebb's postulate revisitedAnnu. Rev. Neurosci24, 139-166. GPUs Front. Comput. Neurosd5, 627620. doi: 10.3389/fncom.2021.627620

doi: 10.1146/annurev.neuro.24.1.139 Goodman, D. F. M. (2010). Code generation: a strategy for neural
Blundell, 1., Brette, R., Cleland, T. A., Close, T. G., Coca, D.,soayA. P., et al. network simulators. Neuroinform 8, 183-196. doi: 10.1007/s12021-010-

(2018). Code generation in computational neuroscience: a revféaols and 9082-x

techniquesFront. Neuroinform12, 68. doi: 10.3389/fninf.2018.00068 Hoang, R. V., Tanna, D., Jayet Bray, L. C., Dascalu, S. M., ancsHar€. (2013).
Brette, R., and Goodman, D. F. M. (2012). Simulating spiking nenetalorks on Anovel CPU/GPU simulation environment for large-scale biologicalglistic

GPU.Network23, 167-182. doi: 10.3109/0954898X.2012.730170 neural modelingFront. Neuroinform7, 19. doi: 10.3389/fninf.2013.00019
Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bowht.,, et Izhikevich, E. M. (2003). Simple model of spiking neurof&EE Trans. Neural

al. (2007). Simulation of networks of spiking neurons: a review ofstand Netw 14, 1569-1572. doi: 10.1109/TNN.2003.820440

strategies]. Comput. Neuros@3, 349-398. doi: 10.1007/s10827-007-0038-6 Kasap, B., and van Opstal, A. J. (2018). Dynamic parallelism for sgnagtating
Brunel, N., and Hakim, V. (1999). Fast global oscillations in neksoof in GPU-accelerated spiking neural network simulatioNsurocomputing02,

integrate-and- re neurons with low ring ratefNeural Computl11, 1621-1671. 55-65. doi: 10.1016/j.neucom.2018.04.007

doi: 10.1162/089976699300016179 Knight, J., Nowotny, T., Turner, J. P., Yavuz, E., Ali, F., ZhaM.,
Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, i&iniP et al. (2021a). GeNN 4.5.1. (4.5.1) [Computer softwargenodo

E., et al. (2014). LEMS: a language for expressing complex biological doi: 10.5281/zenodo.5121623

Frontiers in Neuroinformatics | www.frontiersin.org 21 October 2022 | Volume 16 | Article 883700

Alevi et al. Brian2CUDA

Knight, J. C., Komissarov, A., and Nowotny, T. (2021b). PyGesNython Stimberg, M., Goodman, D. F. M., Brette, R., and Pitt,a, M. D1¢2). “Modeling
library for GPU-enhanced neural network&ront. Neuroinform 15, 10. neuron-glia interactions with the brian 2 simulator, ifComputational
doi: 10.3389/fninf.2021.659005 Glioscience, Springer Series in Computational Neuros@ds M. De Pitta and

Knight, J. C., and Nowotny, T. (2021). Larger GPU-acceleratedinb H. Berry (Cham: Springer International Publishing), 471-505.
simulations with procedural connectivityNat. Computat. Scil, 136-142. Stimberg, M., Goodman, D. F. M., and Nowotny, T. (2020b). BriaeRN:

doi: 10.1038/s43588-020-00022-7 accelerating spiking neural network simulations with graphics
Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomegiold models hardware. Scientic Rep 10, 1-12. doi: 10.1038/s41598-019-54

of synaptic plasticity based on spike timingiol. Cybern 98, 459-478. 957-7

doi: 10.1007/s00422-008-0233-1 Stimberg, M., Nowotny, T., Goodman, D. F. M., and Brian2GeNNtdbators.

Mutch, J., Knoblich, U., and Poggio, T. (2010NS: a GPU-based framework (2021). Brian2GeNN (1.6¥enododoi: 10.5281/zenodo.1464116
for simulating cortically-organized networks CN& GPU-based framework Teska, A., Stimberg, M., and Brette, R. (2020). brian2modedt(id.4).Zenodo

for simulating cortically-organized netwark¥®mputer Science and Arti cial doi: 10.5281/zenodo.4601961
Intelligence Laboratory Technical Report. Traub, R. D., and Miles, R. (1991Neuronal Networks of the Hippocampus
Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., andd&saum, Cambridge: Cambridge University Press.

A. (2009). “E cient simulation of large-scale spiking neural neks using Vitay, J., Dinkelbach, H., U., and Hamker, F. H. (2015). ANNarchy:
CUDA graphics processors,” 2009 International Joint Conference on Neural a code generation approach to neural simulations on parallel

NetworksAtlanta, GA, 2145-2152. hardware. Front. Neuroinform 9, 19. doi: 10.3389/fninf.2015.
Nowotny, T., Huerta, R., Abarbanel, H. D. I., and Rabinovich, M2D05). Self- 00019

organization in the olfactory system: one shot odor recognitiomsectsBiol. Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a codergéinn framework

Cybern 93, 436—-446. doi: 10.1007/s00422-005-0019-7 for accelerated brain simulationSci. Rep6, 18854. doi: 10.1038/srep18854
NVIDIA Corporation (2007-2022). CUDA™,

https://developer.nvidia.com/cuda-zone Con ict of Interest: The authors declare that the research was conducted in the

Panagiotou, S., Sidiropoulos, H., Negrello, M., Soudris, D., anddiSfry absence of any commercial or nancial relationships that coulddestrued as a
C. (2021). EDEN: a high-performance, general-purpose, NeuroMLypotential con ict of interest.
based neural simulator.arXiv:2106.06752 [g-Hio arXiv: 2106.06752
doi: 10.48550/arXiv.2106.06752 Publisher's Note:All claims expressed in this article are solely those of the authors
Richert, M., Nageswaran, J. M., Dutt, N., and Krichmar, J. L.1p0An e cient 4n 4o not necessarily represent those of their a liated orgaritzas, or those of
simulation environment for modeling large-scale cortical processirgnt. the publisher, the editors and the reviewers. Any product that magJaluated in

Neuroinform 5, 19. doi: 10.3389/fninf.2011.00019 .) . . .
Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Habliearning this article, or claim that may be made by its manufacturer, is notrauied or
endorsed by the publisher.

through spike-timing-dependent synaptic plasticijat. Neurosci3, 919-926.
doi: 10.1038/78829
Stimberg, M., Brette, R., and Goodman, D. F. (2019a). Brian 2ntaitive and Copyright © 2022 Alevi, Stimberg, Sprekeler, Obermayer andtiAughss is an
e cient neural simulator.Elife8, e47314. doi: 10.7554/eLife.47314 open-access article distributed under the terms of thév@r€ammons Attribution
Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, ®L42. Equation- License (CC BY). The use, distribution or reproductiortierdorums is permitted,
oriented speci cation of neural models for simulatiof&ont. Neuroinforms, provided the original author(s) and the copyright ownergsyeedited and that the

6. doi: 10.3389/fninf.2014.00006 original publication in this journal is cited, in accordangith accepted academic
Stimberg, M., Goodman, D. F. M., Brette, R., and Brian contritait(#020a). Brian ~ practice. No use, distribution or reproduction is permhittdich does not comply
2(2.4.2)Zenod06226753. with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 22 October 2022 | Volume 16 | Article 883700

