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Cells encapsulated in 3D hydrogels exhibit differences in cellular mechanosensing based

on their ability to remodel their surrounding hydrogel environment. Although cells in tissue

interfaces feature a range of mechanosensitive states, it is challenging to recreate this in

3D biomaterials. Human mesenchymal stem cells (MSCs) encapsulated in methacrylated

gelatin (GelMe) hydrogels remodel their local hydrogel environment in a time-dependent

manner, with a significant increase in cell volume and nuclear Yes-associated protein

(YAP) localization between 3 and 5 days in culture. A finite element analysis model

of compression showed spatial differences in hydrogel stress of compressed GelMe

hydrogels, and MSC-laden GelMe hydrogels were compressed (0–50%) for 3 days to

evaluate the role of spatial differences in hydrogel stress on 3D cellular mechanosensing.

MSCs in the edge (high stress) were significantly larger, less round, and had increased

nuclear YAP in comparison to MSCs in the center (low stress) of 25% compressed GelMe

hydrogels. At 50% compression, GelMe hydrogels were under high stress throughout,

and this resulted in a consistent increase in MSC volume and nuclear YAP across

the entire hydrogel. To recreate heterogeneous mechanical signals present in tissue

interfaces, porous polycaprolactone (PCL) scaffolds were perfused with an MSC-laden

GelMe hydrogel solution. MSCs in different pore diameter (∼280–430µm) constructs

showed an increased range in morphology and nuclear YAP with increasing pore

size. Hydrogel stress influences MSC mechanosensing, and porous scaffold-hydrogel

composites that expose MSCs to diverse mechanical signals are a unique biomaterial

for studying and designing tissue interfaces.

Keywords: 3D hydrogels, cellular mechanosensing, cellular remodeling, hydrogel, tissue interface, 3D

biomaterials, stem cells, osteochondral interface

INTRODUCTION

Mesenchymals stem cells (MSCs) are highly sensitive to biochemical and biophysical signals
(1, 2), and can differentiate into several musculoskeletal lineages including osteoblasts and
chondrocytes (3). Hydrogels are soft biomaterials that have gained increased interest as
matrices for tissue engineering due to their biocompatibility and ease of cellular encapsulation
for 3D culture (4, 5). Hydrogels can also be designed with tunable biophysical properties
including degradation (6, 7), which can be used to regulate 3D cellular spreading and
mechanosensing of encapsulated cells (7). MSCs encapsulated in non-degradable hydrogels that
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FIGURE 2 | Differences in hydrogel stress during compression influence MSC spreading and nuclear YAP localization in GelMe hydrogels. (A) Finite element analysis

models of uncompressed (left), 25% (middle), and 50% (right) compressed hydrogels. (B) Schematic of hydrogel showing edge (brown) and center (gold) regions for

the whole hydrogel and along the x-direction. (C) Representative single cell silhouettes of single MSCs encapsulated in uncompressed, 25% compressed, and 50%

compressed GelMe hydrogels. Quantification of cellular (D) Volume, (E) Sphericity, and (F) Nuclear YAP of MSCs encapsulated in edge (brown) or center (gold) GelMe

hydrogels undergoing 0, 25, or 50% compression. Bar graphs represent the mean and points individual cells; n > 50 cells per group, ns, not significant, **p < 0.01,

***p < 0.001. Scale bar: 100µm.

and placed in the compression device. A nylon bolt was then
lowered from above until it compressed the hydrogel 0, 25, or
50% of its free-swelling height for 3 days. After 3 days, samples
were fixed, stained, and MSC morphology and YAP signaling
was evaluated in edge or center regions of the hydrogel samples
(Figure 2B). Representative silhouettes of single MSCs show
that at 0% compression, MSCs retain a spherical morphology
after 3 days in culture. Although a spherical morphology is also
observed for the center (low stress) region of 25% compressed
hydrogels, MSCs spread in edge (high stress) regions of these
hydrogels. MSCs in 50% compressed hydrogels had the same
highly elongated and spread morphology in center and edge
regions (Figure 2C). This could be due to the larger applied

compressive force, since the finite element analysis model of
compression predicted that at 50% compression the lowest region
of stress (center) would equal the highest region of stress (edge)
for 25% compressed hydrogels.

An edge vs. center region comparison of MSC volume
shows that MSCs in the edge region of 25% compressed
hydrogels were significantly larger than those in the lower stress
center region. MSC volume in unconfined (0%) and highly
(50%) compressed hydrogels was the same in edge and center
regions (Figure 2D). Sphericity was the largest for MSCs in
uncompressed GelMe hydrogels, and lowest in 50% compressed
hydrogels. Concomitant with volume, MSCs were significantly
less round in the edge region when compared to the center
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FIGURE 3 | Pore diameter affects MSC mechanosensing in porous scaffold-hydrogel composites. (A) Schematic of MSC-laden GelMe perfusion process and

representative confocal image of encapsulated MSCs (green) interacting with proximal pores (red). (B) Quantification of pore diameters for Low (L), Med (M), and High

(H) porosity scaffolds. (C) Representative single cell silhouettes of MSCs encapsulated in GelMe and in GelMe perfused into L, M, and H porosity scaffolds.

Quantification of cellular (D) Volume, (E) Nuclear YAP, and (F) Sphericity of MSCs encapsulated in GelMe perfused into L, M, and H porosity scaffolds. Bar graphs

represent the mean and points individual cells; n > 50 cells per group, ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001. Scale bars: 100 µm.
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region of 25% compressed hydrogels (Figure 2E). Nuclear YAP
of MSCs in uncompressed GelMe hydrogels was also the lowest
after 3 days in culture (1.04± 0.19), whereas regional differences
were only observed in 25% compressed hydrogels. MSCs in
50% compressed hydrogels had the highest levels of nuclear
YAP (2.30 ± 1.1 in edge, 2.10 ± 0.8 in center) (Figure 2F).
Nuclear YAP in highly compressed hydrogels is over two-fold
higher than in uncompressed hydrogels, which suggests that
confining hydrogels into tightly packed regions will induce
changes in mechanosensitive states comparable to those present
in tissue interfaces.

Diversity in MSC Morphology and
Mechanosensing Observed in Porous
Scaffold-Hydrogel Composites
Based on the findings presented and previous studies on
cell-hydrogel mechanosensing (17, 22, 24), it is hypothesized
that MSC-laden GelMe hydrogels inside rigid yet porous
PCL scaffolds will feature a range of hydrogel stresses which
will translate to diverse mechanosensitive states. To test this
hypothesis, MSCs in GelMe solution were perfused into
porous PCL scaffolds and cultured for 3 days (Figure 3A).
A representative confocal image of GelMe-encapsulated MSCs
(green) in a red-labeled porous PCL scaffold display spherical
and spread MSCs based on their proximity to rigid PCL pores
(Figure 3A, inset). Using a salt-leaching technique, PCL scaffolds
with Low (L, 280± 100µm), Med (M, 325± 210µm), and High
(H, 430 ± 145µm) pore diameters were developed (Figure 3B).
The composites had a significantly higher compressive modulus
than GelMe alone. The compressive modulus of GelMe
hydrogels is 7.15 ± 0.8 kPa, whereas composites made with
Low pore diameter are 570 ± 60 kPa. Increasing porosity
resulted in a decrease in compressive modulus, with values
for Med and High pore diameter composites as 300 ± 40
kPa and 100 ± 20 kPa, respectively (Supplementary Figure 5).
MSCs were highly viable in the composites, with at least
80% viability across all constructs after at least 7 days in
culture (Supplementary Figure 6).

MSC mechanosensing and population heterogeneity can be
controlled depending on pore diameter. On Low pore diameter
composites, MSCs are in closest proximity to PCL, and a
large fraction of cells elongate due to being within small pores
that are always close to the rigid PCL (Figure 3C, red box).
On Med pore diameter composites, the pores are slightly
larger and although most cells are spread, cell morphology
is more diverse (Figure 3C, green box). In contrast, on High
pore diameter composites, MSCs are either in proximity (near
PCL/hydrogel interface) or further away (e.g., suspended in
GelMe at the center of the larger pores), resulting in round and
spread morphologies (Figure 3C, blue box). Quantification of
cell volume shows that cell volume decreases with increasing pore
diameter (Figure 3D). Similarly, Nuclear YAP decreases with

increasing pore size (Figure 3E), and Sphericity increases with
increasing PCL porosity (Figure 3F).

CONCLUSIONS

Cells can “feel” biophysical properties of their surroundings,
and this unique ability can be leveraged to design biomaterials
that control cell behavior. This study shows that degradable
elastic hydrogels under compression exhibit regional differences
in material stress, leading to local differences in stem cell
morphology and nuclear YAP localization. By perfusing cells
and hydrogel solution into porous scaffolds, soft hydrogel-rigid
scaffold interactions lead to a range in 3D mechanosensitive
states of resident stem cells, which can be controlled by
changing pore size. In this Brief Research Report, one MSC
donor was used, and conducting these cellular mechanosensing
studies with additional donors would strengthen the reported
findings. The biological readouts of this study were early
changes in morphology and nuclear YAP localization, and
the effects of cellular mechanosensing on long-term stem
cell differentiation within these composites is an area yet
to be explored. Furthermore, by changing the hydrogel
chemistry used, additional signals within these composites
can be independently tuned. Norbornene-modified hydrogels
can be photopatterned with thiolated peptides (21, 25),
thereby introducing biochemical signaling as an additional
input for controlling cellular mechanosensing and stem
cell differentiation.
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